• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34 
35 #ifndef V8_CODEGEN_MIPS64_ASSEMBLER_MIPS64_H_
36 #define V8_CODEGEN_MIPS64_ASSEMBLER_MIPS64_H_
37 
38 #include <stdio.h>
39 #include <memory>
40 #include <set>
41 
42 #include "src/codegen/assembler.h"
43 #include "src/codegen/external-reference.h"
44 #include "src/codegen/label.h"
45 #include "src/codegen/mips64/constants-mips64.h"
46 #include "src/codegen/mips64/register-mips64.h"
47 #include "src/objects/contexts.h"
48 #include "src/objects/smi.h"
49 
50 namespace v8 {
51 namespace internal {
52 
53 class SafepointTableBuilder;
54 
55 // -----------------------------------------------------------------------------
56 // Machine instruction Operands.
57 constexpr int kSmiShift = kSmiTagSize + kSmiShiftSize;
58 constexpr uint64_t kSmiShiftMask = (1UL << kSmiShift) - 1;
59 // Class Operand represents a shifter operand in data processing instructions.
60 class Operand {
61  public:
62   // Immediate.
63   V8_INLINE explicit Operand(int64_t immediate,
64                              RelocInfo::Mode rmode = RelocInfo::NONE)
rm_(no_reg)65       : rm_(no_reg), rmode_(rmode) {
66     value_.immediate = immediate;
67   }
Operand(const ExternalReference & f)68   V8_INLINE explicit Operand(const ExternalReference& f)
69       : rm_(no_reg), rmode_(RelocInfo::EXTERNAL_REFERENCE) {
70     value_.immediate = static_cast<int64_t>(f.address());
71   }
72   V8_INLINE explicit Operand(const char* s);
73   explicit Operand(Handle<HeapObject> handle);
Operand(Smi value)74   V8_INLINE explicit Operand(Smi value) : rm_(no_reg), rmode_(RelocInfo::NONE) {
75     value_.immediate = static_cast<intptr_t>(value.ptr());
76   }
77 
78   static Operand EmbeddedNumber(double number);  // Smi or HeapNumber.
79   static Operand EmbeddedStringConstant(const StringConstantBase* str);
80 
81   // Register.
Operand(Register rm)82   V8_INLINE explicit Operand(Register rm) : rm_(rm) {}
83 
84   // Return true if this is a register operand.
85   V8_INLINE bool is_reg() const;
86 
87   inline int64_t immediate() const;
88 
IsImmediate()89   bool IsImmediate() const { return !rm_.is_valid(); }
90 
heap_object_request()91   HeapObjectRequest heap_object_request() const {
92     DCHECK(IsHeapObjectRequest());
93     return value_.heap_object_request;
94   }
95 
IsHeapObjectRequest()96   bool IsHeapObjectRequest() const {
97     DCHECK_IMPLIES(is_heap_object_request_, IsImmediate());
98     DCHECK_IMPLIES(is_heap_object_request_,
99                    rmode_ == RelocInfo::FULL_EMBEDDED_OBJECT ||
100                        rmode_ == RelocInfo::CODE_TARGET);
101     return is_heap_object_request_;
102   }
103 
rm()104   Register rm() const { return rm_; }
105 
rmode()106   RelocInfo::Mode rmode() const { return rmode_; }
107 
108  private:
109   Register rm_;
110   union Value {
Value()111     Value() {}
112     HeapObjectRequest heap_object_request;  // if is_heap_object_request_
113     int64_t immediate;                      // otherwise
114   } value_;                                 // valid if rm_ == no_reg
115   bool is_heap_object_request_ = false;
116   RelocInfo::Mode rmode_;
117 
118   friend class Assembler;
119   friend class MacroAssembler;
120 };
121 
122 // On MIPS we have only one addressing mode with base_reg + offset.
123 // Class MemOperand represents a memory operand in load and store instructions.
124 class V8_EXPORT_PRIVATE  MemOperand : public Operand {
125  public:
126   // Immediate value attached to offset.
127   enum OffsetAddend { offset_minus_one = -1, offset_zero = 0 };
128 
129   explicit MemOperand(Register rn, int32_t offset = 0);
130   explicit MemOperand(Register rn, int32_t unit, int32_t multiplier,
131                       OffsetAddend offset_addend = offset_zero);
offset()132   int32_t offset() const { return offset_; }
133 
OffsetIsInt16Encodable()134   bool OffsetIsInt16Encodable() const { return is_int16(offset_); }
135 
136  private:
137   int32_t offset_;
138 
139   friend class Assembler;
140 };
141 
142 class V8_EXPORT_PRIVATE Assembler : public AssemblerBase {
143  public:
144   // Create an assembler. Instructions and relocation information are emitted
145   // into a buffer, with the instructions starting from the beginning and the
146   // relocation information starting from the end of the buffer. See CodeDesc
147   // for a detailed comment on the layout (globals.h).
148   //
149   // If the provided buffer is nullptr, the assembler allocates and grows its
150   // own buffer. Otherwise it takes ownership of the provided buffer.
151   explicit Assembler(const AssemblerOptions&,
152                      std::unique_ptr<AssemblerBuffer> = {});
153 
~Assembler()154   virtual ~Assembler() {}
155 
156   // GetCode emits any pending (non-emitted) code and fills the descriptor desc.
157   static constexpr int kNoHandlerTable = 0;
158   static constexpr SafepointTableBuilder* kNoSafepointTable = nullptr;
159   void GetCode(Isolate* isolate, CodeDesc* desc,
160                SafepointTableBuilder* safepoint_table_builder,
161                int handler_table_offset);
162 
163   // Convenience wrapper for code without safepoint or handler tables.
GetCode(Isolate * isolate,CodeDesc * desc)164   void GetCode(Isolate* isolate, CodeDesc* desc) {
165     GetCode(isolate, desc, kNoSafepointTable, kNoHandlerTable);
166   }
167 
168   // Unused on this architecture.
MaybeEmitOutOfLineConstantPool()169   void MaybeEmitOutOfLineConstantPool() {}
170 
171   // Mips uses BlockTrampolinePool to prevent generating trampoline inside a
172   // continuous instruction block. For Call instruction, it prevents generating
173   // trampoline between jalr and delay slot instruction. In the destructor of
174   // BlockTrampolinePool, it must check if it needs to generate trampoline
175   // immediately, if it does not do this, the branch range will go beyond the
176   // max branch offset, that means the pc_offset after call CheckTrampolinePool
177   // may be not the Call instruction's location. So we use last_call_pc here for
178   // safepoint record.
pc_offset_for_safepoint()179   int pc_offset_for_safepoint() {
180 #ifdef DEBUG
181     Instr instr1 =
182         instr_at(static_cast<int>(last_call_pc_ - buffer_start_ - kInstrSize));
183     Instr instr2 = instr_at(
184         static_cast<int>(last_call_pc_ - buffer_start_ - kInstrSize * 2));
185     if (GetOpcodeField(instr1) != SPECIAL) {  // instr1 == jialc.
186       DCHECK((kArchVariant == kMips64r6) && GetOpcodeField(instr1) == POP76 &&
187              GetRs(instr1) == 0);
188     } else {
189       if (GetFunctionField(instr1) == SLL) {  // instr1 == nop, instr2 == jalr.
190         DCHECK(GetOpcodeField(instr2) == SPECIAL &&
191                GetFunctionField(instr2) == JALR);
192       } else {  // instr1 == jalr.
193         DCHECK(GetFunctionField(instr1) == JALR);
194       }
195     }
196 #endif
197     return static_cast<int>(last_call_pc_ - buffer_start_);
198   }
199 
200   // Label operations & relative jumps (PPUM Appendix D).
201   //
202   // Takes a branch opcode (cc) and a label (L) and generates
203   // either a backward branch or a forward branch and links it
204   // to the label fixup chain. Usage:
205   //
206   // Label L;    // unbound label
207   // j(cc, &L);  // forward branch to unbound label
208   // bind(&L);   // bind label to the current pc
209   // j(cc, &L);  // backward branch to bound label
210   // bind(&L);   // illegal: a label may be bound only once
211   //
212   // Note: The same Label can be used for forward and backward branches
213   // but it may be bound only once.
214   void bind(Label* L);  // Binds an unbound label L to current code position.
215 
216   enum OffsetSize : int { kOffset26 = 26, kOffset21 = 21, kOffset16 = 16 };
217 
218   // Determines if Label is bound and near enough so that branch instruction
219   // can be used to reach it, instead of jump instruction.
220   bool is_near(Label* L);
221   bool is_near(Label* L, OffsetSize bits);
222   bool is_near_branch(Label* L);
is_near_pre_r6(Label * L)223   inline bool is_near_pre_r6(Label* L) {
224     DCHECK(!(kArchVariant == kMips64r6));
225     return pc_offset() - L->pos() < kMaxBranchOffset - 4 * kInstrSize;
226   }
is_near_r6(Label * L)227   inline bool is_near_r6(Label* L) {
228     DCHECK_EQ(kArchVariant, kMips64r6);
229     return pc_offset() - L->pos() < kMaxCompactBranchOffset - 4 * kInstrSize;
230   }
231 
232   int BranchOffset(Instr instr);
233 
234   // Returns the branch offset to the given label from the current code
235   // position. Links the label to the current position if it is still unbound.
236   // Manages the jump elimination optimization if the second parameter is true.
237   int32_t branch_offset_helper(Label* L, OffsetSize bits);
branch_offset(Label * L)238   inline int32_t branch_offset(Label* L) {
239     return branch_offset_helper(L, OffsetSize::kOffset16);
240   }
branch_offset21(Label * L)241   inline int32_t branch_offset21(Label* L) {
242     return branch_offset_helper(L, OffsetSize::kOffset21);
243   }
branch_offset26(Label * L)244   inline int32_t branch_offset26(Label* L) {
245     return branch_offset_helper(L, OffsetSize::kOffset26);
246   }
shifted_branch_offset(Label * L)247   inline int32_t shifted_branch_offset(Label* L) {
248     return branch_offset(L) >> 2;
249   }
shifted_branch_offset21(Label * L)250   inline int32_t shifted_branch_offset21(Label* L) {
251     return branch_offset21(L) >> 2;
252   }
shifted_branch_offset26(Label * L)253   inline int32_t shifted_branch_offset26(Label* L) {
254     return branch_offset26(L) >> 2;
255   }
256   uint64_t jump_address(Label* L);
257   uint64_t jump_offset(Label* L);
258   uint64_t branch_long_offset(Label* L);
259 
260   // Puts a labels target address at the given position.
261   // The high 8 bits are set to zero.
262   void label_at_put(Label* L, int at_offset);
263 
264   // Read/Modify the code target address in the branch/call instruction at pc.
265   // The isolate argument is unused (and may be nullptr) when skipping flushing.
266   static Address target_address_at(Address pc);
267   V8_INLINE static void set_target_address_at(
268       Address pc, Address target,
269       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED) {
270     set_target_value_at(pc, target, icache_flush_mode);
271   }
272   // On MIPS there is no Constant Pool so we skip that parameter.
target_address_at(Address pc,Address constant_pool)273   V8_INLINE static Address target_address_at(Address pc,
274                                              Address constant_pool) {
275     return target_address_at(pc);
276   }
277   V8_INLINE static void set_target_address_at(
278       Address pc, Address constant_pool, Address target,
279       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED) {
280     set_target_address_at(pc, target, icache_flush_mode);
281   }
282 
283   static void set_target_value_at(
284       Address pc, uint64_t target,
285       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
286 
287   static void JumpLabelToJumpRegister(Address pc);
288 
289   // This sets the branch destination (which gets loaded at the call address).
290   // This is for calls and branches within generated code.  The serializer
291   // has already deserialized the lui/ori instructions etc.
292   inline static void deserialization_set_special_target_at(
293       Address instruction_payload, Code code, Address target);
294 
295   // Get the size of the special target encoded at 'instruction_payload'.
296   inline static int deserialization_special_target_size(
297       Address instruction_payload);
298 
299   // This sets the internal reference at the pc.
300   inline static void deserialization_set_target_internal_reference_at(
301       Address pc, Address target,
302       RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
303 
304   // Difference between address of current opcode and target address offset.
305   static constexpr int kBranchPCOffset = kInstrSize;
306 
307   // Difference between address of current opcode and target address offset,
308   // when we are generatinga sequence of instructions for long relative PC
309   // branches
310   static constexpr int kLongBranchPCOffset = 3 * kInstrSize;
311 
312   // Adjust ra register in branch delay slot of bal instruction so to skip
313   // instructions not needed after optimization of PIC in
314   // TurboAssembler::BranchAndLink method.
