• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 // Copyright (c) 1994-2006 Sun Microsystems Inc.
3 // All Rights Reserved.
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // - Redistributions of source code must retain the above copyright notice,
10 // this list of conditions and the following disclaimer.
11 //
12 // - Redistribution in binary form must reproduce the above copyright
13 // notice, this list of conditions and the following disclaimer in the
14 // documentation and/or other materials provided with the distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
21 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
22 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
24 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
25 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
26 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
27 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
28 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
29 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
30 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 
32 // The original source code covered by the above license above has been
33 // modified significantly by Google Inc.
34 // Copyright 2012 the V8 project authors. All rights reserved.
35 
36 #ifndef V8_CODEGEN_MIPS64_ASSEMBLER_MIPS64_INL_H_
37 #define V8_CODEGEN_MIPS64_ASSEMBLER_MIPS64_INL_H_
38 
39 #include "src/codegen/mips64/assembler-mips64.h"
40 
41 #include "src/codegen/assembler.h"
42 #include "src/debug/debug.h"
43 #include "src/objects/objects-inl.h"
44 
45 namespace v8 {
46 namespace internal {
47 
SupportsOptimizer()48 bool CpuFeatures::SupportsOptimizer() { return IsSupported(FPU); }
49 
SupportsWasmSimd128()50 bool CpuFeatures::SupportsWasmSimd128() { return IsSupported(MIPS_SIMD); }
51 
52 // -----------------------------------------------------------------------------
53 // Operand and MemOperand.
54 
is_reg()55 bool Operand::is_reg() const { return rm_.is_valid(); }
56 
immediate()57 int64_t Operand::immediate() const {
58   DCHECK(!is_reg());
59   DCHECK(!IsHeapObjectRequest());
60   return value_.immediate;
61 }
62 
63 // -----------------------------------------------------------------------------
64 // RelocInfo.
65 
apply(intptr_t delta)66 void RelocInfo::apply(intptr_t delta) {
67   if (IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)) {
68     // Absolute code pointer inside code object moves with the code object.
69     Assembler::RelocateInternalReference(rmode_, pc_, delta);
70   }
71 }
72 
target_address()73 Address RelocInfo::target_address() {
74   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_));
75   return Assembler::target_address_at(pc_, constant_pool_);
76 }
77 
target_address_address()78 Address RelocInfo::target_address_address() {
79   DCHECK(HasTargetAddressAddress());
80   // Read the address of the word containing the target_address in an
81   // instruction stream.
82   // The only architecture-independent user of this function is the serializer.
83   // The serializer uses it to find out how many raw bytes of instruction to
84   // output before the next target.
85   // For an instruction like LUI/ORI where the target bits are mixed into the
86   // instruction bits, the size of the target will be zero, indicating that the
87   // serializer should not step forward in memory after a target is resolved
88   // and written. In this case the target_address_address function should
89   // return the end of the instructions to be patched, allowing the
90   // deserializer to deserialize the instructions as raw bytes and put them in
91   // place, ready to be patched with the target. After jump optimization,
92   // that is the address of the instruction that follows J/JAL/JR/JALR
93   // instruction.
94   return pc_ + Assembler::kInstructionsFor64BitConstant * kInstrSize;
95 }
96 
constant_pool_entry_address()97 Address RelocInfo::constant_pool_entry_address() { UNREACHABLE(); }
98 
target_address_size()99 int RelocInfo::target_address_size() { return Assembler::kSpecialTargetSize; }
100 
deserialization_set_special_target_at(Address instruction_payload,Code code,Address target)101 void Assembler::deserialization_set_special_target_at(
102     Address instruction_payload, Code code, Address target) {
103   set_target_address_at(instruction_payload,
104                         !code.is_null() ? code.constant_pool() : kNullAddress,
105                         target);
106 }
107 
deserialization_special_target_size(Address instruction_payload)108 int Assembler::deserialization_special_target_size(
109     Address instruction_payload) {
110   return kSpecialTargetSize;
111 }
112 
set_target_internal_reference_encoded_at(Address pc,Address target)113 void Assembler::set_target_internal_reference_encoded_at(Address pc,
114                                                          Address target) {
115   // Encoded internal references are j/jal instructions.
