• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 // Copyright (c) 1994-2006 Sun Microsystems Inc.
3 // All Rights Reserved.
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // - Redistributions of source code must retain the above copyright notice,
10 // this list of conditions and the following disclaimer.
11 //
12 // - Redistribution in binary form must reproduce the above copyright
13 // notice, this list of conditions and the following disclaimer in the
14 // documentation and/or other materials provided with the distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
21 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
22 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
24 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
25 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
26 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
27 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
28 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
29 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
30 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 
32 // The original source code covered by the above license above has been
33 // modified significantly by Google Inc.
34 // Copyright 2012 the V8 project authors. All rights reserved.
35 
36 #ifndef V8_CODEGEN_MIPS_ASSEMBLER_MIPS_INL_H_
37 #define V8_CODEGEN_MIPS_ASSEMBLER_MIPS_INL_H_
38 
39 #include "src/codegen/mips/assembler-mips.h"
40 
41 #include "src/codegen/assembler.h"
42 #include "src/debug/debug.h"
43 #include "src/objects/objects-inl.h"
44 
45 namespace v8 {
46 namespace internal {
47 
SupportsOptimizer()48 bool CpuFeatures::SupportsOptimizer() { return IsSupported(FPU); }
49 
SupportsWasmSimd128()50 bool CpuFeatures::SupportsWasmSimd128() { return IsSupported(MIPS_SIMD); }
51 
52 // -----------------------------------------------------------------------------
53 // Operand and MemOperand.
54 
is_reg()55 bool Operand::is_reg() const { return rm_.is_valid(); }
56 
immediate()57 int32_t Operand::immediate() const {
58   DCHECK(!is_reg());
59   DCHECK(!IsHeapObjectRequest());
60   return value_.immediate;
61 }
62 
63 // -----------------------------------------------------------------------------
64 // RelocInfo.
65 
apply(intptr_t delta)66 void RelocInfo::apply(intptr_t delta) {
67   if (IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)) {
68     // Absolute code pointer inside code object moves with the code object.
69     Assembler::RelocateInternalReference(rmode_, pc_, delta);
70   } else if (IsRelativeCodeTarget(rmode_)) {
71     Assembler::RelocateRelativeReference(rmode_, pc_, delta);
72   }
73 }
74 
target_address()75 Address RelocInfo::target_address() {
76   DCHECK(IsCodeTargetMode(rmode_) || IsRuntimeEntry(rmode_) ||
77          IsWasmCall(rmode_));
78   return Assembler::target_address_at(pc_, constant_pool_);
79 }
80 
target_address_address()81 Address RelocInfo::target_address_address() {
82   DCHECK(HasTargetAddressAddress());
83   // Read the address of the word containing the target_address in an
84   // instruction stream.
85   // The only architecture-independent user of this function is the serializer.
86   // The serializer uses it to find out how many raw bytes of instruction to
87   // output before the next target.
88   // For an instruction like LUI/ORI where the target bits are mixed into the
89   // instruction bits, the size of the target will be zero, indicating that the
90   // serializer should not step forward in memory after a target is resolved
91   // and written. In this case the target_address_address function should
92   // return the end of the instructions to be patched, allowing the
93   // deserializer to deserialize the instructions as raw bytes and put them in
94   // place, ready to be patched with the target. After jump optimization,
95   // that is the address of the instruction that follows J/JAL/JR/JALR
96   // instruction.
97   if (IsMipsArchVariant(kMips32r6)) {
98     // On R6 we don't move to the end of the instructions to be patched, but one
99     // instruction before, because if these instructions are at the end of the
100     // code object it can cause errors in the deserializer.
101     return pc_ + (Assembler::kInstructionsFor32BitConstant - 1) * kInstrSize;
102   } else {
103     return pc_ + Assembler::kInstructionsFor32BitConstant * kInstrSize;
104   }
105 }
106 
constant_pool_entry_address()107 Address RelocInfo::constant_pool_entry_address() { UNREACHABLE(); }
108 
target_address_size()109 int RelocInfo::target_address_size() { return Assembler::kSpecialTargetSize; }
110 
deserialization_set_special_target_at(Address instruction_payload,Code code,Address target)111 void Assembler::deserialization_set_special_target_at(
112     Address instruction_payload, Code code, Address target) {
113   set_target_address_at(instruction_payload,
114                         !code.is_null() ? code.constant_pool() : kNullAddress,
115                         target);
116 }
117 
deserialization_special_target_size(Address instruction_payload)118 int Assembler::deserialization_special_target_size(
119     Address instruction_payload) {
120   return kSpecialTargetSize;
121 }
122 
set_target_internal_reference_encoded_at(Address pc,Address target)123 void Assembler::set_target_internal_reference_encoded_at(Address pc,
124                                                          Address target) {
125   Instr instr1 = Assembler::instr_at(pc + 0 * kInstrSize);
126   Instr instr2 = Assembler::instr_at(pc + 1 * kInstrSize);
127   DCHECK(Assembler::IsLui(instr1));
128   DCHECK(Assembler::IsOri(instr2) || Assembler::IsJicOrJialc(instr2));
129   instr1 &= ~kImm16Mask;
130   instr2 &= ~kImm16Mask;
131   int32_t imm = static_cast<int32_t>(target);
132   DCHECK_EQ(imm & 3, 0);
133   if (Assembler::IsJicOrJialc(instr2)) {
134     // Encoded internal references are lui/jic load of 32-bit absolute address.
