1 /* 2 pybind11/eigen.h: Transparent conversion for dense and sparse Eigen matrices 3 4 Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch> 5 6 All rights reserved. Use of this source code is governed by a 7 BSD-style license that can be found in the LICENSE file. 8 */ 9 10 #pragma once 11 12 #include "numpy.h" 13 14 #if defined(__INTEL_COMPILER) 15 # pragma warning(disable: 1682) // implicit conversion of a 64-bit integral type to a smaller integral type (potential portability problem) 16 #elif defined(__GNUG__) || defined(__clang__) 17 # pragma GCC diagnostic push 18 # pragma GCC diagnostic ignored "-Wconversion" 19 # pragma GCC diagnostic ignored "-Wdeprecated-declarations" 20 # ifdef __clang__ 21 // Eigen generates a bunch of implicit-copy-constructor-is-deprecated warnings with -Wdeprecated 22 // under Clang, so disable that warning here: 23 # pragma GCC diagnostic ignored "-Wdeprecated" 24 # endif 25 # if __GNUC__ >= 7 26 # pragma GCC diagnostic ignored "-Wint-in-bool-context" 27 # endif 28 #endif 29 30 #if defined(_MSC_VER) 31 # pragma warning(push) 32 # pragma warning(disable: 4127) // warning C4127: Conditional expression is constant 33 # pragma warning(disable: 4996) // warning C4996: std::unary_negate is deprecated in C++17 34 #endif 35 36 #include <Eigen/Core> 37 #include <Eigen/SparseCore> 38 39 // Eigen prior to 3.2.7 doesn't have proper move constructors--but worse, some classes get implicit 40 // move constructors that break things. We could detect this an explicitly copy, but an extra copy 41 // of matrices seems highly undesirable. 42 static_assert(EIGEN_VERSION_AT_LEAST(3,2,7), "Eigen support in pybind11 requires Eigen >= 3.2.7"); 43 44 NAMESPACE_BEGIN(PYBIND11_NAMESPACE) 45 46 // Provide a convenience alias for easier pass-by-ref usage with fully dynamic strides: 47 using EigenDStride = Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic>; 48 template <typename MatrixType> using EigenDRef = Eigen::Ref<MatrixType, 0, EigenDStride>; 49 template <typename MatrixType> using EigenDMap = Eigen::Map<MatrixType, 0, EigenDStride>; 50 51 NAMESPACE_BEGIN(detail) 52 53 #if EIGEN_VERSION_AT_LEAST(3,3,0) 54 using EigenIndex = Eigen::Index; 55 #else 56 using EigenIndex = EIGEN_DEFAULT_DENSE_INDEX_TYPE; 57 #endif 58 59 // Matches Eigen::Map, Eigen::Ref, blocks, etc: 60 template <typename T> using is_eigen_dense_map = all_of<is_template_base_of<Eigen::DenseBase, T>, std::is_base_of<Eigen::MapBase<T, Eigen::ReadOnlyAccessors>, T>>; 61 template <typename T> using is_eigen_mutable_map = std::is_base_of<Eigen::MapBase<T, Eigen::WriteAccessors>, T>; 62 template <typename T> using is_eigen_dense_plain = all_of<negation<is_eigen_dense_map<T>>, is_template_base_of<Eigen::PlainObjectBase, T>>; 63 template <typename T> using is_eigen_sparse = is_template_base_of<Eigen::SparseMatrixBase, T>; 64 // Test for objects inheriting from EigenBase<Derived> that aren't captured by the above. This 65 // basically covers anything that can be assigned to a dense matrix but that don't have a typical 66 // matrix data layout that can be copied from their .data(). For example, DiagonalMatrix and 67 // SelfAdjointView fall into this category. 68 template <typename T> using is_eigen_other = all_of< 69 is_template_base_of<Eigen::EigenBase, T>, 70 negation<any_of<is_eigen_dense_map<T>, is_eigen_dense_plain<T>, is_eigen_sparse<T>>> 71 >; 72 73 // Captures numpy/eigen conformability status (returned by EigenProps::conformable()): 74 template <bool EigenRowMajor> struct EigenConformable { 75 bool conformable = false; 76 EigenIndex rows = 0, cols = 0; 77 EigenDStride stride{0, 0}; // Only valid if negativestrides is false! 78 bool negativestrides = false; // If true, do not use stride! 