315 
316   static constexpr int kOptimizedBranchAndLinkLongReturnOffset = 4 * kInstrSize;
317 
318   // Here we are patching the address in the LUI/ORI instruction pair.
319   // These values are used in the serialization process and must be zero for
320   // MIPS platform, as Code, Embedded Object or External-reference pointers
321   // are split across two consecutive instructions and don't exist separately
322   // in the code, so the serializer should not step forwards in memory after
323   // a target is resolved and written.
324   static constexpr int kSpecialTargetSize = 0;
325 
326   // Number of consecutive instructions used to store 32bit/64bit constant.
327   // This constant was used in RelocInfo::target_address_address() function
328   // to tell serializer address of the instruction that follows
329   // LUI/ORI instruction pair.
330   static constexpr int kInstructionsFor32BitConstant = 2;
331   static constexpr int kInstructionsFor64BitConstant = 4;
332 
333   // Difference between address of current opcode and value read from pc
334   // register.
335   static constexpr int kPcLoadDelta = 4;
336 
337   // Max offset for instructions with 16-bit offset field
338   static constexpr int kMaxBranchOffset = (1 << (18 - 1)) - 1;
339 
340   // Max offset for compact branch instructions with 26-bit offset field
341   static constexpr int kMaxCompactBranchOffset = (1 << (28 - 1)) - 1;
342 
343   static constexpr int kTrampolineSlotsSize =
344       kArchVariant == kMips64r6 ? 2 * kInstrSize : 7 * kInstrSize;
345 
GetScratchRegisterList()346   RegList* GetScratchRegisterList() { return &scratch_register_list_; }
347 
348   // ---------------------------------------------------------------------------
349   // Code generation.
350 
351   // Insert the smallest number of nop instructions
352   // possible to align the pc offset to a multiple
353   // of m. m must be a power of 2 (>= 4).
354   void Align(int m);
355   // Insert the smallest number of zero bytes possible to align the pc offset
356   // to a mulitple of m. m must be a power of 2 (>= 2).
357   void DataAlign(int m);
358   // Aligns code to something that's optimal for a jump target for the platform.
359   void CodeTargetAlign();
360 
361   // Different nop operations are used by the code generator to detect certain
362   // states of the generated code.
363   enum NopMarkerTypes {
364     NON_MARKING_NOP = 0,
365     DEBUG_BREAK_NOP,
366     // IC markers.
367     PROPERTY_ACCESS_INLINED,
368     PROPERTY_ACCESS_INLINED_CONTEXT,
369     PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
370     // Helper values.
371     LAST_CODE_MARKER,
372     FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED,
373   };
374 
375   // Type == 0 is the default non-marking nop. For mips this is a
376   // sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero
377   // marking, to avoid conflict with ssnop and ehb instructions.
378   void nop(unsigned int type = 0) {
379     DCHECK_LT(type, 32);
380     Register nop_rt_reg = (type == 0) ? zero_reg : at;
381     sll(zero_reg, nop_rt_reg, type, true);
382   }
383 
384   // --------Branch-and-jump-instructions----------
385   // We don't use likely variant of instructions.
386   void b(int16_t offset);
b(Label * L)387   inline void b(Label* L) { b(shifted_branch_offset(L)); }
388   void bal(int16_t offset);
bal(Label * L)389   inline void bal(Label* L) { bal(shifted_branch_offset(L)); }
390   void bc(int32_t offset);
bc(Label * L)391   inline void bc(Label* L) { bc(shifted_branch_offset26(L)); }
392   void balc(int32_t offset);
balc(Label * L)393   inline void balc(Label* L) { balc(shifted_branch_offset26(L)); }
394 
395   void beq(Register rs, Register rt, int16_t offset);
beq(Register rs,Register rt,Label * L)396   inline void beq(Register rs, Register rt, Label* L) {
397     beq(rs, rt, shifted_branch_offset(L));
398   }
399   void bgez(Register rs, int16_t offset);
400   void bgezc(Register rt, int16_t offset);
bgezc(Register rt,Label * L)401   inline void bgezc(Register rt, Label* L) {
402     bgezc(rt, shifted_branch_offset(L));
403   }
404   void bgeuc(Register rs, Register rt, int16_t offset);
bgeuc(Register rs,Register rt,Label * L)405   inline void bgeuc(Register rs, Register rt, Label* L) {
406     bgeuc(rs, rt, shifted_branch_offset(L));
407   }
408   void bgec(Register rs, Register rt, int16_t offset);
bgec(Register rs,Register rt,Label * L)409   inline void bgec(Register rs, Register rt, Label* L) {
410     bgec(rs, rt, shifted_branch_offset(L));
411   }
412   void bgezal(Register rs, int16_t offset);
413   void bgezalc(Register rt, int16_t offset);
bgezalc(Register rt,Label * L)414   inline void bgezalc(Register rt, Label* L) {
415     bgezalc(rt, shifted_branch_offset(L));
416   }
417   void bgezall(Register rs, int16_t offset);
bgezall(Register rs,Label * L)418   inline void bgezall(Register rs, Label* L) {
419     bgezall(rs, branch_offset(L) >> 2);
420   }
421   void bgtz(Register rs, int16_t offset);
422   void bgtzc(Register rt, int16_t offset);
bgtzc(Register rt,Label * L)423   inline void bgtzc(Register rt, Label* L) {
424     bgtzc(rt, shifted_branch_offset(L));
425   }
426   void blez(Register rs, int16_t offset);
427   void blezc(Register rt, int16_t offset);
blezc(Register rt,Label * L)428   inline void blezc(Register rt, Label* L) {
429     blezc(rt, shifted_branch_offset(L));
430   }
431   void bltz(Register rs, int16_t offset);
432   void bltzc(Register rt, int16_t offset);
bltzc(Register rt,Label * L)433   inline void bltzc(Register rt, Label* L) {
434     bltzc(rt, shifted_branch_offset(L));
435   }
436   void bltuc(Register rs, Register rt, int16_t offset);
bltuc(Register rs,Register rt,Label * L)437   inline void bltuc(Register rs, Register rt, Label* L) {
438     bltuc(rs, rt, shifted_branch_offset(L));
439   }
440   void bltc(Register rs, Register rt, int16_t offset);
bltc(Register rs,Register rt,Label * L)441   inline void bltc(Register rs, Register rt, Label* L) {
442     bltc(rs, rt, shifted_branch_offset(L));
443   }
444   void bltzal(Register rs, int16_t offset);
nal()445   void nal() { bltzal(zero_reg, 0); }
446   void blezalc(Register rt, int16_t offset);
blezalc(Register rt,Label * L)447   inline void blezalc(Register rt, Label* L) {
448     blezalc(rt, shifted_branch_offset(L));
449   }
450   void bltzalc(Register rt, int16_t offset);
bltzalc(Register rt,Label * L)451   inline void bltzalc(Register rt, Label* L) {
452     bltzalc(rt, shifted_branch_offset(L));
453   }
454   void bgtzalc(Register rt, int16_t offset);
bgtzalc(Register rt,Label * L)455   inline void bgtzalc(Register rt, Label* L) {
456     bgtzalc(rt, shifted_branch_offset(L));
457   }
458   void beqzalc(Register rt, int16_t offset);
beqzalc(Register rt,Label * L)459   inline void beqzalc(Register rt, Label* L) {
460     beqzalc(rt, shifted_branch_offset(L));
461   }
462   void beqc(Register rs, Register rt, int16_t offset);
beqc(Register rs,Register rt,Label * L)463   inline void beqc(Register rs, Register rt, Label* L) {
464     beqc(rs, rt, shifted_branch_offset(L));
465   }
466   void beqzc(Register rs, int32_t offset);
beqzc(Register rs,Label * L)467   inline void beqzc(Register rs, Label* L) {
468     beqzc(rs, shifted_branch_offset21(L));
469   }
470   void bnezalc(Register rt, int16_t offset);
bnezalc(Register rt,Label * L)471   inline void bnezalc(Register rt, Label* L) {
472     bnezalc(rt, shifted_branch_offset(L));
473   }
474   void bnec(Register rs, Register rt, int16_t offset);
bnec(Register rs,Register rt,Label * L)475   inline void bnec(Register rs, Register rt, Label* L) {
476     bnec(rs, rt, shifted_branch_offset(L));
477   }
478   void bnezc(Register rt, int32_t offset);
bnezc(Register rt,Label * L)479   inline void bnezc(Register rt, Label* L) {
480     bnezc(rt, shifted_branch_offset21(L));
481   }
482   void bne(Register rs, Register rt, int16_t offset);
bne(Register rs,Register rt,Label * L)483   inline void bne(Register rs, Register rt, Label* L) {
484     bne(rs, rt, shifted_branch_offset(L));
485   }
486   void bovc(Register rs, Register rt, int16_t offset);
bovc(Register rs,Register rt,Label * L)487   inline void bovc(Register rs, Register rt, Label* L) {
488     bovc(rs, rt, shifted_branch_offset(L));
489   }
490   void bnvc(Register rs, Register rt, int16_t offset);
bnvc(Register rs,Register rt,Label * L)491   inline void bnvc(Register rs, Register rt, Label* L) {
492     bnvc(rs, rt, shifted_branch_offset(L));
493   }
494 
495   // Never use the int16_t b(l)cond version with a branch offset
496   // instead of using the Label* version.
497 
498   void jalr(Register rs, Register rd = ra);
499   void jr(Register target);
500   void jic(Register rt, int16_t offset);
501   void jialc(Register rt, int16_t offset);
502 
503   // Following instructions are deprecated and require 256 MB
504   // code alignment. Use PC-relative instructions instead.
505   void j(int64_t target);
506   void jal(int64_t target);
507   void j(Label* target);
508   void jal(Label* target);
509 
510   // -------Data-processing-instructions---------
511 
512   // Arithmetic.
513   void addu(Register rd, Register rs, Register rt);
514   void subu(Register rd, Register rs, Register rt);
515 
516   void div(Register rs, Register rt);
517   void divu(Register rs, Register rt);
518   void ddiv(Register rs, Register rt);
519   void ddivu(Register rs, Register rt);
520   void div(Register rd, Register rs, Register rt);
521   void divu(Register rd, Register rs, Register rt);
522   void ddiv(Register rd, Register rs, Register rt);
523   void ddivu(Register rd, Register rs, Register rt);
524   void mod(Register rd, Register rs, Register rt);
525   void modu(Register rd, Register rs, Register rt);
526   void dmod(Register rd, Register rs, Register rt);
527   void dmodu(Register rd, Register rs, Register rt);
528 
529   void mul(Register rd, Register rs, Register rt);
530   void muh(Register rd, Register rs, Register rt);
531   void mulu(Register rd, Register rs, Register rt);
532   void muhu(Register rd, Register rs, Register rt);
533   void mult(Register rs, Register rt);
534   void multu(Register rs, Register rt);
535   void dmul(Register rd, Register rs, Register rt);
536   void dmuh(Register rd, Register rs, Register rt);
537   void dmulu(Register rd, Register rs, Register rt);
538   void dmuhu(Register rd, Register rs, Register rt);
539   void daddu(Register rd, Register rs, Register rt);
540   void dsubu(Register rd, Register rs, Register rt);
541   void dmult(Register rs, Register rt);
542   void dmultu(Register rs, Register rt);
543 
544   void addiu(Register rd, Register rs, int32_t j);
545   void daddiu(Register rd, Register rs, int32_t j);
546 
547   // Logical.
548   void and_(Register rd, Register rs, Register rt);
549   void or_(Register rd, Register rs, Register rt);
550   void xor_(Register rd, Register rs, Register rt);
551   void nor(Register rd, Register rs, Register rt);
552 
553   void andi(Register rd, Register rs, int32_t j);
554   void ori(Register rd, Register rs, int32_t j);
555   void xori(Register rd, Register rs, int32_t j);
556   void lui(Register rd, int32_t j);
557   void aui(Register rt, Register rs, int32_t j);
558   void daui(Register rt, Register rs, int32_t j);
559   void dahi(Register rs, int32_t j);
560   void dati(Register rs, int32_t j);
561 
562   // Shifts.
563   // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop
564   // and may cause problems in normal code. coming_from_nop makes sure this
565   // doesn't happen.
