• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef INCLUDED_FROM_MACRO_ASSEMBLER_H
6 #error This header must be included via macro-assembler.h
7 #endif
8 
9 #ifndef V8_CODEGEN_MIPS64_MACRO_ASSEMBLER_MIPS64_H_
10 #define V8_CODEGEN_MIPS64_MACRO_ASSEMBLER_MIPS64_H_
11 
12 #include "src/codegen/assembler.h"
13 #include "src/codegen/mips64/assembler-mips64.h"
14 #include "src/common/globals.h"
15 
16 namespace v8 {
17 namespace internal {
18 
19 // Forward declarations.
20 enum class AbortReason : uint8_t;
21 
22 // Reserved Register Usage Summary.
23 //
24 // Registers t8, t9, and at are reserved for use by the MacroAssembler.
25 //
26 // The programmer should know that the MacroAssembler may clobber these three,
27 // but won't touch other registers except in special cases.
28 //
29 // Per the MIPS ABI, register t9 must be used for indirect function call
30 // via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when
31 // trying to update gp register for position-independent-code. Whenever
32 // MIPS generated code calls C code, it must be via t9 register.
33 
34 // Flags used for LeaveExitFrame function.
35 enum LeaveExitFrameMode { EMIT_RETURN = true, NO_EMIT_RETURN = false };
36 
37 // Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls.
38 enum BranchDelaySlot { USE_DELAY_SLOT, PROTECT };
39 
40 // Flags used for the li macro-assembler function.
41 enum LiFlags {
42   // If the constant value can be represented in just 16 bits, then
43   // optimize the li to use a single instruction, rather than lui/ori/dsll
44   // sequence. A number of other optimizations that emits less than
45   // maximum number of instructions exists.
46   OPTIMIZE_SIZE = 0,
47   // Always use 6 instructions (lui/ori/dsll sequence) for release 2 or 4
48   // instructions for release 6 (lui/ori/dahi/dati), even if the constant
49   // could be loaded with just one, so that this value is patchable later.
50   CONSTANT_SIZE = 1,
51   // For address loads only 4 instruction are required. Used to mark
52   // constant load that will be used as address without relocation
53   // information. It ensures predictable code size, so specific sites
54   // in code are patchable.
55   ADDRESS_LOAD = 2
56 };
57 
58 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
59 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
60 enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved };
61 
62 Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2 = no_reg,
63                                    Register reg3 = no_reg,
64                                    Register reg4 = no_reg,
65                                    Register reg5 = no_reg,
66                                    Register reg6 = no_reg);
67 
68 // -----------------------------------------------------------------------------
69 // Static helper functions.
70 
71 #if defined(V8_TARGET_LITTLE_ENDIAN)
72 #define SmiWordOffset(offset) (offset + kPointerSize / 2)
73 #else
74 #define SmiWordOffset(offset) offset
75 #endif
76 
77 // Generate a MemOperand for loading a field from an object.
FieldMemOperand(Register object,int offset)78 inline MemOperand FieldMemOperand(Register object, int offset) {
79   return MemOperand(object, offset - kHeapObjectTag);
80 }
81 
82 // Generate a MemOperand for storing arguments 5..N on the stack
83 // when calling CallCFunction().
84 // TODO(plind): Currently ONLY used for O32. Should be fixed for
85 //              n64, and used in RegExp code, and other places
86 //              with more than 8 arguments.
CFunctionArgumentOperand(int index)87 inline MemOperand CFunctionArgumentOperand(int index) {
88   DCHECK_GT(index, kCArgSlotCount);
89   // Argument 5 takes the slot just past the four Arg-slots.
90   int offset = (index - 5) * kPointerSize + kCArgsSlotsSize;
91   return MemOperand(sp, offset);
92 }
93 
94 class V8_EXPORT_PRIVATE TurboAssembler : public TurboAssemblerBase {
95  public:
96   using TurboAssemblerBase::TurboAssemblerBase;
97 
98   // Activation support.
99   void EnterFrame(StackFrame::Type type);
EnterFrame(StackFrame::Type type,bool load_constant_pool_pointer_reg)100   void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg) {
101     // Out-of-line constant pool not implemented on mips.
102     UNREACHABLE();
103   }
104   void LeaveFrame(StackFrame::Type type);
105 
106   // Generates function and stub prologue code.
107   void StubPrologue(StackFrame::Type type);
108   void Prologue();
109 
InitializeRootRegister()110   void InitializeRootRegister() {
111     ExternalReference isolate_root = ExternalReference::isolate_root(isolate());
112     li(kRootRegister, Operand(isolate_root));
113   }
114 
115   // Jump unconditionally to given label.
116   // We NEED a nop in the branch delay slot, as it used by v8, for example in
117   // CodeGenerator::ProcessDeferred().
118   // Currently the branch delay slot is filled by the MacroAssembler.
119   // Use rather b(Label) for code generation.
jmp(Label * L)120   void jmp(Label* L) { Branch(L); }
121 
122   // -------------------------------------------------------------------------
123   // Debugging.
124 
125   void Trap() override;
126   void DebugBreak() override;
127 
128   // Calls Abort(msg) if the condition cc is not satisfied.
129   // Use --debug_code to enable.
130   void Assert(Condition cc, AbortReason reason, Register rs, Operand rt);
131 
132   // Like Assert(), but always enabled.
133   void Check(Condition cc, AbortReason reason, Register rs, Operand rt);
134 
135   // Print a message to stdout and abort execution.
136   void Abort(AbortReason msg);
137 
138   // Arguments macros.
139 #define COND_TYPED_ARGS Condition cond, Register r1, const Operand &r2
140 #define COND_ARGS cond, r1, r2
141 
142   // Cases when relocation is not needed.
143 #define DECLARE_NORELOC_PROTOTYPE(Name, target_type)                          \
144   void Name(target_type target, BranchDelaySlot bd = PROTECT);                \
145   inline void Name(BranchDelaySlot bd, target_type target) {                  \
146     Name(target, bd);                                                         \
147   }                                                                           \
148   void Name(target_type target, COND_TYPED_ARGS,                              \
149             BranchDelaySlot bd = PROTECT);                                    \
150   inline void Name(BranchDelaySlot bd, target_type target, COND_TYPED_ARGS) { \
151     Name(target, COND_ARGS, bd);                                              \
152   }
153 
154 #define DECLARE_BRANCH_PROTOTYPES(Name)   \
155   DECLARE_NORELOC_PROTOTYPE(Name, Label*) \
156   DECLARE_NORELOC_PROTOTYPE(Name, int32_t)
157 
158   DECLARE_BRANCH_PROTOTYPES(Branch)
DECLARE_BRANCH_PROTOTYPES(BranchAndLink)159   DECLARE_BRANCH_PROTOTYPES(BranchAndLink)
160   DECLARE_BRANCH_PROTOTYPES(BranchShort)
161 
162 #undef DECLARE_BRANCH_PROTOTYPES
163 #undef COND_TYPED_ARGS
164 #undef COND_ARGS
165 
166   // Floating point branches
167   void CompareF32(FPUCondition cc, FPURegister cmp1, FPURegister cmp2) {
168     CompareF(S, cc, cmp1, cmp2);
169   }
170 
CompareIsNanF32(FPURegister cmp1,FPURegister cmp2)171   void CompareIsNanF32(FPURegister cmp1, FPURegister cmp2) {
172     CompareIsNanF(S, cmp1, cmp2);
173   }
174 
CompareF64(FPUCondition cc,FPURegister cmp1,FPURegister cmp2)175   void CompareF64(FPUCondition cc, FPURegister cmp1, FPURegister cmp2) {
176     CompareF(D, cc, cmp1, cmp2);
177   }
178 
CompareIsNanF64(FPURegister cmp1,FPURegister cmp2)179   void CompareIsNanF64(FPURegister cmp1, FPURegister cmp2) {
180     CompareIsNanF(D, cmp1, cmp2);
181   }
182 
183   void BranchTrueShortF(Label* target, BranchDelaySlot bd = PROTECT);
184   void BranchFalseShortF(Label* target, BranchDelaySlot bd = PROTECT);
185 
186   void BranchTrueF(Label* target, BranchDelaySlot bd = PROTECT);
187   void BranchFalseF(Label* target, BranchDelaySlot bd = PROTECT);
188 
189   // MSA branches
190   void BranchMSA(Label* target, MSABranchDF df, MSABranchCondition cond,
191                  MSARegister wt, BranchDelaySlot bd = PROTECT);
192 
193   void Branch(Label* L, Condition cond, Register rs, RootIndex index,
194               BranchDelaySlot bdslot = PROTECT);
195 
196   static int InstrCountForLi64Bit(int64_t value);
197   inline void LiLower32BitHelper(Register rd, Operand j);
198   void li_optimized(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE);
199   // Load int32 in the rd register.