79 80 EigenConformable(bool fits = false) : conformable{fits} {} 81 // Matrix type: EigenConformableEigenConformable82 EigenConformable(EigenIndex r, EigenIndex c, 83 EigenIndex rstride, EigenIndex cstride) : 84 conformable{true}, rows{r}, cols{c} { 85 // TODO: when Eigen bug #747 is fixed, remove the tests for non-negativity. http://eigen.tuxfamily.org/bz/show_bug.cgi?id=747 86 if (rstride < 0 || cstride < 0) { 87 negativestrides = true; 88 } else { 89 stride = {EigenRowMajor ? rstride : cstride /* outer stride */, 90 EigenRowMajor ? cstride : rstride /* inner stride */ }; 91 } 92 } 93 // Vector type: EigenConformableEigenConformable94 EigenConformable(EigenIndex r, EigenIndex c, EigenIndex stride) 95 : EigenConformable(r, c, r == 1 ? c*stride : stride, c == 1 ? r : r*stride) {} 96 stride_compatibleEigenConformable97 template <typename props> bool stride_compatible() const { 98 // To have compatible strides, we need (on both dimensions) one of fully dynamic strides, 99 // matching strides, or a dimension size of 1 (in which case the stride value is irrelevant) 100 return 101 !negativestrides && 102 (props::inner_stride == Eigen::Dynamic || props::inner_stride == stride.inner() || 103 (EigenRowMajor ? cols : rows) == 1) && 104 (props::outer_stride == Eigen::Dynamic || props::outer_stride == stride.outer() || 105 (EigenRowMajor ? rows : cols) == 1); 106 } 107 operator bool() const { return conformable; } 108 }; 109 110 template <typename Type> struct eigen_extract_stride { using type = Type; }; 111 template <typename PlainObjectType, int MapOptions, typename StrideType> 112 struct eigen_extract_stride<Eigen::Map<PlainObjectType, MapOptions, StrideType>> { using type = StrideType; }; 113 template <typename PlainObjectType, int Options, typename StrideType> 114 struct eigen_extract_stride<Eigen::Ref<PlainObjectType, Options, StrideType>> { using type = StrideType; }; 115 116 // Helper struct for extracting information from an Eigen type 117 template <typename Type_> struct EigenProps { 118 using Type = Type_; 119 using Scalar = typename Type::Scalar; 120 using StrideType = typename eigen_extract_stride<Type>::type; 121 static constexpr EigenIndex 122 rows = Type::RowsAtCompileTime, 123 cols = Type::ColsAtCompileTime, 124 size = Type::SizeAtCompileTime; 125 static constexpr bool 126 row_major = Type::IsRowMajor, 127 vector = Type::IsVectorAtCompileTime, // At least one dimension has fixed size 1 128 fixed_rows = rows != Eigen::Dynamic, 129 fixed_cols = cols != Eigen::Dynamic, 130 fixed = size != Eigen::Dynamic, // Fully-fixed size 131 dynamic = !fixed_rows && !fixed_cols; // Fully-dynamic size 132 133 template <EigenIndex i, EigenIndex ifzero> using if_zero = std::integral_constant<EigenIndex, i == 0 ? ifzero : i>; 134 static constexpr EigenIndex inner_stride = if_zero<StrideType::InnerStrideAtCompileTime, 1>::value, 135 outer_stride = if_zero<StrideType::OuterStrideAtCompileTime, 136 vector ? size : row_major ? cols : rows>::value; 137 static constexpr bool dynamic_stride = inner_stride == Eigen::Dynamic && outer_stride == Eigen::Dynamic; 138 static constexpr bool requires_row_major = !dynamic_stride && !vector && (row_major ? inner_stride : outer_stride) == 1; 139 static constexpr bool requires_col_major = !dynamic_stride && !vector && (row_major ? outer_stride : inner_stride) == 1; 140 141 // Takes an input array and determines whether we can make it fit into the Eigen type. If 142 // the array is a vector, we attempt to fit it into either an Eigen 1xN or Nx1 vector 143 // (preferring the latter if it will fit in either, i.e. for a fully dynamic matrix type). 144 static EigenConformable<row_major> conformable(const array &a) { 145 const auto dims = a.ndim(); 146 if (dims < 1 || dims > 2) 147 return false; 148 149 if (dims == 2) { // Matrix type: require exact match (or dynamic) 150 151 EigenIndex 152 np_rows = a.shape(0), 153 np_cols = a.shape(1), 154 np_rstride = a.strides(0) / static_cast<ssize_t>(sizeof(Scalar)), 155 np_cstride = a.strides(1) / static_cast<ssize_t>(sizeof(Scalar)); 156 if ((fixed_rows && np_rows != rows) || (fixed_cols && np_cols != cols)) 157 return false; 158 159 return {np_rows, np_cols, np_rstride, np_cstride}; 160 } 161 162 // Otherwise we're storing an n-vector. Only one of the strides will be used, but whichever 163 // is used, we want the (single) numpy stride value. 