566   void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false);
567   void sllv(Register rd, Register rt, Register rs);
568   void srl(Register rd, Register rt, uint16_t sa);
569   void srlv(Register rd, Register rt, Register rs);
570   void sra(Register rt, Register rd, uint16_t sa);
571   void srav(Register rt, Register rd, Register rs);
572   void rotr(Register rd, Register rt, uint16_t sa);
573   void rotrv(Register rd, Register rt, Register rs);
574   void dsll(Register rd, Register rt, uint16_t sa);
575   void dsllv(Register rd, Register rt, Register rs);
576   void dsrl(Register rd, Register rt, uint16_t sa);
577   void dsrlv(Register rd, Register rt, Register rs);
578   void drotr(Register rd, Register rt, uint16_t sa);
579   void drotr32(Register rd, Register rt, uint16_t sa);
580   void drotrv(Register rd, Register rt, Register rs);
581   void dsra(Register rt, Register rd, uint16_t sa);
582   void dsrav(Register rd, Register rt, Register rs);
583   void dsll32(Register rt, Register rd, uint16_t sa);
584   void dsrl32(Register rt, Register rd, uint16_t sa);
585   void dsra32(Register rt, Register rd, uint16_t sa);
586 
587   // ------------Memory-instructions-------------
588 
589   void lb(Register rd, const MemOperand& rs);
590   void lbu(Register rd, const MemOperand& rs);
591   void lh(Register rd, const MemOperand& rs);
592   void lhu(Register rd, const MemOperand& rs);
593   void lw(Register rd, const MemOperand& rs);
594   void lwu(Register rd, const MemOperand& rs);
595   void lwl(Register rd, const MemOperand& rs);
596   void lwr(Register rd, const MemOperand& rs);
597   void sb(Register rd, const MemOperand& rs);
598   void sh(Register rd, const MemOperand& rs);
599   void sw(Register rd, const MemOperand& rs);
600   void swl(Register rd, const MemOperand& rs);
601   void swr(Register rd, const MemOperand& rs);
602   void ldl(Register rd, const MemOperand& rs);
603   void ldr(Register rd, const MemOperand& rs);
604   void sdl(Register rd, const MemOperand& rs);
605   void sdr(Register rd, const MemOperand& rs);
606   void ld(Register rd, const MemOperand& rs);
607   void sd(Register rd, const MemOperand& rs);
608 
609   // ----------Atomic instructions--------------
610 
611   void ll(Register rd, const MemOperand& rs);
612   void sc(Register rd, const MemOperand& rs);
613   void lld(Register rd, const MemOperand& rs);
614   void scd(Register rd, const MemOperand& rs);
615 
616   // ---------PC-Relative-instructions-----------
617 
618   void addiupc(Register rs, int32_t imm19);
619   void lwpc(Register rs, int32_t offset19);
620   void lwupc(Register rs, int32_t offset19);
621   void ldpc(Register rs, int32_t offset18);
622   void auipc(Register rs, int16_t imm16);
623   void aluipc(Register rs, int16_t imm16);
624 
625   // ----------------Prefetch--------------------
626 
627   void pref(int32_t hint, const MemOperand& rs);
628 
629   // -------------Misc-instructions--------------
630 
631   // Break / Trap instructions.
632   void break_(uint32_t code, bool break_as_stop = false);
633   void stop(uint32_t code = kMaxStopCode);
634   void tge(Register rs, Register rt, uint16_t code);
635   void tgeu(Register rs, Register rt, uint16_t code);
636   void tlt(Register rs, Register rt, uint16_t code);
637   void tltu(Register rs, Register rt, uint16_t code);
638   void teq(Register rs, Register rt, uint16_t code);
639   void tne(Register rs, Register rt, uint16_t code);
640 
641   // Memory barrier instruction.
642   void sync();
643 
644   // Move from HI/LO register.
645   void mfhi(Register rd);
646   void mflo(Register rd);
647 
648   // Set on less than.
649   void slt(Register rd, Register rs, Register rt);
650   void sltu(Register rd, Register rs, Register rt);
651   void slti(Register rd, Register rs, int32_t j);
652   void sltiu(Register rd, Register rs, int32_t j);
653 
654   // Conditional move.
655   void movz(Register rd, Register rs, Register rt);
656   void movn(Register rd, Register rs, Register rt);
657   void movt(Register rd, Register rs, uint16_t cc = 0);
658   void movf(Register rd, Register rs, uint16_t cc = 0);
659 
660   void sel(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
661   void sel_s(FPURegister fd, FPURegister fs, FPURegister ft);
662   void sel_d(FPURegister fd, FPURegister fs, FPURegister ft);
663   void seleqz(Register rd, Register rs, Register rt);
664   void seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs,
665               FPURegister ft);
666   void selnez(Register rs, Register rt, Register rd);
667   void selnez(SecondaryField fmt, FPURegister fd, FPURegister fs,
668               FPURegister ft);
669   void seleqz_d(FPURegister fd, FPURegister fs, FPURegister ft);
670   void seleqz_s(FPURegister fd, FPURegister fs, FPURegister ft);
671   void selnez_d(FPURegister fd, FPURegister fs, FPURegister ft);
672   void selnez_s(FPURegister fd, FPURegister fs, FPURegister ft);
673 
674   void movz_s(FPURegister fd, FPURegister fs, Register rt);
675   void movz_d(FPURegister fd, FPURegister fs, Register rt);
676   void movt_s(FPURegister fd, FPURegister fs, uint16_t cc = 0);
677   void movt_d(FPURegister fd, FPURegister fs, uint16_t cc = 0);
678   void movf_s(FPURegister fd, FPURegister fs, uint16_t cc = 0);
679   void movf_d(FPURegister fd, FPURegister fs, uint16_t cc = 0);
680   void movn_s(FPURegister fd, FPURegister fs, Register rt);
681   void movn_d(FPURegister fd, FPURegister fs, Register rt);
682   // Bit twiddling.
683   void clz(Register rd, Register rs);
684   void dclz(Register rd, Register rs);
685   void ins_(Register rt, Register rs, uint16_t pos, uint16_t size);
686   void ext_(Register rt, Register rs, uint16_t pos, uint16_t size);
687   void dext_(Register rt, Register rs, uint16_t pos, uint16_t size);
688   void dextm_(Register rt, Register rs, uint16_t pos, uint16_t size);
689   void dextu_(Register rt, Register rs, uint16_t pos, uint16_t size);
690   void dins_(Register rt, Register rs, uint16_t pos, uint16_t size);
691   void dinsm_(Register rt, Register rs, uint16_t pos, uint16_t size);
692   void dinsu_(Register rt, Register rs, uint16_t pos, uint16_t size);
693   void bitswap(Register rd, Register rt);
694   void dbitswap(Register rd, Register rt);
695   void align(Register rd, Register rs, Register rt, uint8_t bp);
696   void dalign(Register rd, Register rs, Register rt, uint8_t bp);
697 
698   void wsbh(Register rd, Register rt);
699   void dsbh(Register rd, Register rt);
700   void dshd(Register rd, Register rt);
701   void seh(Register rd, Register rt);
702   void seb(Register rd, Register rt);
703 
704   // --------Coprocessor-instructions----------------
705 
706   // Load, store, and move.
707   void lwc1(FPURegister fd, const MemOperand& src);
708   void ldc1(FPURegister fd, const MemOperand& src);
709 
710   void swc1(FPURegister fs, const MemOperand& dst);
711   void sdc1(FPURegister fs, const MemOperand& dst);
712 
713   void mtc1(Register rt, FPURegister fs);
714   void mthc1(Register rt, FPURegister fs);
715   void dmtc1(Register rt, FPURegister fs);
716 
717   void mfc1(Register rt, FPURegister fs);
718   void mfhc1(Register rt, FPURegister fs);
719   void dmfc1(Register rt, FPURegister fs);
720 
721   void ctc1(Register rt, FPUControlRegister fs);
722   void cfc1(Register rt, FPUControlRegister fs);
723 
724   // Arithmetic.
725   void add_s(FPURegister fd, FPURegister fs, FPURegister ft);
726   void add_d(FPURegister fd, FPURegister fs, FPURegister ft);
727   void sub_s(FPURegister fd, FPURegister fs, FPURegister ft);
728   void sub_d(FPURegister fd, FPURegister fs, FPURegister ft);
729   void mul_s(FPURegister fd, FPURegister fs, FPURegister ft);
730   void mul_d(FPURegister fd, FPURegister fs, FPURegister ft);
731   void madd_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
732   void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
733   void msub_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
734   void msub_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
735   void maddf_s(FPURegister fd, FPURegister fs, FPURegister ft);
736   void maddf_d(FPURegister fd, FPURegister fs, FPURegister ft);
737   void msubf_s(FPURegister fd, FPURegister fs, FPURegister ft);
738   void msubf_d(FPURegister fd, FPURegister fs, FPURegister ft);
739   void div_s(FPURegister fd, FPURegister fs, FPURegister ft);
740   void div_d(FPURegister fd, FPURegister fs, FPURegister ft);
741   void abs_s(FPURegister fd, FPURegister fs);
742   void abs_d(FPURegister fd, FPURegister fs);
743   void mov_d(FPURegister fd, FPURegister fs);
744   void mov_s(FPURegister fd, FPURegister fs);
745   void neg_s(FPURegister fd, FPURegister fs);
746   void neg_d(FPURegister fd, FPURegister fs);
747   void sqrt_s(FPURegister fd, FPURegister fs);
748   void sqrt_d(FPURegister fd, FPURegister fs);
749   void rsqrt_s(FPURegister fd, FPURegister fs);
750   void rsqrt_d(FPURegister fd, FPURegister fs);
751   void recip_d(FPURegister fd, FPURegister fs);
752   void recip_s(FPURegister fd, FPURegister fs);
753 
754   // Conversion.
755   void cvt_w_s(FPURegister fd, FPURegister fs);
756   void cvt_w_d(FPURegister fd, FPURegister fs);
757   void trunc_w_s(FPURegister fd, FPURegister fs);
758   void trunc_w_d(FPURegister fd, FPURegister fs);
759   void round_w_s(FPURegister fd, FPURegister fs);
760   void round_w_d(FPURegister fd, FPURegister fs);
761   void floor_w_s(FPURegister fd, FPURegister fs);
762   void floor_w_d(FPURegister fd, FPURegister fs);
763   void ceil_w_s(FPURegister fd, FPURegister fs);
764   void ceil_w_d(FPURegister fd, FPURegister fs);
765   void rint_s(FPURegister fd, FPURegister fs);
766   void rint_d(FPURegister fd, FPURegister fs);
767   void rint(SecondaryField fmt, FPURegister fd, FPURegister fs);
768 
769   void cvt_l_s(FPURegister fd, FPURegister fs);
770   void cvt_l_d(FPURegister fd, FPURegister fs);
771   void trunc_l_s(FPURegister fd, FPURegister fs);
772   void trunc_l_d(FPURegister fd, FPURegister fs);
773   void round_l_s(FPURegister fd, FPURegister fs);
774   void round_l_d(FPURegister fd, FPURegister fs);
775   void floor_l_s(FPURegister fd, FPURegister fs);
776   void floor_l_d(FPURegister fd, FPURegister fs);
777   void ceil_l_s(FPURegister fd, FPURegister fs);
778   void ceil_l_d(FPURegister fd, FPURegister fs);
779 
780   void class_s(FPURegister fd, FPURegister fs);
781   void class_d(FPURegister fd, FPURegister fs);
782 
783   void min(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
784   void mina(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
785   void max(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
786   void maxa(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
787   void min_s(FPURegister fd, FPURegister fs, FPURegister ft);
788   void min_d(FPURegister fd, FPURegister fs, FPURegister ft);
789   void max_s(FPURegister fd, FPURegister fs, FPURegister ft);
790   void max_d(FPURegister fd, FPURegister fs, FPURegister ft);
791   void mina_s(FPURegister fd, FPURegister fs, FPURegister ft);
792   void mina_d(FPURegister fd, FPURegister fs, FPURegister ft);
793   void maxa_s(FPURegister fd, FPURegister fs, FPURegister ft);
794   void maxa_d(FPURegister fd, FPURegister fs, FPURegister ft);
795 
796   void cvt_s_w(FPURegister fd, FPURegister fs);
797   void cvt_s_l(FPURegister fd, FPURegister fs);
798   void cvt_s_d(FPURegister fd, FPURegister fs);
799 
800   void cvt_d_w(FPURegister fd, FPURegister fs);
801   void cvt_d_l(FPURegister fd, FPURegister fs);
802   void cvt_d_s(FPURegister fd, FPURegister fs);
803 
804   // Conditions and branches for MIPSr6.