200   void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE);
201   inline void li(Register rd, int64_t j, LiFlags mode = OPTIMIZE_SIZE) {
202     li(rd, Operand(j), mode);
203   }
204   // inline void li(Register rd, int32_t j, LiFlags mode = OPTIMIZE_SIZE) {
205   //   li(rd, Operand(static_cast<int64_t>(j)), mode);
206   // }
207   void li(Register dst, Handle<HeapObject> value, LiFlags mode = OPTIMIZE_SIZE);
208   void li(Register dst, ExternalReference value, LiFlags mode = OPTIMIZE_SIZE);
209   void li(Register dst, const StringConstantBase* string,
210           LiFlags mode = OPTIMIZE_SIZE);
211 
212   void LoadFromConstantsTable(Register destination,
213                               int constant_index) override;
214   void LoadRootRegisterOffset(Register destination, intptr_t offset) override;
215   void LoadRootRelative(Register destination, int32_t offset) override;
216 
217 // Jump, Call, and Ret pseudo instructions implementing inter-working.
218 #define COND_ARGS                                  \
219   Condition cond = al, Register rs = zero_reg,     \
220             const Operand &rt = Operand(zero_reg), \
221             BranchDelaySlot bd = PROTECT
222 
223   void Jump(Register target, COND_ARGS);
224   void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS);
225   void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS);
226   // Deffer from li, this method save target to the memory, and then load
227   // it to register use ld, it can be used in wasm jump table for concurrent
228   // patching.
229   void PatchAndJump(Address target);
230   void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS);
231   void Jump(const ExternalReference& reference) override;
232   void Call(Register target, COND_ARGS);
233   void Call(Address target, RelocInfo::Mode rmode, COND_ARGS);
234   void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
235             COND_ARGS);
236   void Call(Label* target);
237   void LoadAddress(Register dst, Label* target);
238 
239   // Load the builtin given by the Smi in |builtin_index| into the same
240   // register.
241   void LoadEntryFromBuiltinIndex(Register builtin_index);
242   void CallBuiltinByIndex(Register builtin_index) override;
243 
LoadCodeObjectEntry(Register destination,Register code_object)244   void LoadCodeObjectEntry(Register destination,
245                            Register code_object) override {
246     // TODO(mips): Implement.
247     UNIMPLEMENTED();
248   }
CallCodeObject(Register code_object)249   void CallCodeObject(Register code_object) override {
250     // TODO(mips): Implement.
251     UNIMPLEMENTED();
252   }
JumpCodeObject(Register code_object)253   void JumpCodeObject(Register code_object) override {
254     // TODO(mips): Implement.
255     UNIMPLEMENTED();
256   }
257 
258   // Generates an instruction sequence s.t. the return address points to the
259   // instruction following the call.
260   // The return address on the stack is used by frame iteration.
261   void StoreReturnAddressAndCall(Register target);
262 
263   void CallForDeoptimization(Builtins::Name target, int deopt_id, Label* exit,
264                              DeoptimizeKind kind,
265                              Label* jump_deoptimization_entry_label);
266 
267   void Ret(COND_ARGS);
268   inline void Ret(BranchDelaySlot bd, Condition cond = al,
269                   Register rs = zero_reg,
270                   const Operand& rt = Operand(zero_reg)) {
271     Ret(cond, rs, rt, bd);
272   }
273 
274   // Emit code to discard a non-negative number of pointer-sized elements
275   // from the stack, clobbering only the sp register.
276   void Drop(int count, Condition cond = cc_always, Register reg = no_reg,
277             const Operand& op = Operand(no_reg));
278 
279   // Trivial case of DropAndRet that utilizes the delay slot.
280   void DropAndRet(int drop);
281 
282   void DropAndRet(int drop, Condition cond, Register reg, const Operand& op);
283 
284   void Ld(Register rd, const MemOperand& rs);
285   void Sd(Register rd, const MemOperand& rs);
286 
push(Register src)287   void push(Register src) {
288     Daddu(sp, sp, Operand(-kPointerSize));
289     Sd(src, MemOperand(sp, 0));
290   }
Push(Register src)291   void Push(Register src) { push(src); }
292   void Push(Handle<HeapObject> handle);
293   void Push(Smi smi);
294 
295   // Push two registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2)296   void Push(Register src1, Register src2) {
297     Dsubu(sp, sp, Operand(2 * kPointerSize));
298     Sd(src1, MemOperand(sp, 1 * kPointerSize));
299     Sd(src2, MemOperand(sp, 0 * kPointerSize));
300   }
301 
302   // Push three registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3)303   void Push(Register src1, Register src2, Register src3) {
304     Dsubu(sp, sp, Operand(3 * kPointerSize));
305     Sd(src1, MemOperand(sp, 2 * kPointerSize));
306     Sd(src2, MemOperand(sp, 1 * kPointerSize));
307     Sd(src3, MemOperand(sp, 0 * kPointerSize));
308   }
309 
310   // Push four registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3,Register src4)311   void Push(Register src1, Register src2, Register src3, Register src4) {
312     Dsubu(sp, sp, Operand(4 * kPointerSize));
313     Sd(src1, MemOperand(sp, 3 * kPointerSize));
314     Sd(src2, MemOperand(sp, 2 * kPointerSize));
315     Sd(src3, MemOperand(sp, 1 * kPointerSize));
316     Sd(src4, MemOperand(sp, 0 * kPointerSize));
317   }
318 
319   // Push five registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3,Register src4,Register src5)320   void Push(Register src1, Register src2, Register src3, Register src4,
321             Register src5) {
322     Dsubu(sp, sp, Operand(5 * kPointerSize));
323     Sd(src1, MemOperand(sp, 4 * kPointerSize));
324     Sd(src2, MemOperand(sp, 3 * kPointerSize));
325     Sd(src3, MemOperand(sp, 2 * kPointerSize));
326     Sd(src4, MemOperand(sp, 1 * kPointerSize));
327     Sd(src5, MemOperand(sp, 0 * kPointerSize));
328   }
329 
Push(Register src,Condition cond,Register tst1,Register tst2)330   void Push(Register src, Condition cond, Register tst1, Register tst2) {
331     // Since we don't have conditional execution we use a Branch.
