1# Copyright 2016 The TensorFlow Authors. All Rights Reserved. 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================== 15"""Tests for Keras regularizers.""" 16 17from __future__ import absolute_import 18from __future__ import division 19from __future__ import print_function 20 21from absl.testing import parameterized 22import numpy as np 23 24from tensorflow.python import keras 25from tensorflow.python.eager import context 26from tensorflow.python.keras import keras_parameterized 27from tensorflow.python.keras import regularizers 28from tensorflow.python.keras import testing_utils 29from tensorflow.python.keras.utils import np_utils 30from tensorflow.python.ops import math_ops 31from tensorflow.python.platform import test 32 33 34DATA_DIM = 5 35NUM_CLASSES = 2 36 37 38class KerasRegularizersTest(keras_parameterized.TestCase, 39 parameterized.TestCase): 40 41 def create_model(self, kernel_regularizer=None, activity_regularizer=None): 42 model = keras.models.Sequential() 43 model.add(keras.layers.Dense(NUM_CLASSES, 44 kernel_regularizer=kernel_regularizer, 45 activity_regularizer=activity_regularizer, 46 input_shape=(DATA_DIM,))) 47 return model 48 49 def get_data(self): 50 (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data( 51 train_samples=10, 52 test_samples=10, 53 input_shape=(DATA_DIM,), 54 num_classes=NUM_CLASSES) 55 y_train = np_utils.to_categorical(y_train, NUM_CLASSES) 56 y_test = np_utils.to_categorical(y_test, NUM_CLASSES) 57 return (x_train, y_train), (x_test, y_test) 58 59 def create_multi_input_model_from(self, layer1, layer2): 60 input_1 = keras.layers.Input(shape=(DATA_DIM,)) 61 input_2 = keras.layers.Input(shape=(DATA_DIM,)) 62 out1 = layer1(input_1) 63 out2 = layer2(input_2) 64 out = keras.layers.Average()([out1, out2]) 65 model = keras.models.Model([input_1, input_2], out) 66 model.add_loss(keras.backend.mean(out2)) 67 model.add_loss(math_ops.reduce_sum(input_1)) 68 return model 69 70 @keras_parameterized.run_all_keras_modes 71 @parameterized.named_parameters([ 72 ('l1', regularizers.l1()), 73 ('l2', regularizers.l2()), 74 ('l1_l2', regularizers.l1_l2()), 75 ]) 76 def test_kernel_regularization(self, regularizer): 77 (x_train, y_train), _ = self.get_data() 78 model = self.create_model(kernel_regularizer=regularizer) 79 model.compile( 80 loss='categorical_crossentropy', 81 optimizer='sgd', 82 run_eagerly=testing_utils.should_run_eagerly(), 83 experimental_run_tf_function=testing_utils.should_run_tf_function()) 84 self.assertEqual(len(model.losses), 1) 85 model.fit(x_train, y_train, batch_size=10, epochs=1, verbose=0) 86 87 @keras_parameterized.run_all_keras_modes 88 @parameterized.named_parameters([ 89 ('l1', regularizers.l1()), 90 ('l2', regularizers.l2()), 91 ('l1_l2', regularizers.l1_l2()), 92 ('l2_zero', keras.regularizers.l2(0.)), 93 ]) 94 def test_activity_regularization(self, regularizer): 95 (x_train, y_train), _ = self.get_data() 96 model = self.create_model(activity_regularizer=regularizer) 97 model.compile( 98 loss='categorical_crossentropy', 99 optimizer='sgd', 100 run_eagerly=testing_utils.should_run_eagerly(), 101 experimental_run_tf_function=testing_utils.should_run_tf_function()) 102 self.assertEqual(len(model.losses), 1 if context.executing_eagerly() else 1) 103 model.fit(x_train, y_train, batch_size=10, epochs=1, verbose=0) 104 105 @keras_parameterized.run_all_keras_modes 106 @keras_parameterized.run_with_all_model_types 107 def test_zero_regularization(self): 108 # Verifies that training with zero regularization works. 