805   void cmp(FPUCondition cond, SecondaryField fmt, FPURegister fd,
806            FPURegister ft, FPURegister fs);
807   void cmp_s(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft);
808   void cmp_d(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft);
809 
810   void bc1eqz(int16_t offset, FPURegister ft);
bc1eqz(Label * L,FPURegister ft)811   inline void bc1eqz(Label* L, FPURegister ft) {
812     bc1eqz(shifted_branch_offset(L), ft);
813   }
814   void bc1nez(int16_t offset, FPURegister ft);
bc1nez(Label * L,FPURegister ft)815   inline void bc1nez(Label* L, FPURegister ft) {
816     bc1nez(shifted_branch_offset(L), ft);
817   }
818 
819   // Conditions and branches for non MIPSr6.
820   void c(FPUCondition cond, SecondaryField fmt, FPURegister ft, FPURegister fs,
821          uint16_t cc = 0);
822   void c_s(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0);
823   void c_d(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0);
824 
825   void bc1f(int16_t offset, uint16_t cc = 0);
826   inline void bc1f(Label* L, uint16_t cc = 0) {
827     bc1f(shifted_branch_offset(L), cc);
828   }
829   void bc1t(int16_t offset, uint16_t cc = 0);
830   inline void bc1t(Label* L, uint16_t cc = 0) {
831     bc1t(shifted_branch_offset(L), cc);
832   }
833   void fcmp(FPURegister src1, const double src2, FPUCondition cond);
834 
835   // MSA instructions
836   void bz_v(MSARegister wt, int16_t offset);
bz_v(MSARegister wt,Label * L)837   inline void bz_v(MSARegister wt, Label* L) {
838     bz_v(wt, shifted_branch_offset(L));
839   }
840   void bz_b(MSARegister wt, int16_t offset);
bz_b(MSARegister wt,Label * L)841   inline void bz_b(MSARegister wt, Label* L) {
842     bz_b(wt, shifted_branch_offset(L));
843   }
844   void bz_h(MSARegister wt, int16_t offset);
bz_h(MSARegister wt,Label * L)845   inline void bz_h(MSARegister wt, Label* L) {
846     bz_h(wt, shifted_branch_offset(L));
847   }
848   void bz_w(MSARegister wt, int16_t offset);
bz_w(MSARegister wt,Label * L)849   inline void bz_w(MSARegister wt, Label* L) {
850     bz_w(wt, shifted_branch_offset(L));
851   }
852   void bz_d(MSARegister wt, int16_t offset);
bz_d(MSARegister wt,Label * L)853   inline void bz_d(MSARegister wt, Label* L) {
854     bz_d(wt, shifted_branch_offset(L));
855   }
856   void bnz_v(MSARegister wt, int16_t offset);
bnz_v(MSARegister wt,Label * L)857   inline void bnz_v(MSARegister wt, Label* L) {
858     bnz_v(wt, shifted_branch_offset(L));
859   }
860   void bnz_b(MSARegister wt, int16_t offset);
bnz_b(MSARegister wt,Label * L)861   inline void bnz_b(MSARegister wt, Label* L) {
862     bnz_b(wt, shifted_branch_offset(L));
863   }
864   void bnz_h(MSARegister wt, int16_t offset);
bnz_h(MSARegister wt,Label * L)865   inline void bnz_h(MSARegister wt, Label* L) {
866     bnz_h(wt, shifted_branch_offset(L));
867   }
868   void bnz_w(MSARegister wt, int16_t offset);
bnz_w(MSARegister wt,Label * L)869   inline void bnz_w(MSARegister wt, Label* L) {
870     bnz_w(wt, shifted_branch_offset(L));
871   }
872   void bnz_d(MSARegister wt, int16_t offset);
bnz_d(MSARegister wt,Label * L)873   inline void bnz_d(MSARegister wt, Label* L) {
874     bnz_d(wt, shifted_branch_offset(L));
875   }
876 
877   void ld_b(MSARegister wd, const MemOperand& rs);
878   void ld_h(MSARegister wd, const MemOperand& rs);
879   void ld_w(MSARegister wd, const MemOperand& rs);
880   void ld_d(MSARegister wd, const MemOperand& rs);
881   void st_b(MSARegister wd, const MemOperand& rs);
882   void st_h(MSARegister wd, const MemOperand& rs);
883   void st_w(MSARegister wd, const MemOperand& rs);
884   void st_d(MSARegister wd, const MemOperand& rs);
885 
886   void ldi_b(MSARegister wd, int32_t imm10);
887   void ldi_h(MSARegister wd, int32_t imm10);
888   void ldi_w(MSARegister wd, int32_t imm10);
889   void ldi_d(MSARegister wd, int32_t imm10);
890 
891   void addvi_b(MSARegister wd, MSARegister ws, uint32_t imm5);
892   void addvi_h(MSARegister wd, MSARegister ws, uint32_t imm5);
893   void addvi_w(MSARegister wd, MSARegister ws, uint32_t imm5);
894   void addvi_d(MSARegister wd, MSARegister ws, uint32_t imm5);
895   void subvi_b(MSARegister wd, MSARegister ws, uint32_t imm5);
896   void subvi_h(MSARegister wd, MSARegister ws, uint32_t imm5);
897   void subvi_w(MSARegister wd, MSARegister ws, uint32_t imm5);
898   void subvi_d(MSARegister wd, MSARegister ws, uint32_t imm5);
899   void maxi_s_b(MSARegister wd, MSARegister ws, uint32_t imm5);
900   void maxi_s_h(MSARegister wd, MSARegister ws, uint32_t imm5);
901   void maxi_s_w(MSARegister wd, MSARegister ws, uint32_t imm5);
902   void maxi_s_d(MSARegister wd, MSARegister ws, uint32_t imm5);
903   void maxi_u_b(MSARegister wd, MSARegister ws, uint32_t imm5);
904   void maxi_u_h(MSARegister wd, MSARegister ws, uint32_t imm5);
905   void maxi_u_w(MSARegister wd, MSARegister ws, uint32_t imm5);
906   void maxi_u_d(MSARegister wd, MSARegister ws, uint32_t imm5);
907   void mini_s_b(MSARegister wd, MSARegister ws, uint32_t imm5);
908   void mini_s_h(MSARegister wd, MSARegister ws, uint32_t imm5);
909   void mini_s_w(MSARegister wd, MSARegister ws, uint32_t imm5);
910   void mini_s_d(MSARegister wd, MSARegister ws, uint32_t imm5);
911   void mini_u_b(MSARegister wd, MSARegister ws, uint32_t imm5);
912   void mini_u_h(MSARegister wd, MSARegister ws, uint32_t imm5);
913   void mini_u_w(MSARegister wd, MSARegister ws, uint32_t imm5);
914   void mini_u_d(MSARegister wd, MSARegister ws, uint32_t imm5);
915   void ceqi_b(MSARegister wd, MSARegister ws, uint32_t imm5);
916   void ceqi_h(MSARegister wd, MSARegister ws, uint32_t imm5);
917   void ceqi_w(MSARegister wd, MSARegister ws, uint32_t imm5);
918   void ceqi_d(MSARegister wd, MSARegister ws, uint32_t imm5);
919   void clti_s_b(MSARegister wd, MSARegister ws, uint32_t imm5);
920   void clti_s_h(MSARegister wd, MSARegister ws, uint32_t imm5);
921   void clti_s_w(MSARegister wd, MSARegister ws, uint32_t imm5);
922   void clti_s_d(MSARegister wd, MSARegister ws, uint32_t imm5);
923   void clti_u_b(MSARegister wd, MSARegister ws, uint32_t imm5);
924   void clti_u_h(MSARegister wd, MSARegister ws, uint32_t imm5);
925   void clti_u_w(MSARegister wd, MSARegister ws, uint32_t imm5);
926   void clti_u_d(MSARegister wd, MSARegister ws, uint32_t imm5);
927   void clei_s_b(MSARegister wd, MSARegister ws, uint32_t imm5);
928   void clei_s_h(MSARegister wd, MSARegister ws, uint32_t imm5);
929   void clei_s_w(MSARegister wd, MSARegister ws, uint32_t imm5);
930   void clei_s_d(MSARegister wd, MSARegister ws, uint32_t imm5);
931   void clei_u_b(MSARegister wd, MSARegister ws, uint32_t imm5);
932   void clei_u_h(MSARegister wd, MSARegister ws, uint32_t imm5);
933   void clei_u_w(MSARegister wd, MSARegister ws, uint32_t imm5);
934   void clei_u_d(MSARegister wd, MSARegister ws, uint32_t imm5);
935 
936   void andi_b(MSARegister wd, MSARegister ws, uint32_t imm8);
937   void ori_b(MSARegister wd, MSARegister ws, uint32_t imm8);
938   void nori_b(MSARegister wd, MSARegister ws, uint32_t imm8);
939   void xori_b(MSARegister wd, MSARegister ws, uint32_t imm8);
940   void bmnzi_b(MSARegister wd, MSARegister ws, uint32_t imm8);
941   void bmzi_b(MSARegister wd, MSARegister ws, uint32_t imm8);
942   void bseli_b(MSARegister wd, MSARegister ws, uint32_t imm8);
943   void shf_b(MSARegister wd, MSARegister ws, uint32_t imm8);
944   void shf_h(MSARegister wd, MSARegister ws, uint32_t imm8);
945   void shf_w(MSARegister wd, MSARegister ws, uint32_t imm8);
946 
947   void and_v(MSARegister wd, MSARegister ws, MSARegister wt);
948   void or_v(MSARegister wd, MSARegister ws, MSARegister wt);
949   void nor_v(MSARegister wd, MSARegister ws, MSARegister wt);
950   void xor_v(MSARegister wd, MSARegister ws, MSARegister wt);
951   void bmnz_v(MSARegister wd, MSARegister ws, MSARegister wt);
952   void bmz_v(MSARegister wd, MSARegister ws, MSARegister wt);
953   void bsel_v(MSARegister wd, MSARegister ws, MSARegister wt);
954 
955   void fill_b(MSARegister wd, Register rs);
956   void fill_h(MSARegister wd, Register rs);
957   void fill_w(MSARegister wd, Register rs);
958   void fill_d(MSARegister wd, Register rs);
959   void pcnt_b(MSARegister wd, MSARegister ws);
960   void pcnt_h(MSARegister wd, MSARegister ws);
961   void pcnt_w(MSARegister wd, MSARegister ws);
962   void pcnt_d(MSARegister wd, MSARegister ws);
963   void nloc_b(MSARegister wd, MSARegister ws);
964   void nloc_h(MSARegister wd, MSARegister ws);
965   void nloc_w(MSARegister wd, MSARegister ws);
966   void nloc_d(MSARegister wd, MSARegister ws);
967   void nlzc_b(MSARegister wd, MSARegister ws);
968   void nlzc_h(MSARegister wd, MSARegister ws);
969   void nlzc_w(MSARegister wd, MSARegister ws);
970   void nlzc_d(MSARegister wd, MSARegister ws);
971 
972   void fclass_w(MSARegister wd, MSARegister ws);
973   void fclass_d(MSARegister wd, MSARegister ws);
974   void ftrunc_s_w(MSARegister wd, MSARegister ws);
975   void ftrunc_s_d(MSARegister wd, MSARegister ws);
976   void ftrunc_u_w(MSARegister wd, MSARegister ws);
977   void ftrunc_u_d(MSARegister wd, MSARegister ws);
978   void fsqrt_w(MSARegister wd, MSARegister ws);
979   void fsqrt_d(MSARegister wd, MSARegister ws);
980   void frsqrt_w(MSARegister wd, MSARegister ws);
981   void frsqrt_d(MSARegister wd, MSARegister ws);
982   void frcp_w(MSARegister wd, MSARegister ws);
983   void frcp_d(MSARegister wd, MSARegister ws);
984   void frint_w(MSARegister wd, MSARegister ws);
985   void frint_d(MSARegister wd, MSARegister ws);
986   void flog2_w(MSARegister wd, MSARegister ws);
987   void flog2_d(MSARegister wd, MSARegister ws);
988   void fexupl_w(MSARegister wd, MSARegister ws);
989   void fexupl_d(MSARegister wd, MSARegister ws);
990   void fexupr_w(MSARegister wd, MSARegister ws);
991   void fexupr_d(MSARegister wd, MSARegister ws);
992   void ffql_w(MSARegister wd, MSARegister ws);
993   void ffql_d(MSARegister wd, MSARegister ws);
994   void ffqr_w(MSARegister wd, MSARegister ws);
995   void ffqr_d(MSARegister wd, MSARegister ws);
996   void ftint_s_w(MSARegister wd, MSARegister ws);
997   void ftint_s_d(MSARegister wd, MSARegister ws);
998   void ftint_u_w(MSARegister wd, MSARegister ws);
999   void ftint_u_d(MSARegister wd, MSARegister ws);
1000   void ffint_s_w(MSARegister wd, MSARegister ws);
1001   void ffint_s_d(MSARegister wd, MSARegister ws);
1002   void ffint_u_w(MSARegister wd, MSARegister ws);
1003   void ffint_u_d(MSARegister wd, MSARegister ws);
1004 
1005   void sll_b(MSARegister wd, MSARegister ws, MSARegister wt);
1006   void sll_h(MSARegister wd, MSARegister ws, MSARegister wt);
1007   void sll_w(MSARegister wd, MSARegister ws, MSARegister wt);
1008   void sll_d(MSARegister wd, MSARegister ws, MSARegister wt);
1009   void sra_b(MSARegister wd, MSARegister ws, MSARegister wt);
1010   void sra_h(MSARegister wd, MSARegister ws, MSARegister wt);
1011   void sra_w(MSARegister wd, MSARegister ws, MSARegister wt);
1012   void sra_d(MSARegister wd, MSARegister ws, MSARegister wt);
1013   void srl_b(MSARegister wd, MSARegister ws, MSARegister wt);
1014   void srl_h(MSARegister wd, MSARegister ws, MSARegister wt);
1015   void srl_w(MSARegister wd, MSARegister ws, MSARegister wt);
1016   void srl_d(MSARegister wd, MSARegister ws, MSARegister wt);
1017   void bclr_b(MSARegister wd, MSARegister ws, MSARegister wt);
1018   void bclr_h(MSARegister wd, MSARegister ws, MSARegister wt);
1019   void bclr_w(MSARegister wd, MSARegister ws, MSARegister wt);
1020   void bclr_d(MSARegister wd, MSARegister ws, MSARegister wt);
1021   void bset_b(MSARegister wd, MSARegister ws, MSARegister wt);
1022   void bset_h(MSARegister wd, MSARegister ws, MSARegister wt);
1023   void bset_w(MSARegister wd, MSARegister ws, MSARegister wt);
1024   void bset_d(MSARegister wd, MSARegister ws, MSARegister wt);
1025   void bneg_b(MSARegister wd, MSARegister ws, MSARegister wt);
1026   void bneg_h(MSARegister wd, MSARegister ws, MSARegister wt);
1027   void bneg_w(MSARegister wd, MSARegister ws, MSARegister wt);
1028   void bneg_d(MSARegister wd, MSARegister ws, MSARegister wt);
1029   void binsl_b(MSARegister wd, MSARegister ws, MSARegister wt);
1030   void binsl_h(MSARegister wd, MSARegister ws, MSARegister wt);
1031   void binsl_w(MSARegister wd, MSARegister ws, MSARegister wt);
1032   void binsl_d(MSARegister wd, MSARegister ws, MSARegister wt);
1033   void binsr_b(MSARegister wd, MSARegister ws, MSARegister wt);
1034   void binsr_h(MSARegister wd, MSARegister ws, MSARegister wt);
1035   void binsr_w(MSARegister wd, MSARegister ws, MSARegister wt);
1036   void binsr_d(MSARegister wd, MSARegister ws, MSARegister wt);
1037   void addv_b(MSARegister wd, MSARegister ws, MSARegister wt);
1038   void addv_h(MSARegister wd, MSARegister ws, MSARegister wt);
1039   void addv_w(MSARegister wd, MSARegister ws, MSARegister wt);
1040   void addv_d(MSARegister wd, MSARegister ws, MSARegister wt);
1041   void subv_b(MSARegister wd, MSARegister ws, MSARegister wt);