332     Branch(3, cond, tst1, Operand(tst2));
333     Dsubu(sp, sp, Operand(kPointerSize));
334     Sd(src, MemOperand(sp, 0));
335   }
336 
337   enum PushArrayOrder { kNormal, kReverse };
338   void PushArray(Register array, Register size, Register scratch,
339                  Register scratch2, PushArrayOrder order = kNormal);
340 
341   void SaveRegisters(RegList registers);
342   void RestoreRegisters(RegList registers);
343 
344   void CallRecordWriteStub(Register object, Register address,
345                            RememberedSetAction remembered_set_action,
346                            SaveFPRegsMode fp_mode);
347   void CallRecordWriteStub(Register object, Register address,
348                            RememberedSetAction remembered_set_action,
349                            SaveFPRegsMode fp_mode, Address wasm_target);
350   void CallEphemeronKeyBarrier(Register object, Register address,
351                                SaveFPRegsMode fp_mode);
352 
353   // Push multiple registers on the stack.
354   // Registers are saved in numerical order, with higher numbered registers
355   // saved in higher memory addresses.
356   void MultiPush(RegList regs);
357   void MultiPushFPU(RegList regs);
358 
359   // Calculate how much stack space (in bytes) are required to store caller
360   // registers excluding those specified in the arguments.
361   int RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,
362                                       Register exclusion1 = no_reg,
363                                       Register exclusion2 = no_reg,
364                                       Register exclusion3 = no_reg) const;
365 
366   // Push caller saved registers on the stack, and return the number of bytes
367   // stack pointer is adjusted.
368   int PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
369                       Register exclusion2 = no_reg,
370                       Register exclusion3 = no_reg);
371   // Restore caller saved registers from the stack, and return the number of
372   // bytes stack pointer is adjusted.
373   int PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
374                      Register exclusion2 = no_reg,
375                      Register exclusion3 = no_reg);
376 
pop(Register dst)377   void pop(Register dst) {
378     Ld(dst, MemOperand(sp, 0));
379     Daddu(sp, sp, Operand(kPointerSize));
380   }
Pop(Register dst)381   void Pop(Register dst) { pop(dst); }
382 
383   // Pop two registers. Pops rightmost register first (from lower address).
Pop(Register src1,Register src2)384   void Pop(Register src1, Register src2) {
385     DCHECK(src1 != src2);
386     Ld(src2, MemOperand(sp, 0 * kPointerSize));
387     Ld(src1, MemOperand(sp, 1 * kPointerSize));
388     Daddu(sp, sp, 2 * kPointerSize);
389   }
390 
391   // Pop three registers. Pops rightmost register first (from lower address).
Pop(Register src1,Register src2,Register src3)392   void Pop(Register src1, Register src2, Register src3) {
393     Ld(src3, MemOperand(sp, 0 * kPointerSize));
394     Ld(src2, MemOperand(sp, 1 * kPointerSize));
395     Ld(src1, MemOperand(sp, 2 * kPointerSize));
396     Daddu(sp, sp, 3 * kPointerSize);
397   }
398 
399   void Pop(uint32_t count = 1) { Daddu(sp, sp, Operand(count * kPointerSize)); }
400 
401   // Pops multiple values from the stack and load them in the
402   // registers specified in regs. Pop order is the opposite as in MultiPush.
403   void MultiPop(RegList regs);
404   void MultiPopFPU(RegList regs);
405 
406 #define DEFINE_INSTRUCTION(instr)                          \
407   void instr(Register rd, Register rs, const Operand& rt); \
408   void instr(Register rd, Register rs, Register rt) {      \
409     instr(rd, rs, Operand(rt));                            \
410   }                                                        \
411   void instr(Register rs, Register rt, int32_t j) { instr(rs, rt, Operand(j)); }
412 
413 #define DEFINE_INSTRUCTION2(instr)                                 \
414   void instr(Register rs, const Operand& rt);                      \
415   void instr(Register rs, Register rt) { instr(rs, Operand(rt)); } \
416   void instr(Register rs, int32_t j) { instr(rs, Operand(j)); }
417 
418   DEFINE_INSTRUCTION(Addu)
419   DEFINE_INSTRUCTION(Daddu)
420   DEFINE_INSTRUCTION(Div)
421   DEFINE_INSTRUCTION(Divu)
422   DEFINE_INSTRUCTION(Ddivu)
423   DEFINE_INSTRUCTION(Mod)
424   DEFINE_INSTRUCTION(Modu)
425   DEFINE_INSTRUCTION(Ddiv)
426   DEFINE_INSTRUCTION(Subu)
427   DEFINE_INSTRUCTION(Dsubu)
428   DEFINE_INSTRUCTION(Dmod)
429   DEFINE_INSTRUCTION(Dmodu)
430   DEFINE_INSTRUCTION(Mul)
431   DEFINE_INSTRUCTION(Mulh)
432   DEFINE_INSTRUCTION(Mulhu)
433   DEFINE_INSTRUCTION(Dmul)
434   DEFINE_INSTRUCTION(Dmulh)
435   DEFINE_INSTRUCTION2(Mult)
436   DEFINE_INSTRUCTION2(Dmult)
437   DEFINE_INSTRUCTION2(Multu)
438   DEFINE_INSTRUCTION2(Dmultu)
439   DEFINE_INSTRUCTION2(Div)
440   DEFINE_INSTRUCTION2(Ddiv)
441   DEFINE_INSTRUCTION2(Divu)
442   DEFINE_INSTRUCTION2(Ddivu)
443 
444   DEFINE_INSTRUCTION(And)
445   DEFINE_INSTRUCTION(Or)
446   DEFINE_INSTRUCTION(Xor)
447   DEFINE_INSTRUCTION(Nor)
448   DEFINE_INSTRUCTION2(Neg)
449 
450   DEFINE_INSTRUCTION(Slt)
451   DEFINE_INSTRUCTION(Sltu)
452   DEFINE_INSTRUCTION(Sle)
453   DEFINE_INSTRUCTION(Sleu)
454   DEFINE_INSTRUCTION(Sgt)
455   DEFINE_INSTRUCTION(Sgtu)
456   DEFINE_INSTRUCTION(Sge)
457   DEFINE_INSTRUCTION(Sgeu)
458 
459   // MIPS32 R2 instruction macro.
460   DEFINE_INSTRUCTION(Ror)
461   DEFINE_INSTRUCTION(Dror)
462 
463 #undef DEFINE_INSTRUCTION
464 #undef DEFINE_INSTRUCTION2
465 #undef DEFINE_INSTRUCTION3
466 
467   void SmiUntag(Register dst, const MemOperand& src);
SmiUntag(Register dst,Register src)468   void SmiUntag(Register dst, Register src) {
469     if (SmiValuesAre32Bits()) {
470       dsra32(dst, src, kSmiShift - 32);
471     } else {
472       DCHECK(SmiValuesAre31Bits());
473       sra(dst, src, kSmiShift);
474     }
475   }
476 
SmiUntag(Register reg)477   void SmiUntag(Register reg) { SmiUntag(reg, reg); }
478 
479   // Removes current frame and its arguments from the stack preserving
480   // the arguments and a return address pushed to the stack for the next call.
