• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2015-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <string.h>
9 
10 #include <arch_helpers.h>
11 #include <lib/bakery_lock.h>
12 #include <lib/el3_runtime/cpu_data.h>
13 #include <lib/utils_def.h>
14 #include <plat/common/platform.h>
15 
16 /*
17  * Functions in this file implement Bakery Algorithm for mutual exclusion with the
18  * bakery lock data structures in cacheable and Normal memory.
19  *
20  * ARM architecture offers a family of exclusive access instructions to
21  * efficiently implement mutual exclusion with hardware support. However, as
22  * well as depending on external hardware, these instructions have defined
23  * behavior only on certain memory types (cacheable and Normal memory in
24  * particular; see ARMv8 Architecture Reference Manual section B2.10). Use cases
25  * in trusted firmware are such that mutual exclusion implementation cannot
26  * expect that accesses to the lock have the specific type required by the
27  * architecture for these primitives to function (for example, not all
28  * contenders may have address translation enabled).
29  *
30  * This implementation does not use mutual exclusion primitives. It expects
31  * memory regions where the locks reside to be cacheable and Normal.
32  *
33  * Note that the ARM architecture guarantees single-copy atomicity for aligned
34  * accesses regardless of status of address translation.
35  */
36 
37 #ifdef PLAT_PERCPU_BAKERY_LOCK_SIZE
38 /*
39  * Verify that the platform defined value for the per-cpu space for bakery locks is
40  * a multiple of the cache line size, to prevent multiple CPUs writing to the same
41  * bakery lock cache line
42  *
43  * Using this value, if provided, rather than the linker generated value results in
44  * more efficient code
45  */
46 CASSERT((PLAT_PERCPU_BAKERY_LOCK_SIZE & (CACHE_WRITEBACK_GRANULE - 1)) == 0, \
47 	PLAT_PERCPU_BAKERY_LOCK_SIZE_not_cacheline_multiple);
48 #define PERCPU_BAKERY_LOCK_SIZE (PLAT_PERCPU_BAKERY_LOCK_SIZE)
49 #else
50 /*
51  * Use the linker defined symbol which has evaluated the size reqiurement.
52  * This is not as efficient as using a platform defined constant
53  */
54 IMPORT_SYM(uintptr_t, __PERCPU_BAKERY_LOCK_START__, BAKERY_LOCK_START);
55 IMPORT_SYM(uintptr_t, __PERCPU_BAKERY_LOCK_END__, BAKERY_LOCK_END);
56 #define PERCPU_BAKERY_LOCK_SIZE (BAKERY_LOCK_END - BAKERY_LOCK_START)
57 #endif
58 
get_bakery_info(unsigned int cpu_ix,bakery_lock_t * lock)59 static inline bakery_lock_t *get_bakery_info(unsigned int cpu_ix,
60 					     bakery_lock_t *lock)
61 {
62 	return (bakery_info_t *)((uintptr_t)lock +
63 				cpu_ix * PERCPU_BAKERY_LOCK_SIZE);
64 }
65 
write_cache_op(uintptr_t addr,bool cached)66 static inline void write_cache_op(uintptr_t addr, bool cached)
67 {
68 	if (cached)
69 		dccvac(addr);
70 	else
71 		dcivac(addr);
72 
73 	dsbish();
74 }
75 
read_cache_op(uintptr_t addr,bool cached)76 static inline void read_cache_op(uintptr_t addr, bool cached)
77 {
78 	if (cached)
79 		dccivac(addr);
80 }
81 
82 /* Helper function to check if the lock is acquired */
is_lock_acquired(const bakery_info_t * my_bakery_info,int is_cached)83 static inline bool is_lock_acquired(const bakery_info_t *my_bakery_info,
84 							int is_cached)
85 {
86 	/*
87 	 * Even though lock data is updated only by the owning cpu and
88 	 * appropriate cache maintenance operations are performed,
89 	 * if the previous update was done when the cpu was not participating
90 	 * in coherency, then there is a chance that cache maintenance
91 	 * operations were not propagated to all the caches in the system.
92 	 * Hence do a `read_cache_op()` prior to read.
93 	 */
94 	read_cache_op((uintptr_t)my_bakery_info, is_cached);
95 	return bakery_ticket_number(my_bakery_info->lock_data) != 0U;
96 }
97 
bakery_get_ticket(bakery_lock_t * lock,unsigned int me,int is_cached)98 static unsigned int bakery_get_ticket(bakery_lock_t *lock,
99 						unsigned int me, int is_cached)
100 {
101 	unsigned int my_ticket, their_ticket;
102 	unsigned int they;
103 	bakery_info_t *my_bakery_info, *their_bakery_info;
104 
105 	/*
106 	 * Obtain a reference to the bakery information for this cpu and ensure
107 	 * it is not NULL.
108 	 */
109 	my_bakery_info = get_bakery_info(me, lock);
110 	assert(my_bakery_info != NULL);
111 
112 	/* Prevent recursive acquisition.*/
113 	assert(!is_lock_acquired(my_bakery_info, is_cached));
114 
115 	/*
116 	 * Tell other contenders that we are through the bakery doorway i.e.
117 	 * going to allocate a ticket for this cpu.