1042   void subv_h(MSARegister wd, MSARegister ws, MSARegister wt);
1043   void subv_w(MSARegister wd, MSARegister ws, MSARegister wt);
1044   void subv_d(MSARegister wd, MSARegister ws, MSARegister wt);
1045   void max_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1046   void max_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1047   void max_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1048   void max_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1049   void max_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1050   void max_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1051   void max_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1052   void max_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1053   void min_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1054   void min_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1055   void min_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1056   void min_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1057   void min_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1058   void min_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1059   void min_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1060   void min_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1061   void max_a_b(MSARegister wd, MSARegister ws, MSARegister wt);
1062   void max_a_h(MSARegister wd, MSARegister ws, MSARegister wt);
1063   void max_a_w(MSARegister wd, MSARegister ws, MSARegister wt);
1064   void max_a_d(MSARegister wd, MSARegister ws, MSARegister wt);
1065   void min_a_b(MSARegister wd, MSARegister ws, MSARegister wt);
1066   void min_a_h(MSARegister wd, MSARegister ws, MSARegister wt);
1067   void min_a_w(MSARegister wd, MSARegister ws, MSARegister wt);
1068   void min_a_d(MSARegister wd, MSARegister ws, MSARegister wt);
1069   void ceq_b(MSARegister wd, MSARegister ws, MSARegister wt);
1070   void ceq_h(MSARegister wd, MSARegister ws, MSARegister wt);
1071   void ceq_w(MSARegister wd, MSARegister ws, MSARegister wt);
1072   void ceq_d(MSARegister wd, MSARegister ws, MSARegister wt);
1073   void clt_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1074   void clt_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1075   void clt_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1076   void clt_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1077   void clt_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1078   void clt_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1079   void clt_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1080   void clt_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1081   void cle_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1082   void cle_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1083   void cle_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1084   void cle_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1085   void cle_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1086   void cle_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1087   void cle_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1088   void cle_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1089   void add_a_b(MSARegister wd, MSARegister ws, MSARegister wt);
1090   void add_a_h(MSARegister wd, MSARegister ws, MSARegister wt);
1091   void add_a_w(MSARegister wd, MSARegister ws, MSARegister wt);
1092   void add_a_d(MSARegister wd, MSARegister ws, MSARegister wt);
1093   void adds_a_b(MSARegister wd, MSARegister ws, MSARegister wt);
1094   void adds_a_h(MSARegister wd, MSARegister ws, MSARegister wt);
1095   void adds_a_w(MSARegister wd, MSARegister ws, MSARegister wt);
1096   void adds_a_d(MSARegister wd, MSARegister ws, MSARegister wt);
1097   void adds_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1098   void adds_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1099   void adds_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1100   void adds_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1101   void adds_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1102   void adds_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1103   void adds_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1104   void adds_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1105   void ave_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1106   void ave_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1107   void ave_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1108   void ave_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1109   void ave_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1110   void ave_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1111   void ave_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1112   void ave_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1113   void aver_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1114   void aver_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1115   void aver_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1116   void aver_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1117   void aver_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1118   void aver_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1119   void aver_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1120   void aver_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1121   void subs_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1122   void subs_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1123   void subs_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1124   void subs_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1125   void subs_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1126   void subs_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1127   void subs_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1128   void subs_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1129   void subsus_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1130   void subsus_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1131   void subsus_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1132   void subsus_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1133   void subsus_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1134   void subsus_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1135   void subsus_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1136   void subsus_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1137   void subsuu_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1138   void subsuu_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1139   void subsuu_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1140   void subsuu_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1141   void subsuu_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1142   void subsuu_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1143   void subsuu_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1144   void subsuu_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1145   void asub_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1146   void asub_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1147   void asub_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1148   void asub_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1149   void asub_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1150   void asub_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1151   void asub_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1152   void asub_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1153   void mulv_b(MSARegister wd, MSARegister ws, MSARegister wt);
1154   void mulv_h(MSARegister wd, MSARegister ws, MSARegister wt);
1155   void mulv_w(MSARegister wd, MSARegister ws, MSARegister wt);
1156   void mulv_d(MSARegister wd, MSARegister ws, MSARegister wt);
1157   void maddv_b(MSARegister wd, MSARegister ws, MSARegister wt);
1158   void maddv_h(MSARegister wd, MSARegister ws, MSARegister wt);
1159   void maddv_w(MSARegister wd, MSARegister ws, MSARegister wt);
1160   void maddv_d(MSARegister wd, MSARegister ws, MSARegister wt);
1161   void msubv_b(MSARegister wd, MSARegister ws, MSARegister wt);
1162   void msubv_h(MSARegister wd, MSARegister ws, MSARegister wt);
1163   void msubv_w(MSARegister wd, MSARegister ws, MSARegister wt);
1164   void msubv_d(MSARegister wd, MSARegister ws, MSARegister wt);
1165   void div_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1166   void div_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1167   void div_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1168   void div_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1169   void div_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1170   void div_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1171   void div_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1172   void div_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1173   void mod_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1174   void mod_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1175   void mod_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1176   void mod_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1177   void mod_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1178   void mod_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1179   void mod_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1180   void mod_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1181   void dotp_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1182   void dotp_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1183   void dotp_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1184   void dotp_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1185   void dotp_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1186   void dotp_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1187   void dotp_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1188   void dotp_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1189   void dpadd_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1190   void dpadd_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1191   void dpadd_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1192   void dpadd_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1193   void dpadd_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1194   void dpadd_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1195   void dpadd_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1196   void dpadd_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1197   void dpsub_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1198   void dpsub_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1199   void dpsub_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1200   void dpsub_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1201   void dpsub_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1202   void dpsub_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1203   void dpsub_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1204   void dpsub_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1205   void sld_b(MSARegister wd, MSARegister ws, Register rt);
1206   void sld_h(MSARegister wd, MSARegister ws, Register rt);
1207   void sld_w(MSARegister wd, MSARegister ws, Register rt);
1208   void sld_d(MSARegister wd, MSARegister ws, Register rt);
1209   void splat_b(MSARegister wd, MSARegister ws, Register rt);
1210   void splat_h(MSARegister wd, MSARegister ws, Register rt);
1211   void splat_w(MSARegister wd, MSARegister ws, Register rt);
1212   void splat_d(MSARegister wd, MSARegister ws, Register rt);
1213   void pckev_b(MSARegister wd, MSARegister ws, MSARegister wt);
1214   void pckev_h(MSARegister wd, MSARegister ws, MSARegister wt);
1215   void pckev_w(MSARegister wd, MSARegister ws, MSARegister wt);
1216   void pckev_d(MSARegister wd, MSARegister ws, MSARegister wt);
1217   void pckod_b(MSARegister wd, MSARegister ws, MSARegister wt);
1218   void pckod_h(MSARegister wd, MSARegister ws, MSARegister wt);
1219   void pckod_w(MSARegister wd, MSARegister ws, MSARegister wt);
1220   void pckod_d(MSARegister wd, MSARegister ws, MSARegister wt);
1221   void ilvl_b(MSARegister wd, MSARegister ws, MSARegister wt);
1222   void ilvl_h(MSARegister wd, MSARegister ws, MSARegister wt);
1223   void ilvl_w(MSARegister wd, MSARegister ws, MSARegister wt);
1224   void ilvl_d(MSARegister wd, MSARegister ws, MSARegister wt);
1225   void ilvr_b(MSARegister wd, MSARegister ws, MSARegister wt);
1226   void ilvr_h(MSARegister wd, MSARegister ws, MSARegister wt);
1227   void ilvr_w(MSARegister wd, MSARegister ws, MSARegister wt);
1228   void ilvr_d(MSARegister wd, MSARegister ws, MSARegister wt);