481   // Both |callee_args_count| and |caller_args_count| do not include
482   // receiver. |callee_args_count| is not modified. |caller_args_count|
483   // is trashed.
484   void PrepareForTailCall(Register callee_args_count,
485                           Register caller_args_count, Register scratch0,
486                           Register scratch1);
487 
488   int CalculateStackPassedWords(int num_reg_arguments,
489                                 int num_double_arguments);
490 
491   // Before calling a C-function from generated code, align arguments on stack
492   // and add space for the four mips argument slots.
493   // After aligning the frame, non-register arguments must be stored on the
494   // stack, after the argument-slots using helper: CFunctionArgumentOperand().
495   // The argument count assumes all arguments are word sized.
496   // Some compilers/platforms require the stack to be aligned when calling
497   // C++ code.
498   // Needs a scratch register to do some arithmetic. This register will be
499   // trashed.
500   void PrepareCallCFunction(int num_reg_arguments, int num_double_registers,
501                             Register scratch);
502   void PrepareCallCFunction(int num_reg_arguments, Register scratch);
503 
504   // Arguments 1-4 are placed in registers a0 through a3 respectively.
505   // Arguments 5..n are stored to stack using following:
506   //  Sw(a4, CFunctionArgumentOperand(5));
507 
508   // Calls a C function and cleans up the space for arguments allocated
509   // by PrepareCallCFunction. The called function is not allowed to trigger a
510   // garbage collection, since that might move the code and invalidate the
511   // return address (unless this is somehow accounted for by the called
512   // function).
513   void CallCFunction(ExternalReference function, int num_arguments);
514   void CallCFunction(Register function, int num_arguments);
515   void CallCFunction(ExternalReference function, int num_reg_arguments,
516                      int num_double_arguments);
517   void CallCFunction(Register function, int num_reg_arguments,
518                      int num_double_arguments);
519   void MovFromFloatResult(DoubleRegister dst);
520   void MovFromFloatParameter(DoubleRegister dst);
521 
522   // There are two ways of passing double arguments on MIPS, depending on
523   // whether soft or hard floating point ABI is used. These functions
524   // abstract parameter passing for the three different ways we call
525   // C functions from generated code.
526   void MovToFloatParameter(DoubleRegister src);
527   void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
528   void MovToFloatResult(DoubleRegister src);
529 
530   // See comments at the beginning of Builtins::Generate_CEntry.
PrepareCEntryArgs(int num_args)531   inline void PrepareCEntryArgs(int num_args) { li(a0, num_args); }
PrepareCEntryFunction(const ExternalReference & ref)532   inline void PrepareCEntryFunction(const ExternalReference& ref) {
533     li(a1, ref);
534   }
535 
536   void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
537                      Label* condition_met);
538 #undef COND_ARGS
539 
540   // Performs a truncating conversion of a floating point number as used by
541   // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
542   // Exits with 'result' holding the answer.
543   void TruncateDoubleToI(Isolate* isolate, Zone* zone, Register result,
544                          DoubleRegister double_input, StubCallMode stub_mode);
545 
546   // Conditional move.
547   void Movz(Register rd, Register rs, Register rt);
548   void Movn(Register rd, Register rs, Register rt);
549   void Movt(Register rd, Register rs, uint16_t cc = 0);
550   void Movf(Register rd, Register rs, uint16_t cc = 0);
551 
552   void LoadZeroIfFPUCondition(Register dest);
553   void LoadZeroIfNotFPUCondition(Register dest);
554 
555   void LoadZeroIfConditionNotZero(Register dest, Register condition);
556   void LoadZeroIfConditionZero(Register dest, Register condition);
557   void LoadZeroOnCondition(Register rd, Register rs, const Operand& rt,
558                            Condition cond);
559 
560   void Clz(Register rd, Register rs);
561   void Dclz(Register rd, Register rs);
562   void Ctz(Register rd, Register rs);
563   void Dctz(Register rd, Register rs);
564   void Popcnt(Register rd, Register rs);
565   void Dpopcnt(Register rd, Register rs);
566 
567   // MIPS64 R2 instruction macro.
568   void Ext(Register rt, Register rs, uint16_t pos, uint16_t size);
569   void Dext(Register rt, Register rs, uint16_t pos, uint16_t size);
570   void Ins(Register rt, Register rs, uint16_t pos, uint16_t size);
571   void Dins(Register rt, Register rs, uint16_t pos, uint16_t size);
572   void ExtractBits(Register dest, Register source, Register pos, int size,
573                    bool sign_extend = false);
574   void InsertBits(Register dest, Register source, Register pos, int size);
575   void Neg_s(FPURegister fd, FPURegister fs);
576   void Neg_d(FPURegister fd, FPURegister fs);
577 
578   // MIPS64 R6 instruction macros.
579   void Bovc(Register rt, Register rs, Label* L);
580   void Bnvc(Register rt, Register rs, Label* L);
581 
582   // Convert single to unsigned word.
583   void Trunc_uw_s(FPURegister fd, FPURegister fs, FPURegister scratch);
584   void Trunc_uw_s(Register rd, FPURegister fs, FPURegister scratch);
585 
586   // Change endianness
587   void ByteSwapSigned(Register dest, Register src, int operand_size);
588   void ByteSwapUnsigned(Register dest, Register src, int operand_size);
589 
590   void Ulh(Register rd, const MemOperand& rs);
591   void Ulhu(Register rd, const MemOperand& rs);
592   void Ush(Register rd, const MemOperand& rs, Register scratch);
593 
594   void Ulw(Register rd, const MemOperand& rs);
595   void Ulwu(Register rd, const MemOperand& rs);
596   void Usw(Register rd, const MemOperand& rs);
597 
598   void Uld(Register rd, const MemOperand& rs);
599   void Usd(Register rd, const MemOperand& rs);
600 
601   void Ulwc1(FPURegister fd, const MemOperand& rs, Register scratch);
602   void Uswc1(FPURegister fd, const MemOperand& rs, Register scratch);
603 
604   void Uldc1(FPURegister fd, const MemOperand& rs, Register scratch);
605   void Usdc1(FPURegister fd, const MemOperand& rs, Register scratch);
606 
607   void Lb(Register rd, const MemOperand& rs);
608   void Lbu(Register rd, const MemOperand& rs);
609   void Sb(Register rd, const MemOperand& rs);
610 
611   void Lh(Register rd, const MemOperand& rs);
612   void Lhu(Register rd, const MemOperand& rs);
613   void Sh(Register rd, const MemOperand& rs);
614 
615   void Lw(Register rd, const MemOperand& rs);
616   void Lwu(Register rd, const MemOperand& rs);
617   void Sw(Register rd, const MemOperand& rs);
618 
619   void Lwc1(FPURegister fd, const MemOperand& src);
620   void Swc1(FPURegister fs, const MemOperand& dst);
621 
622   void Ldc1(FPURegister fd, const MemOperand& src);
623   void Sdc1(FPURegister fs, const MemOperand& dst);
624 
625   void Ll(Register rd, const MemOperand& rs);
626   void Sc(Register rd, const MemOperand& rs);
627 
628   void Lld(Register rd, const MemOperand& rs);
629   void Scd(Register rd, const MemOperand& rs);
630 
631   // Perform a floating-point min or max operation with the
632   // (IEEE-754-compatible) semantics of MIPS32's Release 6 MIN.fmt/MAX.fmt.