118 	 */
119 	my_ticket = 0U;
120 	my_bakery_info->lock_data = make_bakery_data(CHOOSING_TICKET, my_ticket);
121 
122 	write_cache_op((uintptr_t)my_bakery_info, is_cached);
123 
124 	/*
125 	 * Iterate through the bakery information of each contender to allocate
126 	 * the highest ticket number for this cpu.
127 	 */
128 	for (they = 0U; they < BAKERY_LOCK_MAX_CPUS; they++) {
129 		if (me == they)
130 			continue;
131 
132 		/*
133 		 * Get a reference to the other contender's bakery info and
134 		 * ensure that a stale copy is not read.
135 		 */
136 		their_bakery_info = get_bakery_info(they, lock);
137 		assert(their_bakery_info != NULL);
138 
139 		read_cache_op((uintptr_t)their_bakery_info, is_cached);
140 
141 		/*
142 		 * Update this cpu's ticket number if a higher ticket number is
143 		 * seen
144 		 */
145 		their_ticket = bakery_ticket_number(their_bakery_info->lock_data);
146 		if (their_ticket > my_ticket)
147 			my_ticket = their_ticket;
148 	}
149 
150 	/*
151 	 * Compute ticket; then signal to other contenders waiting for us to
152 	 * finish calculating our ticket value that we're done
153 	 */
154 	++my_ticket;
155 	my_bakery_info->lock_data = make_bakery_data(CHOSEN_TICKET, my_ticket);
156 
157 	write_cache_op((uintptr_t)my_bakery_info, is_cached);
158 
159 	return my_ticket;
160 }
161 
bakery_lock_get(bakery_lock_t * lock)162 void bakery_lock_get(bakery_lock_t *lock)
163 {
164 	unsigned int they, me, is_cached;
165 	unsigned int my_ticket, my_prio, their_ticket;
166 	bakery_info_t *their_bakery_info;
167 	unsigned int their_bakery_data;
168 
169 	me = plat_my_core_pos();
170 #ifdef __aarch64__
171 	is_cached = read_sctlr_el3() & SCTLR_C_BIT;
172 #else
173 	is_cached = read_sctlr() & SCTLR_C_BIT;
174 #endif
175 
176 	/* Get a ticket */
177 	my_ticket = bakery_get_ticket(lock, me, is_cached);
178 
179 	/*
180 	 * Now that we got our ticket, compute our priority value, then compare
181 	 * with that of others, and proceed to acquire the lock
182 	 */
183 	my_prio = bakery_get_priority(my_ticket, me);
184 	for (they = 0U; they < BAKERY_LOCK_MAX_CPUS; they++) {
185 		if (me == they)
186 			continue;
187 
188 		/*
189 		 * Get a reference to the other contender's bakery info and
190 		 * ensure that a stale copy is not read.
191 		 */
192 		their_bakery_info = get_bakery_info(they, lock);
193 		assert(their_bakery_info != NULL);
194 
195 		/* Wait for the contender to get their ticket */
196 		do {
197 			read_cache_op((uintptr_t)their_bakery_info, is_cached);
198 			their_bakery_data = their_bakery_info->lock_data;
199 		} while (bakery_is_choosing(their_bakery_data));
200 
201 		/*
202 		 * If the other party is a contender, they'll have non-zero
203 		 * (valid) ticket value. If they do, compare priorities
204 		 */
205 		their_ticket = bakery_ticket_number(their_bakery_data);
206 		if (their_ticket && (bakery_get_priority(their_ticket, they) < my_prio)) {
207 			/*
208 			 * They have higher priority (lower value). Wait for
209 			 * their ticket value to change (either release the lock
210 			 * to have it dropped to 0; or drop and probably content
211 			 * again for the same lock to have an even higher value)
212 			 */
213 			do {
214 				wfe();
215 				read_cache_op((uintptr_t)their_bakery_info, is_cached);
216 			} while (their_ticket
217 				== bakery_ticket_number(their_bakery_info->lock_data));
218 		}
219 	}
220 
221 	/*
222 	 * Lock acquired. Ensure that any reads and writes from a shared
223 	 * resource in the critical section read/write values after the lock is
224 	 * acquired.
225 	 */
226 	dmbish();
227 }
228 
bakery_lock_release(bakery_lock_t * lock)229 void bakery_lock_release(bakery_lock_t *lock)
230 {
231 	bakery_info_t *my_bakery_info;
232 #ifdef __aarch64__
233 	unsigned int is_cached = read_sctlr_el3() & SCTLR_C_BIT;
234 #else
235 	unsigned int is_cached = read_sctlr() & SCTLR_C_BIT;
236 #endif
237 
238 	my_bakery_info = get_bakery_info(plat_my_core_pos(), lock);
239 
240 	assert(is_lock_acquired(my_bakery_info, is_cached));
241 
242 	/*
243 	 * Ensure that other observers see any stores in the critical section
244 	 * before releasing the lock. Also ensure all loads in the critical
245 	 * section are complete before releasing the lock. Release the lock by
246 	 * resetting ticket. Then signal other waiting contenders.
247 	 */
248 	dmbish();
249 	my_bakery_info->lock_data = 0U;
250 	write_cache_op((uintptr_t)my_bakery_info, is_cached);
251 
252 	/* This sev is ordered by the dsbish in write_cahce_op */
253 	sev();
254 }
255