• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-sigmoid/neon-lut64-p2.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <arm_neon.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16 
17 
18 extern XNN_INTERNAL const float xnn_table_exp2_k_over_64[64];
19 
xnn_f32_sigmoid_ukernel__neonfma_rr1_lut64_p2_nr2fma_x12(size_t n,const float * x,float * y,const void * params)20 void xnn_f32_sigmoid_ukernel__neonfma_rr1_lut64_p2_nr2fma_x12(
21     size_t n,
22     const float* x,
23     float* y,
24     const void* params)
25 {
26   assert(n % sizeof(float) == 0);
27 
28   const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
29   // The largest z for which sigmoidf(-z) is normalized.
30   // This number is also the largest z for which expf(-z) is normalized.
31   const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f);
32   const float32x4_t vminus_log2e_x64 = vmovq_n_f32(-0x1.715476p6f);
33   const float32x4_t vln2_o64 = vmovq_n_f32(0x1.62E43p-7f);
34   const float32x4_t vone = vmovq_n_f32(1.0f);
35 
36   const float32x4_t vc2 = vmovq_n_f32(0x1.FFFF0Ap-2f);
37 
38   const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F));
39 
40   for (; n >= 12 * sizeof(float); n -= 12 * sizeof(float)) {
41     const float32x4_t vx0123 = vld1q_f32(x); x += 4;
42     const float32x4_t vx4567 = vld1q_f32(x); x += 4;
43     const float32x4_t vx89AB = vld1q_f32(x); x += 4;
44 
45     // General structure of the algorithm:
46     //           / exp(x) / (1 + exp(x)) if x <= 0
47     //   f[x] :=
48     //           \ 1 - f[-x] if x >= 0
49     //
50     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
51     // then replace result with 1 - f[-z] if x >= 0.
52     const float32x4_t vz0123 = vabsq_f32(vx0123);
53     const float32x4_t vz4567 = vabsq_f32(vx4567);
54     const float32x4_t vz89AB = vabsq_f32(vx89AB);
55 
56     // Compute reduced argument n := round(-z * 64 / log(2)).
57     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
58     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
59     // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
60     // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
61     // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result  for such inputs at the
62     // very end of the algorithm.
63     float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vz0123, vminus_log2e_x64);
64     float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vz4567, vminus_log2e_x64);
65     float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vz89AB, vminus_log2e_x64);
66 
67     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
68     // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
69     // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
70     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
71     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
72     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
73     //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
74     //    and thus the adjusted exponent is not lower than -126.
75     //
76     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
77     const int32x4_t ve0123 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn0123), vmovq_n_s32(INT32_C(0x3F))), 17);
78     const int32x4_t ve4567 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn4567), vmovq_n_s32(INT32_C(0x3F))), 17);
79     const int32x4_t ve89AB = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn89AB), vmovq_n_s32(INT32_C(0x3F))), 17);
80 
81     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
82     const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask));
83     const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask));
84     const uint64x2_t vidx89AB = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn89AB), vindex_mask));
85 
86     const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0);
87     const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1);
88     float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx01]);
89     float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx23]);
90     const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0);
91     const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1);
92     float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx45]);
93     float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx67]);
94     const uint64_t vidx89 = vgetq_lane_u64(vidx89AB, 0);
95     const uint64_t vidxAB = vgetq_lane_u64(vidx89AB, 1);
96     float32x2_t vl89 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx89]);
97     float32x2_t vlAB = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxAB]);
98 
99     vl01 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx01 >> 32)], vl01, 1);
100     vl23 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx23 >> 32)], vl23, 1);
101     const float32x4_t vl0123 = vcombine_f32(vl01, vl23);
102     vl45 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx45 >> 32)], vl45, 1);
103     vl67 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx67 >> 32)], vl67, 1);
104     const float32x4_t vl4567 = vcombine_f32(vl45, vl67);
105     vl89 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx89 >> 32)], vl89, 1);
106     vlAB = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxAB >> 32)], vlAB, 1);
107     const float32x4_t vl89AB = vcombine_f32(vl89, vlAB);
108 
109     // Adjust exponent of the value l fetched from the table to get the final s value.