633   // Some cases, typically NaNs or +/-0.0, are expected to be rare and are
634   // handled in out-of-line code. The specific behaviour depends on supported
635   // instructions.
636   //
637   // These functions assume (and assert) that src1!=src2. It is permitted
638   // for the result to alias either input register.
639   void Float32Max(FPURegister dst, FPURegister src1, FPURegister src2,
640                   Label* out_of_line);
641   void Float32Min(FPURegister dst, FPURegister src1, FPURegister src2,
642                   Label* out_of_line);
643   void Float64Max(FPURegister dst, FPURegister src1, FPURegister src2,
644                   Label* out_of_line);
645   void Float64Min(FPURegister dst, FPURegister src1, FPURegister src2,
646                   Label* out_of_line);
647 
648   // Generate out-of-line cases for the macros above.
649   void Float32MaxOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2);
650   void Float32MinOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2);
651   void Float64MaxOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2);
652   void Float64MinOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2);
653 
IsDoubleZeroRegSet()654   bool IsDoubleZeroRegSet() { return has_double_zero_reg_set_; }
655 
mov(Register rd,Register rt)656   void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); }
657 
Move(Register dst,Handle<HeapObject> handle)658   inline void Move(Register dst, Handle<HeapObject> handle) { li(dst, handle); }
Move(Register dst,Smi smi)659   inline void Move(Register dst, Smi smi) { li(dst, Operand(smi)); }
660 
Move(Register dst,Register src)661   inline void Move(Register dst, Register src) {
662     if (dst != src) {
663       mov(dst, src);
664     }
665   }
666 
Move(FPURegister dst,FPURegister src)667   inline void Move(FPURegister dst, FPURegister src) { Move_d(dst, src); }
668 
Move(Register dst_low,Register dst_high,FPURegister src)669   inline void Move(Register dst_low, Register dst_high, FPURegister src) {
670     mfc1(dst_low, src);
671     mfhc1(dst_high, src);
672   }
673 
Move(Register dst,FPURegister src)674   inline void Move(Register dst, FPURegister src) { dmfc1(dst, src); }
675 
Move(FPURegister dst,Register src)676   inline void Move(FPURegister dst, Register src) { dmtc1(src, dst); }
677 
FmoveHigh(Register dst_high,FPURegister src)678   inline void FmoveHigh(Register dst_high, FPURegister src) {
679     mfhc1(dst_high, src);
680   }
681 
FmoveHigh(FPURegister dst,Register src_high)682   inline void FmoveHigh(FPURegister dst, Register src_high) {
683     mthc1(src_high, dst);
684   }
685 
FmoveLow(Register dst_low,FPURegister src)686   inline void FmoveLow(Register dst_low, FPURegister src) {
687     mfc1(dst_low, src);
688   }
689 
690   void FmoveLow(FPURegister dst, Register src_low);
691 
Move(FPURegister dst,Register src_low,Register src_high)692   inline void Move(FPURegister dst, Register src_low, Register src_high) {
693     mtc1(src_low, dst);
694     mthc1(src_high, dst);
695   }
696 
Move_d(FPURegister dst,FPURegister src)697   inline void Move_d(FPURegister dst, FPURegister src) {
698     if (dst != src) {
699       mov_d(dst, src);
700     }
701   }
702 
Move_s(FPURegister dst,FPURegister src)703   inline void Move_s(FPURegister dst, FPURegister src) {
704     if (dst != src) {
705       mov_s(dst, src);
706     }
707   }
708 
Move(FPURegister dst,float imm)709   void Move(FPURegister dst, float imm) { Move(dst, bit_cast<uint32_t>(imm)); }
Move(FPURegister dst,double imm)710   void Move(FPURegister dst, double imm) { Move(dst, bit_cast<uint64_t>(imm)); }
711   void Move(FPURegister dst, uint32_t src);
712   void Move(FPURegister dst, uint64_t src);
713 
714   // DaddOverflow sets overflow register to a negative value if
715   // overflow occured, otherwise it is zero or positive
716   void DaddOverflow(Register dst, Register left, const Operand& right,
717                     Register overflow);
718   // DsubOverflow sets overflow register to a negative value if
719   // overflow occured, otherwise it is zero or positive
720   void DsubOverflow(Register dst, Register left, const Operand& right,
721                     Register overflow);
722   // MulOverflow sets overflow register to zero if no overflow occured
723   void MulOverflow(Register dst, Register left, const Operand& right,
724                    Register overflow);
725 
726 // Number of instructions needed for calculation of switch table entry address
727 #ifdef _MIPS_ARCH_MIPS64R6
728   static const int kSwitchTablePrologueSize = 6;
729 #else
730   static const int kSwitchTablePrologueSize = 11;
731 #endif
732 
733   // GetLabelFunction must be lambda '[](size_t index) -> Label*' or a
734   // functor/function with 'Label *func(size_t index)' declaration.
735   template <typename Func>
736   void GenerateSwitchTable(Register index, size_t case_count,
737                            Func GetLabelFunction);
738 
739   // Load an object from the root table.
740   void LoadRoot(Register destination, RootIndex index) override;
741   void LoadRoot(Register destination, RootIndex index, Condition cond,
742                 Register src1, const Operand& src2);
743 
744   // If the value is a NaN, canonicalize the value else, do nothing.
745   void FPUCanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
746 
747   // ---------------------------------------------------------------------------
748   // FPU macros. These do not handle special cases like NaN or +- inf.
749 
750   // Convert unsigned word to double.
751   void Cvt_d_uw(FPURegister fd, FPURegister fs);
752   void Cvt_d_uw(FPURegister fd, Register rs);
753 
754   // Convert unsigned long to double.
755   void Cvt_d_ul(FPURegister fd, FPURegister fs);
756   void Cvt_d_ul(FPURegister fd, Register rs);
757 
758   // Convert unsigned word to float.
759   void Cvt_s_uw(FPURegister fd, FPURegister fs);
760   void Cvt_s_uw(FPURegister fd, Register rs);
761 
762   // Convert unsigned long to float.
763   void Cvt_s_ul(FPURegister fd, FPURegister fs);
764   void Cvt_s_ul(FPURegister fd, Register rs);
765 
766   // Convert double to unsigned word.
767   void Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch);
768   void Trunc_uw_d(Register rd, FPURegister fs, FPURegister scratch);
769 
770   // Convert double to unsigned long.
771   void Trunc_ul_d(FPURegister fd, FPURegister fs, FPURegister scratch,
772                   Register result = no_reg);
773   void Trunc_ul_d(Register rd, FPURegister fs, FPURegister scratch,
774                   Register result = no_reg);
775 
776   // Convert single to unsigned long.