164 const EigenIndex n = a.shape(0), 165 stride = a.strides(0) / static_cast<ssize_t>(sizeof(Scalar)); 166 167 if (vector) { // Eigen type is a compile-time vector 168 if (fixed && size != n) 169 return false; // Vector size mismatch 170 return {rows == 1 ? 1 : n, cols == 1 ? 1 : n, stride}; 171 } 172 else if (fixed) { 173 // The type has a fixed size, but is not a vector: abort 174 return false; 175 } 176 else if (fixed_cols) { 177 // Since this isn't a vector, cols must be != 1. We allow this only if it exactly 178 // equals the number of elements (rows is Dynamic, and so 1 row is allowed). 179 if (cols != n) return false; 180 return {1, n, stride}; 181 } 182 else { 183 // Otherwise it's either fully dynamic, or column dynamic; both become a column vector 184 if (fixed_rows && rows != n) return false; 185 return {n, 1, stride}; 186 } 187 } 188 189 static constexpr bool show_writeable = is_eigen_dense_map<Type>::value && is_eigen_mutable_map<Type>::value; 190 static constexpr bool show_order = is_eigen_dense_map<Type>::value; 191 static constexpr bool show_c_contiguous = show_order && requires_row_major; 192 static constexpr bool show_f_contiguous = !show_c_contiguous && show_order && requires_col_major; 193 194 static constexpr auto descriptor = 195 _("numpy.ndarray[") + npy_format_descriptor<Scalar>::name + 196 _("[") + _<fixed_rows>(_<(size_t) rows>(), _("m")) + 197 _(", ") + _<fixed_cols>(_<(size_t) cols>(), _("n")) + 198 _("]") + 199 // For a reference type (e.g. Ref<MatrixXd>) we have other constraints that might need to be 200 // satisfied: writeable=True (for a mutable reference), and, depending on the map's stride 201 // options, possibly f_contiguous or c_contiguous. We include them in the descriptor output 202 // to provide some hint as to why a TypeError is occurring (otherwise it can be confusing to 203 // see that a function accepts a 'numpy.ndarray[float64[3,2]]' and an error message that you 204 // *gave* a numpy.ndarray of the right type and dimensions. 205 _<show_writeable>(", flags.writeable", "") + 206 _<show_c_contiguous>(", flags.c_contiguous", "") + 207 _<show_f_contiguous>(", flags.f_contiguous", "") + 208 _("]"); 209 }; 210 211 // Casts an Eigen type to numpy array. If given a base, the numpy array references the src data, 212 // otherwise it'll make a copy. writeable lets you turn off the writeable flag for the array. 213 template <typename props> handle eigen_array_cast(typename props::Type const &src, handle base = handle(), bool writeable = true) { 214 constexpr ssize_t elem_size = sizeof(typename props::Scalar); 215 array a; 216 if (props::vector) 217 a = array({ src.size() }, { elem_size * src.innerStride() }, src.data(), base); 218 else 219 a = array({ src.rows(), src.cols() }, { elem_size * src.rowStride(), elem_size * src.colStride() }, 220 src.data(), base); 221 222 if (!writeable) 223 array_proxy(a.ptr())->flags &= ~detail::npy_api::NPY_ARRAY_WRITEABLE_; 224 225 return a.release(); 226 } 227 228 // Takes an lvalue ref to some Eigen type and a (python) base object, creating a numpy array that 229 // reference the Eigen object's data with `base` as the python-registered base class (if omitted, 230 // the base will be set to None, and lifetime management is up to the caller). The numpy array is 231 // non-writeable if the given type is const. 232 template <typename props, typename Type> 233 handle eigen_ref_array(Type &src, handle parent = none()) { 234 // none here is to get past array's should-we-copy detection, which currently always 235 // copies when there is no base. Setting the base to None should be harmless. 236 return eigen_array_cast<props>(src, parent, !std::is_const<Type>::value); 237 } 238 239 // Takes a pointer to some dense, plain Eigen type, builds a capsule around it, then returns a numpy 240 // array that references the encapsulated data with a python-side reference to the capsule to tie 241 // its destruction to that of any dependent python objects. Const-ness is determined by whether or 242 // not the Type of the pointer given is const. 