1229   void ilvev_b(MSARegister wd, MSARegister ws, MSARegister wt);
1230   void ilvev_h(MSARegister wd, MSARegister ws, MSARegister wt);
1231   void ilvev_w(MSARegister wd, MSARegister ws, MSARegister wt);
1232   void ilvev_d(MSARegister wd, MSARegister ws, MSARegister wt);
1233   void ilvod_b(MSARegister wd, MSARegister ws, MSARegister wt);
1234   void ilvod_h(MSARegister wd, MSARegister ws, MSARegister wt);
1235   void ilvod_w(MSARegister wd, MSARegister ws, MSARegister wt);
1236   void ilvod_d(MSARegister wd, MSARegister ws, MSARegister wt);
1237   void vshf_b(MSARegister wd, MSARegister ws, MSARegister wt);
1238   void vshf_h(MSARegister wd, MSARegister ws, MSARegister wt);
1239   void vshf_w(MSARegister wd, MSARegister ws, MSARegister wt);
1240   void vshf_d(MSARegister wd, MSARegister ws, MSARegister wt);
1241   void srar_b(MSARegister wd, MSARegister ws, MSARegister wt);
1242   void srar_h(MSARegister wd, MSARegister ws, MSARegister wt);
1243   void srar_w(MSARegister wd, MSARegister ws, MSARegister wt);
1244   void srar_d(MSARegister wd, MSARegister ws, MSARegister wt);
1245   void srlr_b(MSARegister wd, MSARegister ws, MSARegister wt);
1246   void srlr_h(MSARegister wd, MSARegister ws, MSARegister wt);
1247   void srlr_w(MSARegister wd, MSARegister ws, MSARegister wt);
1248   void srlr_d(MSARegister wd, MSARegister ws, MSARegister wt);
1249   void hadd_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1250   void hadd_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1251   void hadd_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1252   void hadd_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1253   void hadd_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1254   void hadd_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1255   void hadd_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1256   void hadd_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1257   void hsub_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1258   void hsub_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1259   void hsub_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1260   void hsub_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1261   void hsub_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1262   void hsub_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1263   void hsub_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1264   void hsub_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1265 
1266   void fcaf_w(MSARegister wd, MSARegister ws, MSARegister wt);
1267   void fcaf_d(MSARegister wd, MSARegister ws, MSARegister wt);
1268   void fcun_w(MSARegister wd, MSARegister ws, MSARegister wt);
1269   void fcun_d(MSARegister wd, MSARegister ws, MSARegister wt);
1270   void fceq_w(MSARegister wd, MSARegister ws, MSARegister wt);
1271   void fceq_d(MSARegister wd, MSARegister ws, MSARegister wt);
1272   void fcueq_w(MSARegister wd, MSARegister ws, MSARegister wt);
1273   void fcueq_d(MSARegister wd, MSARegister ws, MSARegister wt);
1274   void fclt_w(MSARegister wd, MSARegister ws, MSARegister wt);
1275   void fclt_d(MSARegister wd, MSARegister ws, MSARegister wt);
1276   void fcult_w(MSARegister wd, MSARegister ws, MSARegister wt);
1277   void fcult_d(MSARegister wd, MSARegister ws, MSARegister wt);
1278   void fcle_w(MSARegister wd, MSARegister ws, MSARegister wt);
1279   void fcle_d(MSARegister wd, MSARegister ws, MSARegister wt);
1280   void fcule_w(MSARegister wd, MSARegister ws, MSARegister wt);
1281   void fcule_d(MSARegister wd, MSARegister ws, MSARegister wt);
1282   void fsaf_w(MSARegister wd, MSARegister ws, MSARegister wt);
1283   void fsaf_d(MSARegister wd, MSARegister ws, MSARegister wt);
1284   void fsun_w(MSARegister wd, MSARegister ws, MSARegister wt);
1285   void fsun_d(MSARegister wd, MSARegister ws, MSARegister wt);
1286   void fseq_w(MSARegister wd, MSARegister ws, MSARegister wt);
1287   void fseq_d(MSARegister wd, MSARegister ws, MSARegister wt);
1288   void fsueq_w(MSARegister wd, MSARegister ws, MSARegister wt);
1289   void fsueq_d(MSARegister wd, MSARegister ws, MSARegister wt);
1290   void fslt_w(MSARegister wd, MSARegister ws, MSARegister wt);
1291   void fslt_d(MSARegister wd, MSARegister ws, MSARegister wt);
1292   void fsult_w(MSARegister wd, MSARegister ws, MSARegister wt);
1293   void fsult_d(MSARegister wd, MSARegister ws, MSARegister wt);
1294   void fsle_w(MSARegister wd, MSARegister ws, MSARegister wt);
1295   void fsle_d(MSARegister wd, MSARegister ws, MSARegister wt);
1296   void fsule_w(MSARegister wd, MSARegister ws, MSARegister wt);
1297   void fsule_d(MSARegister wd, MSARegister ws, MSARegister wt);
1298   void fadd_w(MSARegister wd, MSARegister ws, MSARegister wt);
1299   void fadd_d(MSARegister wd, MSARegister ws, MSARegister wt);
1300   void fsub_w(MSARegister wd, MSARegister ws, MSARegister wt);
1301   void fsub_d(MSARegister wd, MSARegister ws, MSARegister wt);
1302   void fmul_w(MSARegister wd, MSARegister ws, MSARegister wt);
1303   void fmul_d(MSARegister wd, MSARegister ws, MSARegister wt);
1304   void fdiv_w(MSARegister wd, MSARegister ws, MSARegister wt);
1305   void fdiv_d(MSARegister wd, MSARegister ws, MSARegister wt);
1306   void fmadd_w(MSARegister wd, MSARegister ws, MSARegister wt);
1307   void fmadd_d(MSARegister wd, MSARegister ws, MSARegister wt);
1308   void fmsub_w(MSARegister wd, MSARegister ws, MSARegister wt);
1309   void fmsub_d(MSARegister wd, MSARegister ws, MSARegister wt);
1310   void fexp2_w(MSARegister wd, MSARegister ws, MSARegister wt);
1311   void fexp2_d(MSARegister wd, MSARegister ws, MSARegister wt);
1312   void fexdo_h(MSARegister wd, MSARegister ws, MSARegister wt);
1313   void fexdo_w(MSARegister wd, MSARegister ws, MSARegister wt);
1314   void ftq_h(MSARegister wd, MSARegister ws, MSARegister wt);
1315   void ftq_w(MSARegister wd, MSARegister ws, MSARegister wt);
1316   void fmin_w(MSARegister wd, MSARegister ws, MSARegister wt);
1317   void fmin_d(MSARegister wd, MSARegister ws, MSARegister wt);
1318   void fmin_a_w(MSARegister wd, MSARegister ws, MSARegister wt);
1319   void fmin_a_d(MSARegister wd, MSARegister ws, MSARegister wt);
1320   void fmax_w(MSARegister wd, MSARegister ws, MSARegister wt);
1321   void fmax_d(MSARegister wd, MSARegister ws, MSARegister wt);
1322   void fmax_a_w(MSARegister wd, MSARegister ws, MSARegister wt);
1323   void fmax_a_d(MSARegister wd, MSARegister ws, MSARegister wt);
1324   void fcor_w(MSARegister wd, MSARegister ws, MSARegister wt);
1325   void fcor_d(MSARegister wd, MSARegister ws, MSARegister wt);
1326   void fcune_w(MSARegister wd, MSARegister ws, MSARegister wt);
1327   void fcune_d(MSARegister wd, MSARegister ws, MSARegister wt);
1328   void fcne_w(MSARegister wd, MSARegister ws, MSARegister wt);
1329   void fcne_d(MSARegister wd, MSARegister ws, MSARegister wt);
1330   void mul_q_h(MSARegister wd, MSARegister ws, MSARegister wt);
1331   void mul_q_w(MSARegister wd, MSARegister ws, MSARegister wt);
1332   void madd_q_h(MSARegister wd, MSARegister ws, MSARegister wt);
1333   void madd_q_w(MSARegister wd, MSARegister ws, MSARegister wt);
1334   void msub_q_h(MSARegister wd, MSARegister ws, MSARegister wt);
1335   void msub_q_w(MSARegister wd, MSARegister ws, MSARegister wt);
1336   void fsor_w(MSARegister wd, MSARegister ws, MSARegister wt);
1337   void fsor_d(MSARegister wd, MSARegister ws, MSARegister wt);
1338   void fsune_w(MSARegister wd, MSARegister ws, MSARegister wt);
1339   void fsune_d(MSARegister wd, MSARegister ws, MSARegister wt);
1340   void fsne_w(MSARegister wd, MSARegister ws, MSARegister wt);
1341   void fsne_d(MSARegister wd, MSARegister ws, MSARegister wt);
1342   void mulr_q_h(MSARegister wd, MSARegister ws, MSARegister wt);
1343   void mulr_q_w(MSARegister wd, MSARegister ws, MSARegister wt);
1344   void maddr_q_h(MSARegister wd, MSARegister ws, MSARegister wt);
1345   void maddr_q_w(MSARegister wd, MSARegister ws, MSARegister wt);
1346   void msubr_q_h(MSARegister wd, MSARegister ws, MSARegister wt);
1347   void msubr_q_w(MSARegister wd, MSARegister ws, MSARegister wt);
1348 
1349   void sldi_b(MSARegister wd, MSARegister ws, uint32_t n);
1350   void sldi_h(MSARegister wd, MSARegister ws, uint32_t n);
1351   void sldi_w(MSARegister wd, MSARegister ws, uint32_t n);
1352   void sldi_d(MSARegister wd, MSARegister ws, uint32_t n);
1353   void splati_b(MSARegister wd, MSARegister ws, uint32_t n);
1354   void splati_h(MSARegister wd, MSARegister ws, uint32_t n);
1355   void splati_w(MSARegister wd, MSARegister ws, uint32_t n);
1356   void splati_d(MSARegister wd, MSARegister ws, uint32_t n);
1357   void copy_s_b(Register rd, MSARegister ws, uint32_t n);
1358   void copy_s_h(Register rd, MSARegister ws, uint32_t n);
1359   void copy_s_w(Register rd, MSARegister ws, uint32_t n);
1360   void copy_s_d(Register rd, MSARegister ws, uint32_t n);
1361   void copy_u_b(Register rd, MSARegister ws, uint32_t n);
1362   void copy_u_h(Register rd, MSARegister ws, uint32_t n);
1363   void copy_u_w(Register rd, MSARegister ws, uint32_t n);
1364   void insert_b(MSARegister wd, uint32_t n, Register rs);
1365   void insert_h(MSARegister wd, uint32_t n, Register rs);
1366   void insert_w(MSARegister wd, uint32_t n, Register rs);
1367   void insert_d(MSARegister wd, uint32_t n, Register rs);
1368   void insve_b(MSARegister wd, uint32_t n, MSARegister ws);
1369   void insve_h(MSARegister wd, uint32_t n, MSARegister ws);
1370   void insve_w(MSARegister wd, uint32_t n, MSARegister ws);
1371   void insve_d(MSARegister wd, uint32_t n, MSARegister ws);
1372   void move_v(MSARegister wd, MSARegister ws);
1373   void ctcmsa(MSAControlRegister cd, Register rs);
1374   void cfcmsa(Register rd, MSAControlRegister cs);
1375 
1376   void slli_b(MSARegister wd, MSARegister ws, uint32_t m);
1377   void slli_h(MSARegister wd, MSARegister ws, uint32_t m);
1378   void slli_w(MSARegister wd, MSARegister ws, uint32_t m);
1379   void slli_d(MSARegister wd, MSARegister ws, uint32_t m);
1380   void srai_b(MSARegister wd, MSARegister ws, uint32_t m);
1381   void srai_h(MSARegister wd, MSARegister ws, uint32_t m);
1382   void srai_w(MSARegister wd, MSARegister ws, uint32_t m);
1383   void srai_d(MSARegister wd, MSARegister ws, uint32_t m);
1384   void srli_b(MSARegister wd, MSARegister ws, uint32_t m);
1385   void srli_h(MSARegister wd, MSARegister ws, uint32_t m);
1386   void srli_w(MSARegister wd, MSARegister ws, uint32_t m);
1387   void srli_d(MSARegister wd, MSARegister ws, uint32_t m);
1388   void bclri_b(MSARegister wd, MSARegister ws, uint32_t m);
1389   void bclri_h(MSARegister wd, MSARegister ws, uint32_t m);
1390   void bclri_w(MSARegister wd, MSARegister ws, uint32_t m);
1391   void bclri_d(MSARegister wd, MSARegister ws, uint32_t m);
1392   void bseti_b(MSARegister wd, MSARegister ws, uint32_t m);
1393   void bseti_h(MSARegister wd, MSARegister ws, uint32_t m);
1394   void bseti_w(MSARegister wd, MSARegister ws, uint32_t m);
1395   void bseti_d(MSARegister wd, MSARegister ws, uint32_t m);
1396   void bnegi_b(MSARegister wd, MSARegister ws, uint32_t m);
1397   void bnegi_h(MSARegister wd, MSARegister ws, uint32_t m);
1398   void bnegi_w(MSARegister wd, MSARegister ws, uint32_t m);
1399   void bnegi_d(MSARegister wd, MSARegister ws, uint32_t m);
1400   void binsli_b(MSARegister wd, MSARegister ws, uint32_t m);
1401   void binsli_h(MSARegister wd, MSARegister ws, uint32_t m);
1402   void binsli_w(MSARegister wd, MSARegister ws, uint32_t m);
1403   void binsli_d(MSARegister wd, MSARegister ws, uint32_t m);
1404   void binsri_b(MSARegister wd, MSARegister ws, uint32_t m);
1405   void binsri_h(MSARegister wd, MSARegister ws, uint32_t m);
1406   void binsri_w(MSARegister wd, MSARegister ws, uint32_t m);
1407   void binsri_d(MSARegister wd, MSARegister ws, uint32_t m);
1408   void sat_s_b(MSARegister wd, MSARegister ws, uint32_t m);
1409   void sat_s_h(MSARegister wd, MSARegister ws, uint32_t m);
1410   void sat_s_w(MSARegister wd, MSARegister ws, uint32_t m);
1411   void sat_s_d(MSARegister wd, MSARegister ws, uint32_t m);
1412   void sat_u_b(MSARegister wd, MSARegister ws, uint32_t m);
1413   void sat_u_h(MSARegister wd, MSARegister ws, uint32_t m);
1414   void sat_u_w(MSARegister wd, MSARegister ws, uint32_t m);
1415   void sat_u_d(MSARegister wd, MSARegister ws, uint32_t m);
1416   void srari_b(MSARegister wd, MSARegister ws, uint32_t m);
1417   void srari_h(MSARegister wd, MSARegister ws, uint32_t m);
1418   void srari_w(MSARegister wd, MSARegister ws, uint32_t m);
1419   void srari_d(MSARegister wd, MSARegister ws, uint32_t m);
1420   void srlri_b(MSARegister wd, MSARegister ws, uint32_t m);
1421   void srlri_h(MSARegister wd, MSARegister ws, uint32_t m);
1422   void srlri_w(MSARegister wd, MSARegister ws, uint32_t m);
1423   void srlri_d(MSARegister wd, MSARegister ws, uint32_t m);
1424 
1425   // Check the code size generated from label to here.