777   void Trunc_ul_s(FPURegister fd, FPURegister fs, FPURegister scratch,
778                   Register result = no_reg);
779   void Trunc_ul_s(Register rd, FPURegister fs, FPURegister scratch,
780                   Register result = no_reg);
781 
782   // Round double functions
783   void Trunc_d_d(FPURegister fd, FPURegister fs);
784   void Round_d_d(FPURegister fd, FPURegister fs);
785   void Floor_d_d(FPURegister fd, FPURegister fs);
786   void Ceil_d_d(FPURegister fd, FPURegister fs);
787 
788   // Round float functions
789   void Trunc_s_s(FPURegister fd, FPURegister fs);
790   void Round_s_s(FPURegister fd, FPURegister fs);
791   void Floor_s_s(FPURegister fd, FPURegister fs);
792   void Ceil_s_s(FPURegister fd, FPURegister fs);
793 
794   void MSARoundW(MSARegister dst, MSARegister src, FPURoundingMode mode);
795   void MSARoundD(MSARegister dst, MSARegister src, FPURoundingMode mode);
796 
797   // Jump the register contains a smi.
798   void JumpIfSmi(Register value, Label* smi_label, Register scratch = at,
799                  BranchDelaySlot bd = PROTECT);
800 
JumpIfEqual(Register a,int32_t b,Label * dest)801   void JumpIfEqual(Register a, int32_t b, Label* dest) {
802     li(kScratchReg, Operand(b));
803     Branch(dest, eq, a, Operand(kScratchReg));
804   }
805 
JumpIfLessThan(Register a,int32_t b,Label * dest)806   void JumpIfLessThan(Register a, int32_t b, Label* dest) {
807     li(kScratchReg, Operand(b));
808     Branch(dest, lt, a, Operand(kScratchReg));
809   }
810 
811   // Push a standard frame, consisting of ra, fp, context and JS function.
812   void PushStandardFrame(Register function_reg);
813 
814   // Get the actual activation frame alignment for target environment.
815   static int ActivationFrameAlignment();
816 
817   // Load Scaled Address instructions. Parameter sa (shift argument) must be
818   // between [1, 31] (inclusive). On pre-r6 architectures the scratch register
819   // may be clobbered.
820   void Lsa(Register rd, Register rs, Register rt, uint8_t sa,
821            Register scratch = at);
822   void Dlsa(Register rd, Register rs, Register rt, uint8_t sa,
823             Register scratch = at);
824 
825   // Compute the start of the generated instruction stream from the current PC.
826   // This is an alternative to embedding the {CodeObject} handle as a reference.
827   void ComputeCodeStartAddress(Register dst);
828 
829   void ResetSpeculationPoisonRegister();
830 
831   // Control-flow integrity:
832 
833   // Define a function entrypoint. This doesn't emit any code for this
834   // architecture, as control-flow integrity is not supported for it.
CodeEntry()835   void CodeEntry() {}
836   // Define an exception handler.
ExceptionHandler()837   void ExceptionHandler() {}
838   // Define an exception handler and bind a label.
BindExceptionHandler(Label * label)839   void BindExceptionHandler(Label* label) { bind(label); }
840 
841  protected:
842   inline Register GetRtAsRegisterHelper(const Operand& rt, Register scratch);
843   inline int32_t GetOffset(int32_t offset, Label* L, OffsetSize bits);
844 
845  private:
846   bool has_double_zero_reg_set_ = false;
847 
848   // Performs a truncating conversion of a floating point number as used by
849   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
850   // succeeds, otherwise falls through if result is saturated. On return
851   // 'result' either holds answer, or is clobbered on fall through.
852   void TryInlineTruncateDoubleToI(Register result, DoubleRegister input,
853                                   Label* done);
854 
855   void CompareF(SecondaryField sizeField, FPUCondition cc, FPURegister cmp1,
856                 FPURegister cmp2);
857 
858   void CompareIsNanF(SecondaryField sizeField, FPURegister cmp1,
859                      FPURegister cmp2);
860 
861   void BranchShortMSA(MSABranchDF df, Label* target, MSABranchCondition cond,
862                       MSARegister wt, BranchDelaySlot bd = PROTECT);
863 
864   void CallCFunctionHelper(Register function, int num_reg_arguments,
865                            int num_double_arguments);
866 
867   // TODO(mips) Reorder parameters so out parameters come last.
868   bool CalculateOffset(Label* L, int32_t* offset, OffsetSize bits);
869   bool CalculateOffset(Label* L, int32_t* offset, OffsetSize bits,
870                        Register* scratch, const Operand& rt);
871 
872   void BranchShortHelperR6(int32_t offset, Label* L);
873   void BranchShortHelper(int16_t offset, Label* L, BranchDelaySlot bdslot);
874   bool BranchShortHelperR6(int32_t offset, Label* L, Condition cond,
875                            Register rs, const Operand& rt);
876   bool BranchShortHelper(int16_t offset, Label* L, Condition cond, Register rs,
877                          const Operand& rt, BranchDelaySlot bdslot);
878   bool BranchShortCheck(int32_t offset, Label* L, Condition cond, Register rs,
879                         const Operand& rt, BranchDelaySlot bdslot);
880 
881   void BranchAndLinkShortHelperR6(int32_t offset, Label* L);
882   void BranchAndLinkShortHelper(int16_t offset, Label* L,
883                                 BranchDelaySlot bdslot);
884   void BranchAndLinkShort(int32_t offset, BranchDelaySlot bdslot = PROTECT);
885   void BranchAndLinkShort(Label* L, BranchDelaySlot bdslot = PROTECT);
886   bool BranchAndLinkShortHelperR6(int32_t offset, Label* L, Condition cond,
887                                   Register rs, const Operand& rt);
888   bool BranchAndLinkShortHelper(int16_t offset, Label* L, Condition cond,
889                                 Register rs, const Operand& rt,
890                                 BranchDelaySlot bdslot);
891   bool BranchAndLinkShortCheck(int32_t offset, Label* L, Condition cond,
892                                Register rs, const Operand& rt,
893                                BranchDelaySlot bdslot);
894   void BranchLong(Label* L, BranchDelaySlot bdslot);
895   void BranchAndLinkLong(Label* L, BranchDelaySlot bdslot);
896 
897   template <typename RoundFunc>
898   void RoundDouble(FPURegister dst, FPURegister src, FPURoundingMode mode,
899                    RoundFunc round);
900 
901   template <typename RoundFunc>
902   void RoundFloat(FPURegister dst, FPURegister src, FPURoundingMode mode,
903                   RoundFunc round);
904 
905   // Push a fixed frame, consisting of ra, fp.
906   void PushCommonFrame(Register marker_reg = no_reg);
907 
908   void CallRecordWriteStub(Register object, Register address,
909                            RememberedSetAction remembered_set_action,
910                            SaveFPRegsMode fp_mode, Handle<Code> code_target,
911                            Address wasm_target);
912 };
913 
914 // MacroAssembler implements a collection of frequently used macros.
915 class V8_EXPORT_PRIVATE MacroAssembler : public TurboAssembler {
916  public:
917   using TurboAssembler::TurboAssembler;
918 
919   // It assumes that the arguments are located below the stack pointer.
920   // argc is the number of arguments not including the receiver.
921   // TODO(victorgomes): Remove this function once we stick with the reversed
922   // arguments order.
LoadReceiver(Register dest,Register argc)923   void LoadReceiver(Register dest, Register argc) {
924     Ld(dest, MemOperand(sp, 0));
925   }
926 
StoreReceiver(Register rec,Register argc,Register scratch)927   void StoreReceiver(Register rec, Register argc, Register scratch) {
928     Sd(rec, MemOperand(sp, 0));
929   }
930 
931   bool IsNear(Label* L, Condition cond, int rs_reg);
932 
933   // Swap two registers.  If the scratch register is omitted then a slightly
934   // less efficient form using xor instead of mov is emitted.