135     uint32_t lui_offset_u, jic_offset_u;
136     Assembler::UnpackTargetAddressUnsigned(imm, &lui_offset_u, &jic_offset_u);
137 
138     Assembler::instr_at_put(pc + 0 * kInstrSize, instr1 | lui_offset_u);
139     Assembler::instr_at_put(pc + 1 * kInstrSize, instr2 | jic_offset_u);
140   } else {
141     // Encoded internal references are lui/ori load of 32-bit absolute address.
142     PatchLuiOriImmediate(pc, imm, instr1, 0 * kInstrSize, instr2,
143                          1 * kInstrSize);
144   }
145 
146   // Currently used only by deserializer, and all code will be flushed
147   // after complete deserialization, no need to flush on each reference.
148 }
149 
deserialization_set_target_internal_reference_at(Address pc,Address target,RelocInfo::Mode mode)150 void Assembler::deserialization_set_target_internal_reference_at(
151     Address pc, Address target, RelocInfo::Mode mode) {
152   if (RelocInfo::IsInternalReferenceEncoded(mode)) {
153     DCHECK(IsLui(instr_at(pc)));
154     set_target_internal_reference_encoded_at(pc, target);
155   } else {
156     DCHECK(RelocInfo::IsInternalReference(mode));
157     Memory<Address>(pc) = target;
158   }
159 }
160 
target_object()161 HeapObject RelocInfo::target_object() {
162   DCHECK(IsCodeTarget(rmode_) || IsFullEmbeddedObject(rmode_));
163   return HeapObject::cast(
164       Object(Assembler::target_address_at(pc_, constant_pool_)));
165 }
166 
target_object_no_host(Isolate * isolate)167 HeapObject RelocInfo::target_object_no_host(Isolate* isolate) {
168   return target_object();
169 }
170 
target_object_handle(Assembler * origin)171 Handle<HeapObject> RelocInfo::target_object_handle(Assembler* origin) {
172   if (IsCodeTarget(rmode_) || IsFullEmbeddedObject(rmode_)) {
173     return Handle<HeapObject>(reinterpret_cast<Address*>(
174         Assembler::target_address_at(pc_, constant_pool_)));
175   }
176   DCHECK(IsRelativeCodeTarget(rmode_));
177   return origin->relative_code_target_object_handle_at(pc_);
178 }
179 
set_target_object(Heap * heap,HeapObject target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)180 void RelocInfo::set_target_object(Heap* heap, HeapObject target,
181                                   WriteBarrierMode write_barrier_mode,
182                                   ICacheFlushMode icache_flush_mode) {
183   DCHECK(IsCodeTarget(rmode_) || IsFullEmbeddedObject(rmode_));
184   Assembler::set_target_address_at(pc_, constant_pool_, target.ptr(),
185                                    icache_flush_mode);
186   if (write_barrier_mode == UPDATE_WRITE_BARRIER && !host().is_null() &&
187       !FLAG_disable_write_barriers) {
188     WriteBarrierForCode(host(), this, target);
189   }
190 }
191 
target_external_reference()192 Address RelocInfo::target_external_reference() {
193   DCHECK(IsExternalReference(rmode_));
194   return Assembler::target_address_at(pc_, constant_pool_);
195 }
196 
set_target_external_reference(Address target,ICacheFlushMode icache_flush_mode)197 void RelocInfo::set_target_external_reference(
198     Address target, ICacheFlushMode icache_flush_mode) {
199   DCHECK(IsExternalReference(rmode_));
200   Assembler::set_target_address_at(pc_, constant_pool_, target,
201                                    icache_flush_mode);
202 }
203 
target_internal_reference()204 Address RelocInfo::target_internal_reference() {
205   if (IsInternalReference(rmode_)) {
206     return Memory<Address>(pc_);
207   } else {
208     // Encoded internal references are lui/ori or lui/jic load of 32-bit
209     // absolute address.