SizeOfCodeGeneratedSince(Label * label)1426   int SizeOfCodeGeneratedSince(Label* label) {
1427     return pc_offset() - label->pos();
1428   }
1429 
1430   // Check the number of instructions generated from label to here.
InstructionsGeneratedSince(Label * label)1431   int InstructionsGeneratedSince(Label* label) {
1432     return SizeOfCodeGeneratedSince(label) / kInstrSize;
1433   }
1434 
1435   // Class for scoping postponing the trampoline pool generation.
1436   class BlockTrampolinePoolScope {
1437    public:
BlockTrampolinePoolScope(Assembler * assem)1438     explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) {
1439       assem_->StartBlockTrampolinePool();
1440     }
~BlockTrampolinePoolScope()1441     ~BlockTrampolinePoolScope() { assem_->EndBlockTrampolinePool(); }
1442 
1443    private:
1444     Assembler* assem_;
1445 
1446     DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope);
1447   };
1448 
1449   // Class for postponing the assembly buffer growth. Typically used for
1450   // sequences of instructions that must be emitted as a unit, before
1451   // buffer growth (and relocation) can occur.
1452   // This blocking scope is not nestable.
1453   class BlockGrowBufferScope {
1454    public:
BlockGrowBufferScope(Assembler * assem)1455     explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) {
1456       assem_->StartBlockGrowBuffer();
1457     }
~BlockGrowBufferScope()1458     ~BlockGrowBufferScope() { assem_->EndBlockGrowBuffer(); }
1459 
1460    private:
1461     Assembler* assem_;
1462 
1463     DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope);
1464   };
1465 
1466   // Record a deoptimization reason that can be used by a log or cpu profiler.
1467   // Use --trace-deopt to enable.
1468   void RecordDeoptReason(DeoptimizeReason reason, SourcePosition position,
1469                          int id);
1470 
1471   static int RelocateInternalReference(RelocInfo::Mode rmode, Address pc,
1472                                        intptr_t pc_delta);
1473 
1474   // Writes a single byte or word of data in the code stream.  Used for
1475   // inline tables, e.g., jump-tables.
1476   void db(uint8_t data);
1477   void dd(uint32_t data);
1478   void dq(uint64_t data);
dp(uintptr_t data)1479   void dp(uintptr_t data) { dq(data); }
1480   void dd(Label* label);
1481 
1482   // Postpone the generation of the trampoline pool for the specified number of
1483   // instructions.
1484   void BlockTrampolinePoolFor(int instructions);
1485 
1486   // Check if there is less than kGap bytes available in the buffer.
1487   // If this is the case, we need to grow the buffer before emitting
1488   // an instruction or relocation information.
overflow()1489   inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
1490 
1491   // Get the number of bytes available in the buffer.
available_space()1492   inline intptr_t available_space() const {
1493     return reloc_info_writer.pos() - pc_;
1494   }
1495 
1496   // Read/patch instructions.
instr_at(Address pc)1497   static Instr instr_at(Address pc) { return *reinterpret_cast<Instr*>(pc); }
instr_at_put(Address pc,Instr instr)1498   static void instr_at_put(Address pc, Instr instr) {
1499     *reinterpret_cast<Instr*>(pc) = instr;
1500   }
instr_at(int pos)1501   Instr instr_at(int pos) {
1502     return *reinterpret_cast<Instr*>(buffer_start_ + pos);
1503   }
instr_at_put(int pos,Instr instr)1504   void instr_at_put(int pos, Instr instr) {
1505     *reinterpret_cast<Instr*>(buffer_start_ + pos) = instr;
1506   }
1507 
1508   // Check if an instruction is a branch of some kind.
1509   static bool IsBranch(Instr instr);
1510   static bool IsMsaBranch(Instr instr);
1511   static bool IsBc(Instr instr);
1512   static bool IsNal(Instr instr);
1513   static bool IsBzc(Instr instr);
1514 
1515   static bool IsBeq(Instr instr);
1516   static bool IsBne(Instr instr);
1517   static bool IsBeqzc(Instr instr);
1518   static bool IsBnezc(Instr instr);
1519   static bool IsBeqc(Instr instr);
1520   static bool IsBnec(Instr instr);
1521 
1522   static bool IsJump(Instr instr);
1523   static bool IsJ(Instr instr);
1524   static bool IsLui(Instr instr);
1525   static bool IsOri(Instr instr);
1526   static bool IsMov(Instr instr, Register rd, Register rs);
1527 
1528   static bool IsJal(Instr instr);
1529   static bool IsJr(Instr instr);
1530   static bool IsJalr(Instr instr);
1531 
1532   static bool IsNop(Instr instr, unsigned int type);
1533   static bool IsPop(Instr instr);
1534   static bool IsPush(Instr instr);
1535   static bool IsLwRegFpOffset(Instr instr);
1536   static bool IsSwRegFpOffset(Instr instr);
1537   static bool IsLwRegFpNegOffset(Instr instr);
1538   static bool IsSwRegFpNegOffset(Instr instr);
1539 
1540   static Register GetRtReg(Instr instr);
1541   static Register GetRsReg(Instr instr);
1542   static Register GetRdReg(Instr instr);
1543 
1544   static uint32_t GetRt(Instr instr);
1545   static uint32_t GetRtField(Instr instr);
1546   static uint32_t GetRs(Instr instr);
1547   static uint32_t GetRsField(Instr instr);
1548   static uint32_t GetRd(Instr instr);
1549   static uint32_t GetRdField(Instr instr);
1550   static uint32_t GetSa(Instr instr);
1551   static uint32_t GetSaField(Instr instr);
1552   static uint32_t GetOpcodeField(Instr instr);
1553   static uint32_t GetFunction(Instr instr);
1554   static uint32_t GetFunctionField(Instr instr);
1555   static uint32_t GetImmediate16(Instr instr);
1556   static uint32_t GetLabelConst(Instr instr);
1557 
1558   static int32_t GetBranchOffset(Instr instr);
1559   static bool IsLw(Instr instr);
1560   static int16_t GetLwOffset(Instr instr);
1561   static Instr SetLwOffset(Instr instr, int16_t offset);
1562 
1563   static bool IsSw(Instr instr);
1564   static Instr SetSwOffset(Instr instr, int16_t offset);
1565   static bool IsAddImmediate(Instr instr);
1566   static Instr SetAddImmediateOffset(Instr instr, int16_t offset);
1567 
1568   static bool IsAndImmediate(Instr instr);
1569   static bool IsEmittedConstant(Instr instr);
1570 
1571   void CheckTrampolinePool();
1572 
IsPrevInstrCompactBranch()1573   bool IsPrevInstrCompactBranch() { return prev_instr_compact_branch_; }
IsCompactBranchSupported()1574   static bool IsCompactBranchSupported() { return kArchVariant == kMips64r6; }
1575 
UnboundLabelsCount()1576   inline int UnboundLabelsCount() { return unbound_labels_count_; }
1577 
1578  protected:
1579   // Load Scaled Address instructions.
1580   void lsa(Register rd, Register rt, Register rs, uint8_t sa);
1581   void dlsa(Register rd, Register rt, Register rs, uint8_t sa);
1582 
1583   // Readable constants for base and offset adjustment helper, these indicate if
1584   // aside from offset, another value like offset + 4 should fit into int16.
1585   enum class OffsetAccessType : bool {
1586     SINGLE_ACCESS = false,
1587     TWO_ACCESSES = true
1588   };
1589 
1590   // Helper function for memory load/store using base register and offset.
1591   void AdjustBaseAndOffset(
1592       MemOperand* src,
1593       OffsetAccessType access_type = OffsetAccessType::SINGLE_ACCESS,
1594       int second_access_add_to_offset = 4);
1595 
1596   inline static void set_target_internal_reference_encoded_at(Address pc,
1597                                                               Address target);
1598 
buffer_space()1599   int64_t buffer_space() const { return reloc_info_writer.pos() - pc_; }
1600 
1601   // Decode branch instruction at pos and return branch target pos.
1602   int target_at(int pos, bool is_internal);
1603 
1604   // Patch branch instruction at pos to branch to given branch target pos.
1605   void target_at_put(int pos, int target_pos, bool is_internal);
1606 
1607   // Say if we need to relocate with this mode.
1608   bool MustUseReg(RelocInfo::Mode rmode);
1609 
1610   // Record reloc info for current pc_.
1611   void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1612 
1613   // Block the emission of the trampoline pool before pc_offset.
BlockTrampolinePoolBefore(int pc_offset)1614   void BlockTrampolinePoolBefore(int pc_offset) {
1615     if (no_trampoline_pool_before_ < pc_offset)
1616       no_trampoline_pool_before_ = pc_offset;
1617   }
1618 
StartBlockTrampolinePool()1619   void StartBlockTrampolinePool() { trampoline_pool_blocked_nesting_++; }
1620 
EndBlockTrampolinePool()1621   void EndBlockTrampolinePool() {
1622     trampoline_pool_blocked_nesting_--;
1623     if (trampoline_pool_blocked_nesting_ == 0) {
1624       CheckTrampolinePoolQuick(1);
1625     }
1626   }
1627 
is_trampoline_pool_blocked()1628   bool is_trampoline_pool_blocked() const {
1629     return trampoline_pool_blocked_nesting_ > 0;
1630   }
1631 
has_exception()1632   bool has_exception() const { return internal_trampoline_exception_; }
1633 
is_trampoline_emitted()1634   bool is_trampoline_emitted() const { return trampoline_emitted_; }
1635 
1636   // Temporarily block automatic assembly buffer growth.
StartBlockGrowBuffer()1637   void StartBlockGrowBuffer() {
1638     DCHECK(!block_buffer_growth_);
1639     block_buffer_growth_ = true;
1640   }
1641 
EndBlockGrowBuffer()1642   void EndBlockGrowBuffer() {
1643     DCHECK(block_buffer_growth_);
1644     block_buffer_growth_ = false;
1645   }
1646 
is_buffer_growth_blocked()1647   bool is_buffer_growth_blocked() const { return block_buffer_growth_; }
1648 
EmitForbiddenSlotInstruction()1649   void EmitForbiddenSlotInstruction() {
1650     if (IsPrevInstrCompactBranch()) {
1651       nop();
1652     }
1653   }
1654 
1655   void CheckTrampolinePoolQuick(int extra_instructions = 0) {
1656     if (pc_offset() >= next_buffer_check_ - extra_instructions * kInstrSize) {
1657       CheckTrampolinePool();
1658     }
1659   }
1660 
set_last_call_pc_(byte * pc)1661   void set_last_call_pc_(byte* pc) { last_call_pc_ = pc; }
1662 
1663  private:
1664   // Avoid overflows for displacements etc.