935   void Swap(Register reg1, Register reg2, Register scratch = no_reg);
936 
PushRoot(RootIndex index)937   void PushRoot(RootIndex index) {
938     UseScratchRegisterScope temps(this);
939     Register scratch = temps.Acquire();
940     LoadRoot(scratch, index);
941     Push(scratch);
942   }
943 
944   // Compare the object in a register to a value and jump if they are equal.
JumpIfRoot(Register with,RootIndex index,Label * if_equal)945   void JumpIfRoot(Register with, RootIndex index, Label* if_equal) {
946     UseScratchRegisterScope temps(this);
947     Register scratch = temps.Acquire();
948     LoadRoot(scratch, index);
949     Branch(if_equal, eq, with, Operand(scratch));
950   }
951 
952   // Compare the object in a register to a value and jump if they are not equal.
JumpIfNotRoot(Register with,RootIndex index,Label * if_not_equal)953   void JumpIfNotRoot(Register with, RootIndex index, Label* if_not_equal) {
954     UseScratchRegisterScope temps(this);
955     Register scratch = temps.Acquire();
956     LoadRoot(scratch, index);
957     Branch(if_not_equal, ne, with, Operand(scratch));
958   }
959 
960   // Checks if value is in range [lower_limit, higher_limit] using a single
961   // comparison.
962   void JumpIfIsInRange(Register value, unsigned lower_limit,
963                        unsigned higher_limit, Label* on_in_range);
964 
965   // ---------------------------------------------------------------------------
966   // GC Support
967 
968   // Notify the garbage collector that we wrote a pointer into an object.
969   // |object| is the object being stored into, |value| is the object being
970   // stored.  value and scratch registers are clobbered by the operation.
971   // The offset is the offset from the start of the object, not the offset from
972   // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
973   void RecordWriteField(
974       Register object, int offset, Register value, Register scratch,
975       RAStatus ra_status, SaveFPRegsMode save_fp,
976       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
977       SmiCheck smi_check = INLINE_SMI_CHECK);
978 
979   // For a given |object| notify the garbage collector that the slot |address|
980   // has been written.  |value| is the object being stored. The value and
981   // address registers are clobbered by the operation.
982   void RecordWrite(
983       Register object, Register address, Register value, RAStatus ra_status,
984       SaveFPRegsMode save_fp,
985       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
986       SmiCheck smi_check = INLINE_SMI_CHECK);
987 
988   void Pref(int32_t hint, const MemOperand& rs);
989 
990   // ---------------------------------------------------------------------------
991   // Pseudo-instructions.
992 
993   void LoadWordPair(Register rd, const MemOperand& rs, Register scratch = at);
994   void StoreWordPair(Register rd, const MemOperand& rs, Register scratch = at);
995 
996   // Convert double to unsigned long.
997   void Trunc_l_ud(FPURegister fd, FPURegister fs, FPURegister scratch);
998 
999   void Trunc_l_d(FPURegister fd, FPURegister fs);
1000   void Round_l_d(FPURegister fd, FPURegister fs);
1001   void Floor_l_d(FPURegister fd, FPURegister fs);
1002   void Ceil_l_d(FPURegister fd, FPURegister fs);
1003 
1004   void Trunc_w_d(FPURegister fd, FPURegister fs);
1005   void Round_w_d(FPURegister fd, FPURegister fs);
1006   void Floor_w_d(FPURegister fd, FPURegister fs);
1007   void Ceil_w_d(FPURegister fd, FPURegister fs);
1008 
1009   void Madd_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
1010               FPURegister scratch);
1011   void Madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
1012               FPURegister scratch);
1013   void Msub_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
1014               FPURegister scratch);
1015   void Msub_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
1016               FPURegister scratch);
1017 
1018   void BranchShortMSA(MSABranchDF df, Label* target, MSABranchCondition cond,
1019                       MSARegister wt, BranchDelaySlot bd = PROTECT);
1020 
1021   // Truncates a double using a specific rounding mode, and writes the value
1022   // to the result register.
1023   // The except_flag will contain any exceptions caused by the instruction.
1024   // If check_inexact is kDontCheckForInexactConversion, then the inexact
1025   // exception is masked.
1026   void EmitFPUTruncate(
1027       FPURoundingMode rounding_mode, Register result,
1028       DoubleRegister double_input, Register scratch,
1029       DoubleRegister double_scratch, Register except_flag,
1030       CheckForInexactConversion check_inexact = kDontCheckForInexactConversion);
1031 
1032   // Enter exit frame.
1033   // argc - argument count to be dropped by LeaveExitFrame.
1034   // save_doubles - saves FPU registers on stack, currently disabled.
1035   // stack_space - extra stack space.
1036   void EnterExitFrame(bool save_doubles, int stack_space = 0,
1037                       StackFrame::Type frame_type = StackFrame::EXIT);
1038 
1039   // Leave the current exit frame.
1040   void LeaveExitFrame(bool save_doubles, Register arg_count,
1041                       bool do_return = NO_EMIT_RETURN,
1042                       bool argument_count_is_length = false);
1043 
1044   void LoadMap(Register destination, Register object);
1045 
1046   // Make sure the stack is aligned. Only emits code in debug mode.
1047   void AssertStackIsAligned();
1048 
1049   // Load the global proxy from the current context.
LoadGlobalProxy(Register dst)1050   void LoadGlobalProxy(Register dst) {
1051     LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
1052   }
1053 
1054   void LoadNativeContextSlot(int index, Register dst);
1055 
1056   // Load the initial map from the global function. The registers
1057   // function and map can be the same, function is then overwritten.
1058   void LoadGlobalFunctionInitialMap(Register function, Register map,
1059                                     Register scratch);
1060 
1061   // -------------------------------------------------------------------------
1062   // JavaScript invokes.
1063 
1064   // Invoke the JavaScript function code by either calling or jumping.
1065   void InvokeFunctionCode(Register function, Register new_target,
1066                           Register expected_parameter_count,
1067                           Register actual_parameter_count, InvokeFlag flag);
1068 
1069   // On function call, call into the debugger if necessary.
1070   void CheckDebugHook(Register fun, Register new_target,
1071                       Register expected_parameter_count,
1072                       Register actual_parameter_count);
1073 
1074   // Invoke the JavaScript function in the given register. Changes the
1075   // current context to the context in the function before invoking.
1076   void InvokeFunctionWithNewTarget(Register function, Register new_target,
1077                                    Register actual_parameter_count,
1078                                    InvokeFlag flag);
1079   void InvokeFunction(Register function, Register expected_parameter_count,
1080                       Register actual_parameter_count, InvokeFlag flag);
1081 
1082   // Frame restart support.
1083   void MaybeDropFrames();
1084 
1085   // Exception handling.
1086 
1087   // Push a new stack handler and link into stack handler chain.
1088   void PushStackHandler();
1089 
1090   // Unlink the stack handler on top of the stack from the stack handler chain.
1091   // Must preserve the result register.
1092   void PopStackHandler();
1093 
1094   // -------------------------------------------------------------------------
1095   // Support functions.
1096 
1097   void GetObjectType(Register function, Register map, Register type_reg);
1098 
1099   // -------------------------------------------------------------------------
1100   // Runtime calls.