110     const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123));
111     const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567));
112     const float32x4_t vs89AB = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl89AB), ve89AB));
113 
114     // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
115     vn0123 = vsubq_f32(vn0123, vmagic_bias);
116     vn4567 = vsubq_f32(vn4567, vmagic_bias);
117     vn89AB = vsubq_f32(vn89AB, vmagic_bias);
118 
119     // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
120     float32x4_t vt0123 = vfmaq_f32(vz0123, vn0123, vln2_o64);
121     float32x4_t vt4567 = vfmaq_f32(vz4567, vn4567, vln2_o64);
122     float32x4_t vt89AB = vfmaq_f32(vz89AB, vn89AB, vln2_o64);
123 
124     // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
125     //   P1(t) = 1 + t * (-1 + t * c2)
126     float32x4_t vp0123 = vmulq_f32(vt0123, vc2);
127     float32x4_t vp4567 = vmulq_f32(vt4567, vc2);
128     float32x4_t vp89AB = vmulq_f32(vt89AB, vc2);
129 
130     vp0123 = vfmsq_f32(vt0123, vp0123, vt0123);
131     vp4567 = vfmsq_f32(vt4567, vp4567, vt4567);
132     vp89AB = vfmsq_f32(vt89AB, vp89AB, vt89AB);
133 
134     // Reconstruct the exp(-z) value:
135     //   f = s * (1 + t * (-1 + t * c2))
136     //     = s * (1 - t + t * (t * c2))
137     //     = s - s * (t - t * (t * c2))
138     //     = s - s * p
139     const float32x4_t vy0123 = vfmsq_f32(vs0123, vs0123, vp0123);
140     const float32x4_t vy4567 = vfmsq_f32(vs4567, vs4567, vp4567);
141     const float32x4_t vy89AB = vfmsq_f32(vs89AB, vs89AB, vp89AB);
142 
143     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
144     const float32x4_t vd0123 = vaddq_f32(vy0123, vone);
145     const float32x4_t vd4567 = vaddq_f32(vy4567, vone);
146     const float32x4_t vd89AB = vaddq_f32(vy89AB, vone);
147 
148     // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
149     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
150     // Thus the reciprocal of the denominator never overflows.
151     float32x4_t vr0123 = vrecpeq_f32(vd0123);
152     float32x4_t vr4567 = vrecpeq_f32(vd4567);
153     float32x4_t vr89AB = vrecpeq_f32(vd89AB);
154 
155     vr0123 = vfmaq_f32(vr0123, vr0123, vfmsq_f32(vone, vr0123, vd0123));
156     vr4567 = vfmaq_f32(vr4567, vr4567, vfmsq_f32(vone, vr4567, vd4567));
157     vr89AB = vfmaq_f32(vr89AB, vr89AB, vfmsq_f32(vone, vr89AB, vd89AB));
158 
159     vr0123 = vfmaq_f32(vr0123, vr0123, vfmsq_f32(vone, vr0123, vd0123));
160     vr4567 = vfmaq_f32(vr4567, vr4567, vfmsq_f32(vone, vr4567, vd4567));
161     vr89AB = vfmaq_f32(vr89AB, vr89AB, vfmsq_f32(vone, vr89AB, vd89AB));
162 
163     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
164     float32x4_t vf0123 = vmulq_f32(vy0123, vr0123);
165     float32x4_t vf4567 = vmulq_f32(vy4567, vr4567);
166     float32x4_t vf89AB = vmulq_f32(vy89AB, vr89AB);
167 
168     // For inputs below denormal cutoff, replace output with +0.0f.
169     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
170     vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff)));
171     vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff)));
172     vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff)));
173 
174     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
175     const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f));
176     const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f));
177     const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f));
178 
179     vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123));
180     vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567));
181     vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB));
182 
183     vst1q_f32(y, vf0123); y += 4;
184     vst1q_f32(y, vf4567); y += 4;
185     vst1q_f32(y, vf89AB); y += 4;
186   }
187   for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
188     const float32x4_t vx = vld1q_f32(x); x += 4;
189 
190     // General structure of the algorithm:
191     //           / exp(x) / (1 + exp(x)) if x <= 0
192     //   f[x] :=
193     //           \ 1 - f[-x] if x >= 0
194     //
195     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
196     // then replace result with 1 - f[-z] if x >= 0.
197     const float32x4_t vz = vabsq_f32(vx);
198 
199     // Compute reduced argument n := round(-z * 64 / log(2)).