1665   static const int kMaximalBufferSize = 512 * MB;
1666 
1667   // Buffer size and constant pool distance are checked together at regular
1668   // intervals of kBufferCheckInterval emitted bytes.
1669   static constexpr int kBufferCheckInterval = 1 * KB / 2;
1670 
1671   // Code generation.
1672   // The relocation writer's position is at least kGap bytes below the end of
1673   // the generated instructions. This is so that multi-instruction sequences do
1674   // not have to check for overflow. The same is true for writes of large
1675   // relocation info entries.
1676   static constexpr int kGap = 64;
1677   STATIC_ASSERT(AssemblerBase::kMinimalBufferSize >= 2 * kGap);
1678 
1679   // Repeated checking whether the trampoline pool should be emitted is rather
1680   // expensive. By default we only check again once a number of instructions
1681   // has been generated.
1682   static constexpr int kCheckConstIntervalInst = 32;
1683   static constexpr int kCheckConstInterval =
1684       kCheckConstIntervalInst * kInstrSize;
1685 
1686   int next_buffer_check_;  // pc offset of next buffer check.
1687 
1688   // Emission of the trampoline pool may be blocked in some code sequences.
1689   int trampoline_pool_blocked_nesting_;  // Block emission if this is not zero.
1690   int no_trampoline_pool_before_;  // Block emission before this pc offset.
1691 
1692   // Keep track of the last emitted pool to guarantee a maximal distance.
1693   int last_trampoline_pool_end_;  // pc offset of the end of the last pool.
1694 
1695   // Automatic growth of the assembly buffer may be blocked for some sequences.
1696   bool block_buffer_growth_;  // Block growth when true.
1697 
1698   // Relocation information generation.
1699   // Each relocation is encoded as a variable size value.
1700   static constexpr int kMaxRelocSize = RelocInfoWriter::kMaxSize;
1701   RelocInfoWriter reloc_info_writer;
1702 
1703   // The bound position, before this we cannot do instruction elimination.
1704   int last_bound_pos_;
1705 
1706   // Readable constants for compact branch handling in emit()
1707   enum class CompactBranchType : bool { NO = false, COMPACT_BRANCH = true };
1708 
1709   // Code emission.
1710   inline void CheckBuffer();
1711   void GrowBuffer();
1712   inline void emit(Instr x,
1713                    CompactBranchType is_compact_branch = CompactBranchType::NO);
1714   inline void emit(uint64_t x);
1715   inline void CheckForEmitInForbiddenSlot();
1716   template <typename T>
1717   inline void EmitHelper(T x);
1718   inline void EmitHelper(Instr x, CompactBranchType is_compact_branch);
1719 
1720   // Instruction generation.
1721   // We have 3 different kind of encoding layout on MIPS.
1722   // However due to many different types of objects encoded in the same fields
1723   // we have quite a few aliases for each mode.
1724   // Using the same structure to refer to Register and FPURegister would spare a
1725   // few aliases, but mixing both does not look clean to me.
1726   // Anyway we could surely implement this differently.
1727 
1728   void GenInstrRegister(Opcode opcode, Register rs, Register rt, Register rd,
1729                         uint16_t sa = 0, SecondaryField func = nullptrSF);
1730 
1731   void GenInstrRegister(Opcode opcode, Register rs, Register rt, uint16_t msb,
1732                         uint16_t lsb, SecondaryField func);
1733 
1734   void GenInstrRegister(Opcode opcode, SecondaryField fmt, FPURegister ft,
1735                         FPURegister fs, FPURegister fd,
1736                         SecondaryField func = nullptrSF);
1737 
1738   void GenInstrRegister(Opcode opcode, FPURegister fr, FPURegister ft,
1739                         FPURegister fs, FPURegister fd,
1740                         SecondaryField func = nullptrSF);
1741 
1742   void GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt,
1743                         FPURegister fs, FPURegister fd,
1744                         SecondaryField func = nullptrSF);
1745 
1746   void GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt,
1747                         FPUControlRegister fs, SecondaryField func = nullptrSF);
1748 
1749   void GenInstrImmediate(
1750       Opcode opcode, Register rs, Register rt, int32_t j,
1751       CompactBranchType is_compact_branch = CompactBranchType::NO);
1752   void GenInstrImmediate(
1753       Opcode opcode, Register rs, SecondaryField SF, int32_t j,
1754       CompactBranchType is_compact_branch = CompactBranchType::NO);
1755   void GenInstrImmediate(
1756       Opcode opcode, Register r1, FPURegister r2, int32_t j,
1757       CompactBranchType is_compact_branch = CompactBranchType::NO);
1758   void GenInstrImmediate(Opcode opcode, Register base, Register rt,
1759                          int32_t offset9, int bit6, SecondaryField func);
1760   void GenInstrImmediate(
1761       Opcode opcode, Register rs, int32_t offset21,
1762       CompactBranchType is_compact_branch = CompactBranchType::NO);
1763   void GenInstrImmediate(Opcode opcode, Register rs, uint32_t offset21);
1764   void GenInstrImmediate(
1765       Opcode opcode, int32_t offset26,
1766       CompactBranchType is_compact_branch = CompactBranchType::NO);
1767 
1768   void GenInstrJump(Opcode opcode, uint32_t address);
1769 
1770   // MSA
1771   void GenInstrMsaI8(SecondaryField operation, uint32_t imm8, MSARegister ws,
1772                      MSARegister wd);
1773 
1774   void GenInstrMsaI5(SecondaryField operation, SecondaryField df, int32_t imm5,
1775                      MSARegister ws, MSARegister wd);
1776 
1777   void GenInstrMsaBit(SecondaryField operation, SecondaryField df, uint32_t m,
1778                       MSARegister ws, MSARegister wd);
1779 
1780   void GenInstrMsaI10(SecondaryField operation, SecondaryField df,
1781                       int32_t imm10, MSARegister wd);
1782 
1783   template <typename RegType>
1784   void GenInstrMsa3R(SecondaryField operation, SecondaryField df, RegType t,
1785                      MSARegister ws, MSARegister wd);
1786 
1787   template <typename DstType, typename SrcType>
1788   void GenInstrMsaElm(SecondaryField operation, SecondaryField df, uint32_t n,
1789                       SrcType src, DstType dst);
1790 
1791   void GenInstrMsa3RF(SecondaryField operation, uint32_t df, MSARegister wt,
1792                       MSARegister ws, MSARegister wd);
1793 
1794   void GenInstrMsaVec(SecondaryField operation, MSARegister wt, MSARegister ws,
1795                       MSARegister wd);
1796 
1797   void GenInstrMsaMI10(SecondaryField operation, int32_t s10, Register rs,
1798                        MSARegister wd);
1799 
1800   void GenInstrMsa2R(SecondaryField operation, SecondaryField df,
1801                      MSARegister ws, MSARegister wd);
1802 
1803   void GenInstrMsa2RF(SecondaryField operation, SecondaryField df,
1804                       MSARegister ws, MSARegister wd);
1805 
1806   void GenInstrMsaBranch(SecondaryField operation, MSARegister wt,
1807                          int32_t offset16);
1808 
is_valid_msa_df_m(SecondaryField bit_df,uint32_t m)1809   inline bool is_valid_msa_df_m(SecondaryField bit_df, uint32_t m) {
1810     switch (bit_df) {
1811       case BIT_DF_b:
1812         return is_uint3(m);
1813       case BIT_DF_h:
1814         return is_uint4(m);
1815       case BIT_DF_w:
1816         return is_uint5(m);
1817       case BIT_DF_d:
1818         return is_uint6(m);
1819       default:
1820         return false;
1821     }
1822   }
1823 
is_valid_msa_df_n(SecondaryField elm_df,uint32_t n)1824   inline bool is_valid_msa_df_n(SecondaryField elm_df, uint32_t n) {
1825     switch (elm_df) {
1826       case ELM_DF_B:
1827         return is_uint4(n);
1828       case ELM_DF_H:
1829         return is_uint3(n);
1830       case ELM_DF_W:
1831         return is_uint2(n);
1832       case ELM_DF_D:
1833         return is_uint1(n);
1834       default:
1835         return false;
1836     }
1837   }
1838 
1839   // Labels.
1840   void print(const Label* L);
1841   void bind_to(Label* L, int pos);
1842   void next(Label* L, bool is_internal);
1843 
1844   // One trampoline consists of:
1845   // - space for trampoline slots,
1846   // - space for labels.
1847   //
1848   // Space for trampoline slots is equal to slot_count * 2 * kInstrSize.
1849   // Space for trampoline slots precedes space for labels. Each label is of one
1850   // instruction size, so total amount for labels is equal to
1851   // label_count *  kInstrSize.
1852   class Trampoline {
1853    public:
Trampoline()1854     Trampoline() {
1855       start_ = 0;
1856       next_slot_ = 0;
1857       free_slot_count_ = 0;
1858       end_ = 0;
1859     }
Trampoline(int start,int slot_count)1860     Trampoline(int start, int slot_count) {
1861       start_ = start;
1862       next_slot_ = start;
1863       free_slot_count_ = slot_count;
1864       end_ = start + slot_count * kTrampolineSlotsSize;
1865     }
start()1866     int start() { return start_; }
end()1867     int end() { return end_; }
take_slot()1868     int take_slot() {
1869       int trampoline_slot = kInvalidSlotPos;
1870       if (free_slot_count_ <= 0) {
1871         // We have run out of space on trampolines.
1872         // Make sure we fail in debug mode, so we become aware of each case
1873         // when this happens.
1874         DCHECK(0);
1875         // Internal exception will be caught.
1876       } else {
1877         trampoline_slot = next_slot_;
1878         free_slot_count_--;
1879         next_slot_ += kTrampolineSlotsSize;
1880       }
1881       return trampoline_slot;
1882     }
1883 
1884    private:
1885     int start_;
1886     int end_;
1887     int next_slot_;
1888     int free_slot_count_;
1889   };
1890 
1891   int32_t get_trampoline_entry(int32_t pos);
1892   int unbound_labels_count_;
1893   // After trampoline is emitted, long branches are used in generated code for
1894   // the forward branches whose target offsets could be beyond reach of branch
1895   // instruction. We use this information to trigger different mode of
1896   // branch instruction generation, where we use jump instructions rather
1897   // than regular branch instructions.
1898   bool trampoline_emitted_;
1899   static constexpr int kInvalidSlotPos = -1;
1900 
1901   // Internal reference positions, required for unbounded internal reference
1902   // labels.
1903   std::set<int64_t> internal_reference_positions_;
is_internal_reference(Label * L)1904   bool is_internal_reference(Label* L) {
1905     return internal_reference_positions_.find(L->pos()) !=
1906            internal_reference_positions_.end();
1907   }
1908 
EmittedCompactBranchInstruction()1909   void EmittedCompactBranchInstruction() { prev_instr_compact_branch_ = true; }
ClearCompactBranchState()1910   void ClearCompactBranchState() { prev_instr_compact_branch_ = false; }
1911   bool prev_instr_compact_branch_ = false;
1912 
1913   Trampoline trampoline_;
1914   bool internal_trampoline_exception_;
1915 
1916   // Keep track of the last Call's position to ensure that safepoint can get the
1917   // correct information even if there is a trampoline immediately after the
1918   // Call.
1919   byte* last_call_pc_;
1920 
1921   RegList scratch_register_list_;
1922 
1923  private:
1924   void AllocateAndInstallRequestedHeapObjects(Isolate* isolate);
1925 
1926   int WriteCodeComments();
1927 
1928   friend class RegExpMacroAssemblerMIPS;
1929   friend class RelocInfo;
1930   friend class BlockTrampolinePoolScope;
1931   friend class EnsureSpace;
1932 };
1933 
1934 class EnsureSpace {
1935  public:
1936   explicit inline EnsureSpace(Assembler* assembler);
1937 };
1938 
1939 class V8_EXPORT_PRIVATE UseScratchRegisterScope {
1940  public:
1941   explicit UseScratchRegisterScope(Assembler* assembler);
1942   ~UseScratchRegisterScope();
1943 
1944   Register Acquire();
1945   bool hasAvailable() const;
1946 
1947  private:
1948   RegList* available_;
1949   RegList old_available_;
1950 };
1951 
1952 }  // namespace internal
1953 }  // namespace v8
1954 
1955 #endif  // V8_CODEGEN_MIPS64_ASSEMBLER_MIPS64_H_
1956