1101 
1102   // Call a runtime routine.
1103   void CallRuntime(const Runtime::Function* f, int num_arguments,
1104                    SaveFPRegsMode save_doubles = kDontSaveFPRegs);
1105 
1106   // Convenience function: Same as above, but takes the fid instead.
1107   void CallRuntime(Runtime::FunctionId fid,
1108                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1109     const Runtime::Function* function = Runtime::FunctionForId(fid);
1110     CallRuntime(function, function->nargs, save_doubles);
1111   }
1112 
1113   // Convenience function: Same as above, but takes the fid instead.
1114   void CallRuntime(Runtime::FunctionId fid, int num_arguments,
1115                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1116     CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
1117   }
1118 
1119   // Convenience function: tail call a runtime routine (jump).
1120   void TailCallRuntime(Runtime::FunctionId fid);
1121 
1122   // Jump to the builtin routine.
1123   void JumpToExternalReference(const ExternalReference& builtin,
1124                                BranchDelaySlot bd = PROTECT,
1125                                bool builtin_exit_frame = false);
1126 
1127   // Generates a trampoline to jump to the off-heap instruction stream.
1128   void JumpToInstructionStream(Address entry);
1129 
1130   // ---------------------------------------------------------------------------
1131   // In-place weak references.
1132   void LoadWeakValue(Register out, Register in, Label* target_if_cleared);
1133 
1134   // -------------------------------------------------------------------------
1135   // StatsCounter support.
1136 
1137   void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
1138                         Register scratch2);
1139   void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
1140                         Register scratch2);
1141 
1142   // -------------------------------------------------------------------------
1143   // Stack limit utilities
1144 
1145   enum StackLimitKind { kInterruptStackLimit, kRealStackLimit };
1146   void LoadStackLimit(Register destination, StackLimitKind kind);
1147   void StackOverflowCheck(Register num_args, Register scratch1,
1148                           Register scratch2, Label* stack_overflow);
1149 
1150   // ---------------------------------------------------------------------------
1151   // Smi utilities.
1152 
SmiTag(Register dst,Register src)1153   void SmiTag(Register dst, Register src) {
1154     STATIC_ASSERT(kSmiTag == 0);
1155     if (SmiValuesAre32Bits()) {
1156       dsll32(dst, src, 0);
1157     } else {
1158       DCHECK(SmiValuesAre31Bits());
1159       Addu(dst, src, src);
1160     }
1161   }
1162 
SmiTag(Register reg)1163   void SmiTag(Register reg) { SmiTag(reg, reg); }
1164 
1165   // Left-shifted from int32 equivalent of Smi.
SmiScale(Register dst,Register src,int scale)1166   void SmiScale(Register dst, Register src, int scale) {
1167     if (SmiValuesAre32Bits()) {
1168       // The int portion is upper 32-bits of 64-bit word.
1169       dsra(dst, src, kSmiShift - scale);
1170     } else {
1171       DCHECK(SmiValuesAre31Bits());
1172       DCHECK_GE(scale, kSmiTagSize);
1173       sll(dst, src, scale - kSmiTagSize);
1174     }
1175   }
1176 
1177   // Test if the register contains a smi.
SmiTst(Register value,Register scratch)1178   inline void SmiTst(Register value, Register scratch) {
1179     And(scratch, value, Operand(kSmiTagMask));
1180   }
1181 
1182   // Jump if the register contains a non-smi.
1183   void JumpIfNotSmi(Register value, Label* not_smi_label, Register scratch = at,
1184                     BranchDelaySlot bd = PROTECT);
1185 
1186   // Abort execution if argument is a smi, enabled via --debug-code.
1187   void AssertNotSmi(Register object);
1188   void AssertSmi(Register object);
1189 
1190   // Abort execution if argument is not a Constructor, enabled via --debug-code.
1191   void AssertConstructor(Register object);
1192 
1193   // Abort execution if argument is not a JSFunction, enabled via --debug-code.
1194   void AssertFunction(Register object);
1195 
1196   // Abort execution if argument is not a JSBoundFunction,
1197   // enabled via --debug-code.
1198   void AssertBoundFunction(Register object);
1199 
1200   // Abort execution if argument is not a JSGeneratorObject (or subclass),
1201   // enabled via --debug-code.
1202   void AssertGeneratorObject(Register object);
1203 
1204   // Abort execution if argument is not undefined or an AllocationSite, enabled
1205   // via --debug-code.
1206   void AssertUndefinedOrAllocationSite(Register object, Register scratch);
1207 
1208   template <typename Field>
DecodeField(Register dst,Register src)1209   void DecodeField(Register dst, Register src) {
1210     Ext(dst, src, Field::kShift, Field::kSize);
1211   }
1212 
1213   template <typename Field>
DecodeField(Register reg)1214   void DecodeField(Register reg) {
1215     DecodeField<Field>(reg, reg);
1216   }
1217 
1218  private:
1219   // Helper functions for generating invokes.
1220   void InvokePrologue(Register expected_parameter_count,
1221                       Register actual_parameter_count, Label* done,
1222                       InvokeFlag flag);
1223 
1224   // Compute memory operands for safepoint stack slots.
1225   static int SafepointRegisterStackIndex(int reg_code);
1226 
1227   // Needs access to SafepointRegisterStackIndex for compiled frame
1228   // traversal.
1229   friend class CommonFrame;
1230 
1231   DISALLOW_IMPLICIT_CONSTRUCTORS(MacroAssembler);
1232 };
1233 
1234 template <typename Func>
GenerateSwitchTable(Register index,size_t case_count,Func GetLabelFunction)1235 void TurboAssembler::GenerateSwitchTable(Register index, size_t case_count,
1236                                          Func GetLabelFunction) {
1237   // Ensure that dd-ed labels following this instruction use 8 bytes aligned
1238   // addresses.
1239   BlockTrampolinePoolFor(static_cast<int>(case_count) * 2 +
1240                          kSwitchTablePrologueSize);
1241   UseScratchRegisterScope temps(this);
1242   Register scratch = temps.Acquire();
1243   if (kArchVariant >= kMips64r6) {
1244     // Opposite of Align(8) as we have odd number of instructions in this case.
1245     if ((pc_offset() & 7) == 0) {
1246       nop();
1247     }
1248     addiupc(scratch, 5);
1249     Dlsa(scratch, scratch, index, kPointerSizeLog2);
1250     Ld(scratch, MemOperand(scratch));
1251   } else {
1252     Label here;
1253     Align(8);
1254     push(ra);
1255     bal(&here);
1256     dsll(scratch, index, kPointerSizeLog2);  // Branch delay slot.
1257     bind(&here);
1258     daddu(scratch, scratch, ra);
1259     pop(ra);
1260     Ld(scratch, MemOperand(scratch, 6 * v8::internal::kInstrSize));
1261   }
1262   jr(scratch);
1263   nop();  // Branch delay slot nop.
1264   for (size_t index = 0; index < case_count; ++index) {
1265     dd(GetLabelFunction(index));
1266   }
1267 }
1268 
1269 #define ACCESS_MASM(masm) masm->
1270 
1271 }  // namespace internal
1272 }  // namespace v8
1273 
1274 #endif  // V8_CODEGEN_MIPS64_MACRO_ASSEMBLER_MIPS64_H_
1275