243 template <typename props, typename Type, typename = enable_if_t<is_eigen_dense_plain<Type>::value>> 244 handle eigen_encapsulate(Type *src) { 245 capsule base(src, [](void *o) { delete static_cast<Type *>(o); }); 246 return eigen_ref_array<props>(*src, base); 247 } 248 249 // Type caster for regular, dense matrix types (e.g. MatrixXd), but not maps/refs/etc. of dense 250 // types. 251 template<typename Type> 252 struct type_caster<Type, enable_if_t<is_eigen_dense_plain<Type>::value>> { 253 using Scalar = typename Type::Scalar; 254 using props = EigenProps<Type>; 255 256 bool load(handle src, bool convert) { 257 // If we're in no-convert mode, only load if given an array of the correct type 258 if (!convert && !isinstance<array_t<Scalar>>(src)) 259 return false; 260 261 // Coerce into an array, but don't do type conversion yet; the copy below handles it. 262 auto buf = array::ensure(src); 263 264 if (!buf) 265 return false; 266 267 auto dims = buf.ndim(); 268 if (dims < 1 || dims > 2) 269 return false; 270 271 auto fits = props::conformable(buf); 272 if (!fits) 273 return false; 274 275 // Allocate the new type, then build a numpy reference into it 276 value = Type(fits.rows, fits.cols); 277 auto ref = reinterpret_steal<array>(eigen_ref_array<props>(value)); 278 if (dims == 1) ref = ref.squeeze(); 279 else if (ref.ndim() == 1) buf = buf.squeeze(); 280 281 int result = detail::npy_api::get().PyArray_CopyInto_(ref.ptr(), buf.ptr()); 282 283 if (result < 0) { // Copy failed! 284 PyErr_Clear(); 285 return false; 286 } 287 288 return true; 289 } 290 291 private: 292 293 // Cast implementation 294 template <typename CType> 295 static handle cast_impl(CType *src, return_value_policy policy, handle parent) { 296 switch (policy) { 297 case return_value_policy::take_ownership: 298 case return_value_policy::automatic: 299 return eigen_encapsulate<props>(src); 300 case return_value_policy::move: 301 return eigen_encapsulate<props>(new CType(std::move(*src))); 302 case return_value_policy::copy: 303 return eigen_array_cast<props>(*src); 304 case return_value_policy::reference: 305 case return_value_policy::automatic_reference: 306 return eigen_ref_array<props>(*src); 307 case return_value_policy::reference_internal: 308 return eigen_ref_array<props>(*src, parent); 309 default: 310 throw cast_error("unhandled return_value_policy: should not happen!"); 311 }; 312 } 313 314 public: 315 316 // Normal returned non-reference, non-const value: 317 static handle cast(Type &&src, return_value_policy /* policy */, handle parent) { 318 return cast_impl(&src, return_value_policy::move, parent); 319 } 320 // If you return a non-reference const, we mark the numpy array readonly: 321 static handle cast(const Type &&src, return_value_policy /* policy */, handle parent) { 322 return cast_impl(&src, return_value_policy::move, parent); 323 } 324 // lvalue reference return; default (automatic) becomes copy 325 static handle cast(Type &src, return_value_policy policy, handle parent) { 326 if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference) 327 policy = return_value_policy::copy; 328 return cast_impl(&src, policy, parent); 329 } 330 // const lvalue reference return; default (automatic) becomes copy 331 static handle cast(const Type &src, return_value_policy policy, handle parent) { 332 if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference) 333 policy = return_value_policy::copy; 334 return cast(&src, policy, parent); 335 } 336 // non-const pointer return 337 static handle cast(Type *src, return_value_policy policy, handle parent) { 338 return cast_impl(src, policy, parent); 339 } 340 // const pointer return 341 static handle cast(const Type *src, return_value_policy policy, handle parent) { 342 return cast_impl(src, policy, parent); 343 } 344 345 static constexpr auto name = props::descriptor; 346 347 operator Type*() { return &value; } 348 operator Type&() { return value; } 349 operator Type&&() && { return std::move(value); } 350 template <typename T> using cast_op_type = movable_cast_op_type<T>; 351 352 private: 353 Type value; 354 }; 355 356 // Base class for casting reference/map/block/etc. objects back to python. 