116   Instr instr = Assembler::instr_at(pc + 0 * kInstrSize);
117 
118   uint64_t imm28 = target & static_cast<uint64_t>(kImm28Mask);
119 
120   instr &= ~kImm26Mask;
121   uint64_t imm26 = imm28 >> 2;
122   DCHECK(is_uint26(imm26));
123 
124   instr_at_put(pc, instr | (imm26 & kImm26Mask));
125   // Currently used only by deserializer, and all code will be flushed
126   // after complete deserialization, no need to flush on each reference.
127 }
128 
deserialization_set_target_internal_reference_at(Address pc,Address target,RelocInfo::Mode mode)129 void Assembler::deserialization_set_target_internal_reference_at(
130     Address pc, Address target, RelocInfo::Mode mode) {
131   if (mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
132     DCHECK(IsJ(instr_at(pc)));
133     set_target_internal_reference_encoded_at(pc, target);
134   } else {
135     DCHECK(mode == RelocInfo::INTERNAL_REFERENCE);
136     Memory<Address>(pc) = target;
137   }
138 }
139 
target_object()140 HeapObject RelocInfo::target_object() {
141   DCHECK(IsCodeTarget(rmode_) || IsFullEmbeddedObject(rmode_));
142   return HeapObject::cast(
143       Object(Assembler::target_address_at(pc_, constant_pool_)));
144 }
145 
target_object_no_host(Isolate * isolate)146 HeapObject RelocInfo::target_object_no_host(Isolate* isolate) {
147   return target_object();
148 }
149 
target_object_handle(Assembler * origin)150 Handle<HeapObject> RelocInfo::target_object_handle(Assembler* origin) {
151   DCHECK(IsCodeTarget(rmode_) || IsFullEmbeddedObject(rmode_));
152   return Handle<HeapObject>(reinterpret_cast<Address*>(
153       Assembler::target_address_at(pc_, constant_pool_)));
154 }
155 
set_target_object(Heap * heap,HeapObject target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)156 void RelocInfo::set_target_object(Heap* heap, HeapObject target,
157                                   WriteBarrierMode write_barrier_mode,
158                                   ICacheFlushMode icache_flush_mode) {
159   DCHECK(IsCodeTarget(rmode_) || IsFullEmbeddedObject(rmode_));
160   Assembler::set_target_address_at(pc_, constant_pool_, target.ptr(),
161                                    icache_flush_mode);
162   if (write_barrier_mode == UPDATE_WRITE_BARRIER && !host().is_null() &&
163       !FLAG_disable_write_barriers) {
164     WriteBarrierForCode(host(), this, target);
165   }
166 }
167 
target_external_reference()168 Address RelocInfo::target_external_reference() {
169   DCHECK(rmode_ == EXTERNAL_REFERENCE);
170   return Assembler::target_address_at(pc_, constant_pool_);
171 }
172 
set_target_external_reference(Address target,ICacheFlushMode icache_flush_mode)173 void RelocInfo::set_target_external_reference(
174     Address target, ICacheFlushMode icache_flush_mode) {
175   DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
176   Assembler::set_target_address_at(pc_, constant_pool_, target,
177                                    icache_flush_mode);
178 }
179 
target_internal_reference()180 Address RelocInfo::target_internal_reference() {
181   if (rmode_ == INTERNAL_REFERENCE) {
182     return Memory<Address>(pc_);
183   } else {
184     // Encoded internal references are j/jal instructions.