210     DCHECK(IsInternalReferenceEncoded(rmode_));
211     Instr instr1 = Assembler::instr_at(pc_ + 0 * kInstrSize);
212     Instr instr2 = Assembler::instr_at(pc_ + 1 * kInstrSize);
213     DCHECK(Assembler::IsLui(instr1));
214     DCHECK(Assembler::IsOri(instr2) || Assembler::IsJicOrJialc(instr2));
215     if (Assembler::IsJicOrJialc(instr2)) {
216       return static_cast<Address>(
217           Assembler::CreateTargetAddress(instr1, instr2));
218     }
219     return static_cast<Address>(Assembler::GetLuiOriImmediate(instr1, instr2));
220   }
221 }
222 
target_internal_reference_address()223 Address RelocInfo::target_internal_reference_address() {
224   DCHECK(IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
225   return pc_;
226 }
227 
target_runtime_entry(Assembler * origin)228 Address RelocInfo::target_runtime_entry(Assembler* origin) {
229   DCHECK(IsRuntimeEntry(rmode_));
230   return target_address();
231 }
232 
set_target_runtime_entry(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)233 void RelocInfo::set_target_runtime_entry(Address target,
234                                          WriteBarrierMode write_barrier_mode,
235                                          ICacheFlushMode icache_flush_mode) {
236   DCHECK(IsRuntimeEntry(rmode_));
237   if (target_address() != target)
238     set_target_address(target, write_barrier_mode, icache_flush_mode);
239 }
240 
target_off_heap_target()241 Address RelocInfo::target_off_heap_target() {
242   DCHECK(IsOffHeapTarget(rmode_));
243   return Assembler::target_address_at(pc_, constant_pool_);
244 }
245 
WipeOut()246 void RelocInfo::WipeOut() {
247   DCHECK(IsFullEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
248          IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
249          IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_) ||
250          IsOffHeapTarget(rmode_));
251   if (IsInternalReference(rmode_)) {
252     Memory<Address>(pc_) = kNullAddress;
253   } else if (IsInternalReferenceEncoded(rmode_)) {
254     Assembler::set_target_internal_reference_encoded_at(pc_, kNullAddress);
255   } else {
256     Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress);
257   }
258 }
259 
relative_code_target_object_handle_at(Address pc)260 Handle<Code> Assembler::relative_code_target_object_handle_at(
261     Address pc) const {
262   Instr instr1 = instr_at(pc);
263   Instr instr2 = instr_at(pc + kInstrSize);
264   DCHECK(IsLui(instr1));
265   DCHECK(IsOri(instr2) || IsNal(instr2));
266   DCHECK(IsNal(instr2) || IsNal(instr_at(pc - kInstrSize)));
267   if (IsNal(instr2)) {
268     instr2 = instr_at(pc + 2 * kInstrSize);
269   }
270   // Interpret 2 instructions generated by li (lui/ori).
271   int code_target_index = GetLuiOriImmediate(instr1, instr2);
272   return GetCodeTarget(code_target_index);
273 }
274 
275 // -----------------------------------------------------------------------------
276 // Assembler.
277 
CheckBuffer()278 void Assembler::CheckBuffer() {
279   if (buffer_space() <= kGap) {
280     GrowBuffer();
281   }
282 }
283 
CheckForEmitInForbiddenSlot()284 void Assembler::CheckForEmitInForbiddenSlot() {
285   if (!is_buffer_growth_blocked()) {
286     CheckBuffer();
287   }
288   if (IsPrevInstrCompactBranch()) {
289     // Nop instruction to precede a CTI in forbidden slot:
290     Instr nop = SPECIAL | SLL;
291     *reinterpret_cast<Instr*>(pc_) = nop;
292     pc_ += kInstrSize;
293 
294     ClearCompactBranchState();
295   }
296 }
297 
EmitHelper(Instr x,CompactBranchType is_compact_branch)298 void Assembler::EmitHelper(Instr x, CompactBranchType is_compact_branch) {
299   if (IsPrevInstrCompactBranch()) {
300     if (Instruction::IsForbiddenAfterBranchInstr(x)) {
301       // Nop instruction to precede a CTI in forbidden slot:
302       Instr nop = SPECIAL | SLL;
303       *reinterpret_cast<Instr*>(pc_) = nop;
304       pc_ += kInstrSize;
305     }
306     ClearCompactBranchState();
307   }
308   *reinterpret_cast<Instr*>(pc_) = x;
309   pc_ += kInstrSize;
310   if (is_compact_branch == CompactBranchType::COMPACT_BRANCH) {
311     EmittedCompactBranchInstruction();
312   }
313   CheckTrampolinePoolQuick();
314 }
315 
316 template <>
317 inline void Assembler::EmitHelper(uint8_t x);
318 
319 template <typename T>
EmitHelper(T x)320 void Assembler::EmitHelper(T x) {
321   *reinterpret_cast<T*>(pc_) = x;
322   pc_ += sizeof(x);
323   CheckTrampolinePoolQuick();
324 }
325 
326 template <>
EmitHelper(uint8_t x)327 void Assembler::EmitHelper(uint8_t x) {
328   *reinterpret_cast<uint8_t*>(pc_) = x;
329   pc_ += sizeof(x);
330   if (reinterpret_cast<intptr_t>(pc_) % kInstrSize == 0) {
331     CheckTrampolinePoolQuick();
332   }
333 }
334 
emit(Instr x,CompactBranchType is_compact_branch)335 void Assembler::emit(Instr x, CompactBranchType is_compact_branch) {
336   if (!is_buffer_growth_blocked()) {
337     CheckBuffer();
338   }
339   EmitHelper(x, is_compact_branch);
340 }
341 
EnsureSpace(Assembler * assembler)342 EnsureSpace::EnsureSpace(Assembler* assembler) { assembler->CheckBuffer(); }
343 
344 }  // namespace internal
345 }  // namespace v8
346 
347 #endif  // V8_CODEGEN_MIPS_ASSEMBLER_MIPS_INL_H_
348