357 template <typename MapType> struct eigen_map_caster { 358 private: 359 using props = EigenProps<MapType>; 360 361 public: 362 363 // Directly referencing a ref/map's data is a bit dangerous (whatever the map/ref points to has 364 // to stay around), but we'll allow it under the assumption that you know what you're doing (and 365 // have an appropriate keep_alive in place). We return a numpy array pointing directly at the 366 // ref's data (The numpy array ends up read-only if the ref was to a const matrix type.) Note 367 // that this means you need to ensure you don't destroy the object in some other way (e.g. with 368 // an appropriate keep_alive, or with a reference to a statically allocated matrix). 369 static handle cast(const MapType &src, return_value_policy policy, handle parent) { 370 switch (policy) { 371 case return_value_policy::copy: 372 return eigen_array_cast<props>(src); 373 case return_value_policy::reference_internal: 374 return eigen_array_cast<props>(src, parent, is_eigen_mutable_map<MapType>::value); 375 case return_value_policy::reference: 376 case return_value_policy::automatic: 377 case return_value_policy::automatic_reference: 378 return eigen_array_cast<props>(src, none(), is_eigen_mutable_map<MapType>::value); 379 default: 380 // move, take_ownership don't make any sense for a ref/map: 381 pybind11_fail("Invalid return_value_policy for Eigen Map/Ref/Block type"); 382 } 383 } 384 385 static constexpr auto name = props::descriptor; 386 387 // Explicitly delete these: support python -> C++ conversion on these (i.e. these can be return 388 // types but not bound arguments). We still provide them (with an explicitly delete) so that 389 // you end up here if you try anyway. 390 bool load(handle, bool) = delete; 391 operator MapType() = delete; 392 template <typename> using cast_op_type = MapType; 393 }; 394 395 // We can return any map-like object (but can only load Refs, specialized next): 396 template <typename Type> struct type_caster<Type, enable_if_t<is_eigen_dense_map<Type>::value>> 397 : eigen_map_caster<Type> {}; 398 399 // Loader for Ref<...> arguments. See the documentation for info on how to make this work without 400 // copying (it requires some extra effort in many cases). 401 template <typename PlainObjectType, typename StrideType> 402 struct type_caster< 403 Eigen::Ref<PlainObjectType, 0, StrideType>, 404 enable_if_t<is_eigen_dense_map<Eigen::Ref<PlainObjectType, 0, StrideType>>::value> 405 > : public eigen_map_caster<Eigen::Ref<PlainObjectType, 0, StrideType>> { 406 private: 407 using Type = Eigen::Ref<PlainObjectType, 0, StrideType>; 408 using props = EigenProps<Type>; 409 using Scalar = typename props::Scalar; 410 using MapType = Eigen::Map<PlainObjectType, 0, StrideType>; 411 using Array = array_t<Scalar, array::forcecast | 412 ((props::row_major ? props::inner_stride : props::outer_stride) == 1 ? array::c_style : 413 (props::row_major ? props::outer_stride : props::inner_stride) == 1 ? array::f_style : 0)>; 414 static constexpr bool need_writeable = is_eigen_mutable_map<Type>::value; 415 // Delay construction (these have no default constructor) 416 std::unique_ptr<MapType> map; 417 std::unique_ptr<Type> ref; 418 // Our array. When possible, this is just a numpy array pointing to the source data, but 419 // sometimes we can't avoid copying (e.g. input is not a numpy array at all, has an incompatible 420 // layout, or is an array of a type that needs to be converted). Using a numpy temporary 421 // (rather than an Eigen temporary) saves an extra copy when we need both type conversion and 422 // storage order conversion. (Note that we refuse to use this temporary copy when loading an 423 // argument for a Ref<M> with M non-const, i.e. a read-write reference). 