• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2018 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "Operations"
18 
19 #include <algorithm>
20 #include <utility>
21 #include <vector>
22 
23 #include "HalInterfaces.h"
24 #include "OperationResolver.h"
25 #include "OperationsUtils.h"
26 
27 namespace android {
28 namespace nn {
29 namespace topk_v2 {
30 
31 constexpr uint32_t kNumInputs = 2;
32 constexpr uint32_t kInputTensor = 0;
33 constexpr uint32_t kTopKScalar = 1;
34 
35 constexpr uint32_t kNumOutputs = 2;
36 constexpr uint32_t kOutputValuesTensor = 0;
37 constexpr uint32_t kOutputIndicesTensor = 1;
38 
39 namespace {
40 
41 using namespace hal;
42 
43 template <typename T>
evalGeneric(const T * inputData,const Shape & inputShape,const int32_t k,T * valuesData,int32_t * indicesData)44 bool evalGeneric(const T* inputData, const Shape& inputShape, const int32_t k, T* valuesData,
45                  int32_t* indicesData) {
46     const int rowSize = inputShape.dimensions.back();
47     const int totalSize = getNumberOfElements(inputShape);
48     std::vector<std::pair<T, int32_t>> values(rowSize);
49     T* curOutputValue = valuesData;
50     int32_t* curOutputIndex = indicesData;
51     for (int rowBegin = 0; rowBegin < totalSize; rowBegin += rowSize) {
52         for (int i = 0; i < rowSize; ++i) {
53             values[i] = std::make_pair(inputData[rowBegin + i], i);
54         }
55         std::nth_element(values.begin(), values.begin() + (rowSize - k), values.end());
56         std::sort(values.begin() + (rowSize - k), values.end());
57         std::reverse(values.begin(), values.end());
58         for (int i = 0; i < k; ++i) {
59             *curOutputValue = values[i].first;
60             *curOutputIndex = values[i].second;
61             curOutputValue++;
62             curOutputIndex++;
63         }
64     }
65     return true;
66 }
67 
68 template <typename T>
executeTyped(IOperationExecutionContext * context)69 bool executeTyped(IOperationExecutionContext* context) {
70     return evalGeneric(context->getInputBuffer<T>(kInputTensor),
71                        context->getInputShape(kInputTensor),
72                        context->getInputValue<int32_t>(kTopKScalar),
73                        context->getOutputBuffer<T>(kOutputValuesTensor),
74                        context->getOutputBuffer<int32_t>(kOutputIndicesTensor));
75 }
76 
77 }  // namespace
78 
validate(const IOperationValidationContext * context)79 bool validate(const IOperationValidationContext* context) {
80     NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs);
81     NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
82     OperandType inputType = context->getInputType(kInputTensor);
83     NN_RET_CHECK(inputType == OperandType::TENSOR_FLOAT16 ||
84                  inputType == OperandType::TENSOR_FLOAT32 ||
85                  inputType == OperandType::TENSOR_INT32 ||
86                  inputType == OperandType::TENSOR_QUANT8_ASYMM ||
87                  inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED)
88             << "Unsupported input operand type for select op: " << toString(inputType);
89     NN_RET_CHECK(validateInputTypes(context, {inputType, OperandType::INT32}));
90     NN_RET_CHECK(validateOutputTypes(context, {inputType, OperandType::TENSOR_INT32}));
91     HalVersion minSupportedHalVersion = HalVersion::V1_2;
92     if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
93         minSupportedHalVersion = HalVersion::V1_3;
94     }
95     return validateHalVersion(context, minSupportedHalVersion);
96 }
97 
prepare(IOperationExecutionContext * context)98 bool prepare(IOperationExecutionContext* context) {
99     const Shape inputShape = context->getInputShape(kInputTensor);
100     const int32_t k = context->getInputValue<int32_t>(kTopKScalar);
101     NN_RET_CHECK_GT(k, 0);
102     NN_RET_CHECK_LE(k, inputShape.dimensions.back());
103 
104     // Copy input shape to ensure that quantization parameters for the output
105     // values are the same as for the input tensor.
106     Shape outputValuesShape = inputShape;
107     outputValuesShape.dimensions.back() = k;
108     Shape outputIndicesShape;
109     outputIndicesShape.type = OperandType::TENSOR_INT32;
110     outputIndicesShape.dimensions = inputShape.dimensions;
111     outputIndicesShape.dimensions.back() = k;
112     return context->setOutputShape(kOutputValuesTensor, outputValuesShape) &&
113            context->setOutputShape(kOutputIndicesTensor, outputIndicesShape);
114 }
115 
execute(IOperationExecutionContext * context)116 bool execute(IOperationExecutionContext* context) {
117     const Shape inputShape = context->getInputShape(kInputTensor);
118     switch (inputShape.type) {
119         case OperandType::TENSOR_FLOAT16: {
120             return executeTyped<_Float16>(context);
121         } break;
122         case OperandType::TENSOR_FLOAT32: {
123             return executeTyped<float>(context);
124         } break;
125         case OperandType::TENSOR_INT32: {
126             return executeTyped<int32_t>(context);
127         } break;
128         case OperandType::TENSOR_QUANT8_ASYMM: {
129             return executeTyped<uint8_t>(context);
130         } break;
131         case OperandType::TENSOR_QUANT8_ASYMM_SIGNED: {
132             return executeTyped<int8_t>(context);
133         } break;
134         default: {
135             LOG(ERROR) << "Unsupported data type: " << toString(inputShape.type);
136             return false;
137         }
138     }
139 }
140 
141 }  // namespace topk_v2
142 
143 NN_REGISTER_OPERATION(TOPK_V2, "TOPK_V2", topk_v2::validate, topk_v2::prepare, topk_v2::execute);
144 
145 }  // namespace nn
146 }  // namespace android
147