185     DCHECK(rmode_ == INTERNAL_REFERENCE_ENCODED);
186     Instr instr = Assembler::instr_at(pc_ + 0 * kInstrSize);
187     instr &= kImm26Mask;
188     uint64_t imm28 = instr << 2;
189     uint64_t segment = pc_ & ~static_cast<uint64_t>(kImm28Mask);
190     return static_cast<Address>(segment | imm28);
191   }
192 }
193 
target_internal_reference_address()194 Address RelocInfo::target_internal_reference_address() {
195   DCHECK(rmode_ == INTERNAL_REFERENCE || rmode_ == INTERNAL_REFERENCE_ENCODED);
196   return pc_;
197 }
198 
target_runtime_entry(Assembler * origin)199 Address RelocInfo::target_runtime_entry(Assembler* origin) {
200   DCHECK(IsRuntimeEntry(rmode_));
201   return target_address();
202 }
203 
set_target_runtime_entry(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)204 void RelocInfo::set_target_runtime_entry(Address target,
205                                          WriteBarrierMode write_barrier_mode,
206                                          ICacheFlushMode icache_flush_mode) {
207   DCHECK(IsRuntimeEntry(rmode_));
208   if (target_address() != target)
209     set_target_address(target, write_barrier_mode, icache_flush_mode);
210 }
211 
target_off_heap_target()212 Address RelocInfo::target_off_heap_target() {
213   DCHECK(IsOffHeapTarget(rmode_));
214   return Assembler::target_address_at(pc_, constant_pool_);
215 }
216 
WipeOut()217 void RelocInfo::WipeOut() {
218   DCHECK(IsFullEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
219          IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
220          IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_) ||
221          IsOffHeapTarget(rmode_));
222   if (IsInternalReference(rmode_)) {
223     Memory<Address>(pc_) = kNullAddress;
224   } else if (IsInternalReferenceEncoded(rmode_)) {
225     Assembler::set_target_internal_reference_encoded_at(pc_, kNullAddress);
226   } else {
227     Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress);
228   }
229 }
230 
231 // -----------------------------------------------------------------------------
232 // Assembler.
233 
CheckBuffer()234 void Assembler::CheckBuffer() {
235   if (buffer_space() <= kGap) {
236     GrowBuffer();
237   }
238 }
239 
CheckForEmitInForbiddenSlot()240 void Assembler::CheckForEmitInForbiddenSlot() {
241   if (!is_buffer_growth_blocked()) {
242     CheckBuffer();
243   }
244   if (IsPrevInstrCompactBranch()) {
245     // Nop instruction to precede a CTI in forbidden slot:
246     Instr nop = SPECIAL | SLL;
247     *reinterpret_cast<Instr*>(pc_) = nop;
248     pc_ += kInstrSize;
249 
250     ClearCompactBranchState();
251   }
252 }
253 
EmitHelper(Instr x,CompactBranchType is_compact_branch)254 void Assembler::EmitHelper(Instr x, CompactBranchType is_compact_branch) {
255   if (IsPrevInstrCompactBranch()) {
256     if (Instruction::IsForbiddenAfterBranchInstr(x)) {
257       // Nop instruction to precede a CTI in forbidden slot:
258       Instr nop = SPECIAL | SLL;
259       *reinterpret_cast<Instr*>(pc_) = nop;
260       pc_ += kInstrSize;
261     }
262     ClearCompactBranchState();
263   }
264   *reinterpret_cast<Instr*>(pc_) = x;
265   pc_ += kInstrSize;
266   if (is_compact_branch == CompactBranchType::COMPACT_BRANCH) {
267     EmittedCompactBranchInstruction();
268   }
269   CheckTrampolinePoolQuick();
270 }
271 
272 template <>
273 inline void Assembler::EmitHelper(uint8_t x);
274 
275 template <typename T>
EmitHelper(T x)276 void Assembler::EmitHelper(T x) {
277   *reinterpret_cast<T*>(pc_) = x;
278   pc_ += sizeof(x);
279   CheckTrampolinePoolQuick();
280 }
281 
282 template <>
EmitHelper(uint8_t x)283 void Assembler::EmitHelper(uint8_t x) {
284   *reinterpret_cast<uint8_t*>(pc_) = x;
285   pc_ += sizeof(x);
286   if (reinterpret_cast<intptr_t>(pc_) % kInstrSize == 0) {
287     CheckTrampolinePoolQuick();
288   }
289 }
290 
emit(Instr x,CompactBranchType is_compact_branch)291 void Assembler::emit(Instr x, CompactBranchType is_compact_branch) {
292   if (!is_buffer_growth_blocked()) {
293     CheckBuffer();
294   }
295   EmitHelper(x, is_compact_branch);
296 }
297 
emit(uint64_t data)298 void Assembler::emit(uint64_t data) {
299   CheckForEmitInForbiddenSlot();
300   EmitHelper(data);
301 }
302 
EnsureSpace(Assembler * assembler)303 EnsureSpace::EnsureSpace(Assembler* assembler) { assembler->CheckBuffer(); }
304 
305 }  // namespace internal
306 }  // namespace v8
307 
308 #endif  // V8_CODEGEN_MIPS64_ASSEMBLER_MIPS64_INL_H_
309