424 Array copy_or_ref; 425 public: 426 bool load(handle src, bool convert) { 427 // First check whether what we have is already an array of the right type. If not, we can't 428 // avoid a copy (because the copy is also going to do type conversion). 429 bool need_copy = !isinstance<Array>(src); 430 431 EigenConformable<props::row_major> fits; 432 if (!need_copy) { 433 // We don't need a converting copy, but we also need to check whether the strides are 434 // compatible with the Ref's stride requirements 435 Array aref = reinterpret_borrow<Array>(src); 436 437 if (aref && (!need_writeable || aref.writeable())) { 438 fits = props::conformable(aref); 439 if (!fits) return false; // Incompatible dimensions 440 if (!fits.template stride_compatible<props>()) 441 need_copy = true; 442 else 443 copy_or_ref = std::move(aref); 444 } 445 else { 446 need_copy = true; 447 } 448 } 449 450 if (need_copy) { 451 // We need to copy: If we need a mutable reference, or we're not supposed to convert 452 // (either because we're in the no-convert overload pass, or because we're explicitly 453 // instructed not to copy (via `py::arg().noconvert()`) we have to fail loading. 454 if (!convert || need_writeable) return false; 455 456 Array copy = Array::ensure(src); 457 if (!copy) return false; 458 fits = props::conformable(copy); 459 if (!fits || !fits.template stride_compatible<props>()) 460 return false; 461 copy_or_ref = std::move(copy); 462 loader_life_support::add_patient(copy_or_ref); 463 } 464 465 ref.reset(); 466 map.reset(new MapType(data(copy_or_ref), fits.rows, fits.cols, make_stride(fits.stride.outer(), fits.stride.inner()))); 467 ref.reset(new Type(*map)); 468 469 return true; 470 } 471 472 operator Type*() { return ref.get(); } 473 operator Type&() { return *ref; } 474 template <typename _T> using cast_op_type = pybind11::detail::cast_op_type<_T>; 475 476 private: 477 template <typename T = Type, enable_if_t<is_eigen_mutable_map<T>::value, int> = 0> 478 Scalar *data(Array &a) { return a.mutable_data(); } 479 480 template <typename T = Type, enable_if_t<!is_eigen_mutable_map<T>::value, int> = 0> 481 const Scalar *data(Array &a) { return a.data(); } 482 483 // Attempt to figure out a constructor of `Stride` that will work. 484 // If both strides are fixed, use a default constructor: 485 template <typename S> using stride_ctor_default = bool_constant< 486 S::InnerStrideAtCompileTime != Eigen::Dynamic && S::OuterStrideAtCompileTime != Eigen::Dynamic && 487 std::is_default_constructible<S>::value>; 488 // Otherwise, if there is a two-index constructor, assume it is (outer,inner) like 489 // Eigen::Stride, and use it: 490 template <typename S> using stride_ctor_dual = bool_constant< 491 !stride_ctor_default<S>::value && std::is_constructible<S, EigenIndex, EigenIndex>::value>; 492 // Otherwise, if there is a one-index constructor, and just one of the strides is dynamic, use 493 // it (passing whichever stride is dynamic). 494 template <typename S> using stride_ctor_outer = bool_constant< 495 !any_of<stride_ctor_default<S>, stride_ctor_dual<S>>::value && 496 S::OuterStrideAtCompileTime == Eigen::Dynamic && S::InnerStrideAtCompileTime != Eigen::Dynamic && 497 std::is_constructible<S, EigenIndex>::value>; 498 template <typename S> using stride_ctor_inner = bool_constant< 499 !any_of<stride_ctor_default<S>, stride_ctor_dual<S>>::value && 500 S::InnerStrideAtCompileTime == Eigen::Dynamic && S::OuterStrideAtCompileTime != Eigen::Dynamic && 501 std::is_constructible<S, EigenIndex>::value>; 502 503 template <typename S = StrideType, enable_if_t<stride_ctor_default<S>::value, int> = 0> 504 static S make_stride(EigenIndex, EigenIndex) { return S(); } 505 template <typename S = StrideType, enable_if_t<stride_ctor_dual<S>::value, int> = 0> 506 static S make_stride(EigenIndex outer, EigenIndex inner) { return S(outer, inner); } 507 template <typename S = StrideType, enable_if_t<stride_ctor_outer<S>::value, int> = 0> 508 static S make_stride(EigenIndex outer, EigenIndex) { return S(outer); } 509 template <typename S = StrideType, enable_if_t<stride_ctor_inner<S>::value, int> = 0> 510 static S make_stride(EigenIndex, EigenIndex inner) { return S(inner); } 511 512 }; 513 514 // type_caster for special matrix types (e.g. DiagonalMatrix), which are EigenBase, but not 515 // EigenDense (i.e. they don't have a data(), at least not with the usual matrix layout). 