109 x, y = np.ones((10, 10)), np.ones((10, 3)) 110 model = testing_utils.get_model_from_layers( 111 [keras.layers.Dense(3, kernel_regularizer=keras.regularizers.l2(0))], 112 input_shape=(10,)) 113 model.compile( 114 'sgd', 115 'mse', 116 run_eagerly=testing_utils.should_run_eagerly(), 117 experimental_run_tf_function=testing_utils.should_run_tf_function()) 118 model.fit(x, y, batch_size=5, epochs=1) 119 120 def test_custom_regularizer_saving(self): 121 122 def my_regularizer(weights): 123 return math_ops.reduce_sum(math_ops.abs(weights)) 124 125 inputs = keras.Input((10,)) 126 outputs = keras.layers.Dense(1, kernel_regularizer=my_regularizer)(inputs) 127 model = keras.Model(inputs, outputs) 128 model2 = model.from_config( 129 model.get_config(), custom_objects={'my_regularizer': my_regularizer}) 130 self.assertEqual(model2.layers[1].kernel_regularizer, my_regularizer) 131 132 @keras_parameterized.run_all_keras_modes 133 @parameterized.named_parameters([ 134 ('l1', regularizers.l1()), 135 ('l2', regularizers.l2()), 136 ('l1_l2', regularizers.l1_l2()), 137 ]) 138 def test_regularization_shared_layer(self, regularizer): 139 dense_layer = keras.layers.Dense( 140 NUM_CLASSES, 141 kernel_regularizer=regularizer, 142 activity_regularizer=regularizer) 143 model = self.create_multi_input_model_from(dense_layer, dense_layer) 144 model.compile( 145 loss='categorical_crossentropy', 146 optimizer='sgd', 147 run_eagerly=testing_utils.should_run_eagerly(), 148 experimental_run_tf_function=testing_utils.should_run_tf_function()) 149 self.assertLen(model.losses, 5) 150 151 @keras_parameterized.run_all_keras_modes 152 @parameterized.named_parameters([ 153 ('l1', regularizers.l1()), 154 ('l2', regularizers.l2()), 155 ('l1_l2', regularizers.l1_l2()), 156 ]) 157 def test_regularization_shared_model(self, regularizer): 158 dense_layer = keras.layers.Dense( 159 NUM_CLASSES, 160 kernel_regularizer=regularizer, 161 activity_regularizer=regularizer) 162 163 input_tensor = keras.layers.Input(shape=(DATA_DIM,)) 164 dummy_model = keras.models.Model(input_tensor, dense_layer(input_tensor)) 165 166 model = self.create_multi_input_model_from(dummy_model, dummy_model) 167 model.compile( 168 loss='categorical_crossentropy', 169 optimizer='sgd', 170 run_eagerly=testing_utils.should_run_eagerly(), 171 experimental_run_tf_function=testing_utils.should_run_tf_function()) 172 self.assertLen(model.losses, 6) 173 174 @keras_parameterized.run_all_keras_modes 175 @parameterized.named_parameters([ 176 ('l1', regularizers.l1()), 177 ('l2', regularizers.l2()), 178 ('l1_l2', regularizers.l1_l2()), 179 ]) 180 def test_regularization_shared_layer_in_different_models(self, regularizer): 181 shared_dense = keras.layers.Dense( 182 NUM_CLASSES, 183 kernel_regularizer=regularizer, 184 activity_regularizer=regularizer) 185 models = [] 186 for _ in range(2): 187 input_tensor = keras.layers.Input(shape=(DATA_DIM,)) 188 unshared_dense = keras.layers.Dense( 189 NUM_CLASSES, kernel_regularizer=regularizer) 190 out = unshared_dense(shared_dense(input_tensor)) 191 models.append(keras.models.Model(input_tensor, out)) 192 193 model = self.create_multi_input_model_from( 194 layer1=models[0], layer2=models[1]) 195 model.compile( 196 loss='categorical_crossentropy', 197 optimizer='sgd', 198 run_eagerly=testing_utils.should_run_eagerly(), 199 experimental_run_tf_function=testing_utils.should_run_tf_function()) 200 201 # We expect to see 9 losses on the model: 202 # - 2 from the 2 add_loss calls on the outer model. 203 # - 3 from the weight regularizers on the shared_dense layer, unshared_dense 204 # in inner model 1, unshared_dense in inner model 2. 205 # - 4 from activity regularizers on the shared_dense layer. 206 self.assertLen(model.losses, 9) 207 208 209if __name__ == '__main__': 210 test.main() 211