516 // load() is not supported, but we can cast them into the python domain by first copying to a 517 // regular Eigen::Matrix, then casting that. 518 template <typename Type> 519 struct type_caster<Type, enable_if_t<is_eigen_other<Type>::value>> { 520 protected: 521 using Matrix = Eigen::Matrix<typename Type::Scalar, Type::RowsAtCompileTime, Type::ColsAtCompileTime>; 522 using props = EigenProps<Matrix>; 523 public: 524 static handle cast(const Type &src, return_value_policy /* policy */, handle /* parent */) { 525 handle h = eigen_encapsulate<props>(new Matrix(src)); 526 return h; 527 } 528 static handle cast(const Type *src, return_value_policy policy, handle parent) { return cast(*src, policy, parent); } 529 530 static constexpr auto name = props::descriptor; 531 532 // Explicitly delete these: support python -> C++ conversion on these (i.e. these can be return 533 // types but not bound arguments). We still provide them (with an explicitly delete) so that 534 // you end up here if you try anyway. 535 bool load(handle, bool) = delete; 536 operator Type() = delete; 537 template <typename> using cast_op_type = Type; 538 }; 539 540 template<typename Type> 541 struct type_caster<Type, enable_if_t<is_eigen_sparse<Type>::value>> { 542 typedef typename Type::Scalar Scalar; 543 typedef remove_reference_t<decltype(*std::declval<Type>().outerIndexPtr())> StorageIndex; 544 typedef typename Type::Index Index; 545 static constexpr bool rowMajor = Type::IsRowMajor; 546 547 bool load(handle src, bool) { 548 if (!src) 549 return false; 550 551 auto obj = reinterpret_borrow<object>(src); 552 object sparse_module = module::import("scipy.sparse"); 553 object matrix_type = sparse_module.attr( 554 rowMajor ? "csr_matrix" : "csc_matrix"); 555 556 if (!obj.get_type().is(matrix_type)) { 557 try { 558 obj = matrix_type(obj); 559 } catch (const error_already_set &) { 560 return false; 561 } 562 } 563 564 auto values = array_t<Scalar>((object) obj.attr("data")); 565 auto innerIndices = array_t<StorageIndex>((object) obj.attr("indices")); 566 auto outerIndices = array_t<StorageIndex>((object) obj.attr("indptr")); 567 auto shape = pybind11::tuple((pybind11::object) obj.attr("shape")); 568 auto nnz = obj.attr("nnz").cast<Index>(); 569 570 if (!values || !innerIndices || !outerIndices) 571 return false; 572 573 value = Eigen::MappedSparseMatrix<Scalar, Type::Flags, StorageIndex>( 574 shape[0].cast<Index>(), shape[1].cast<Index>(), nnz, 575 outerIndices.mutable_data(), innerIndices.mutable_data(), values.mutable_data()); 576 577 return true; 578 } 579 580 static handle cast(const Type &src, return_value_policy /* policy */, handle /* parent */) { 581 const_cast<Type&>(src).makeCompressed(); 582 583 object matrix_type = module::import("scipy.sparse").attr( 584 rowMajor ? "csr_matrix" : "csc_matrix"); 585 586 array data(src.nonZeros(), src.valuePtr()); 587 array outerIndices((rowMajor ? src.rows() : src.cols()) + 1, src.outerIndexPtr()); 588 array innerIndices(src.nonZeros(), src.innerIndexPtr()); 589 590 return matrix_type( 591 std::make_tuple(data, innerIndices, outerIndices), 592 std::make_pair(src.rows(), src.cols()) 593 ).release(); 594 } 595 596 PYBIND11_TYPE_CASTER(Type, _<(Type::IsRowMajor) != 0>("scipy.sparse.csr_matrix[", "scipy.sparse.csc_matrix[") 597 + npy_format_descriptor<Scalar>::name + _("]")); 598 }; 599 600 NAMESPACE_END(detail) 601 NAMESPACE_END(PYBIND11_NAMESPACE) 602 603 #if defined(__GNUG__) || defined(__clang__) 604 # pragma GCC diagnostic pop 605 #elif defined(_MSC_VER) 606 # pragma warning(pop) 607 #endif 608