200     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
201     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
202     // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
203     // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
204     // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result  for such inputs at the
205     // very end of the algorithm.
206     float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e_x64);
207 
208     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
209     // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
210     // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
211     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
212     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
213     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
214     //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
215     //    and thus the adjusted exponent is not lower than -126.
216     //
217     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
218     const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
219 
220     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
221     const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
222     const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
223     const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
224     float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
225     float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
226     vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
227     vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
228     const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
229     // Adjust exponent of the value l fetched from the table to get the final s value.
230     const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
231 
232     // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
233     vn = vsubq_f32(vn, vmagic_bias);
234 
235     // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
236     float32x4_t vt = vfmaq_f32(vz, vn, vln2_o64);
237 
238     // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
239     //   P1(t) = 1 + t * (-1 + t * c2)
240     float32x4_t vp = vmulq_f32(vt, vc2);
241     vp = vfmsq_f32(vt, vp, vt);
242 
243     // Reconstruct the exp(-z) value:
244     //   f = s * (1 + t * (-1 + t * c2))
245     //     = s * (1 - t + t * (t * c2))
246     //     = s - s * (t - t * (t * c2))
247     //     = s - s * p
248     const float32x4_t vy = vfmsq_f32(vs, vs, vp);
249 
250     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
251     const float32x4_t vd = vaddq_f32(vy, vone);
252 
253     // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
254     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
255     // Thus the reciprocal of the denominator never overflows.
256     float32x4_t vr = vrecpeq_f32(vd);
257 
258     vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
259 
260     vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
261 
262     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
263     float32x4_t vf = vmulq_f32(vy, vr);
264 
265     // For inputs below denormal cutoff, replace output with +0.0f.
266     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
267     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
268 
269     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
270     const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
271     vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
272 
273     vst1q_f32(y, vf); y += 4;
274   }
275   if XNN_UNLIKELY(n != 0) {
276     const float32x4_t vx = vld1q_f32(x);
277 
278     // General structure of the algorithm:
279     //           / exp(x) / (1 + exp(x)) if x <= 0
280     //   f[x] :=
281     //           \ 1 - f[-x] if x >= 0
282     //
283     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
284     // then replace result with 1 - f[-z] if x >= 0.
285     const float32x4_t vz = vabsq_f32(vx);
286 
287     // Compute reduced argument n := round(-z * 64 / log(2)).
288     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
289     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
290     // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
291     // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
292     // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result  for such inputs at the
293     // very end of the algorithm.
294     float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e_x64);
295 
296     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
297     // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
298     // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
299     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
300     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
301     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
302     //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
303     //    and thus the adjusted exponent is not lower than -126.
304     //
305     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
306     const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
307 
308     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
309     const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
310     const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
311     const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
312     float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
313     float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
314     vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
315     vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
316     const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
317     // Adjust exponent of the value l fetched from the table to get the final s value.
318     const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
319 
320     // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
321     vn = vsubq_f32(vn, vmagic_bias);
322 
323     // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
324     float32x4_t vt = vfmaq_f32(vz, vn, vln2_o64);
325 
326     // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
327     //   P1(t) = 1 + t * (-1 + t * c2)
328     float32x4_t vp = vmulq_f32(vt, vc2);
329     vp = vfmsq_f32(vt, vp, vt);
330 
331     // Reconstruct the exp(-z) value:
332     //   f = s * (1 + t * (-1 + t * c2))
333     //     = s * (1 - t + t * (t * c2))
334     //     = s - s * (t - t * (t * c2))
335     //     = s - s * p
336     const float32x4_t vy = vfmsq_f32(vs, vs, vp);
337 
338     // Denominator of the sigmoid fraction: 1.0 + exp(-z)
339     const float32x4_t vd = vaddq_f32(vy, vone);
340 
341     // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
342     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
343     // Thus the reciprocal of the denominator never overflows.
344     float32x4_t vr = vrecpeq_f32(vd);
345 
346     vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
347 
348     vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
349 
350     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
351     float32x4_t vf = vmulq_f32(vy, vr);
352 
353     // For inputs below denormal cutoff, replace output with +0.0f.
354     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
355     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
356 
357     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
358     const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
359     vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
360 
361     float32x2_t vf_lo = vget_low_f32(vf);
362     if (n & (2 * sizeof(float))) {
363       vst1_f32(y, vf_lo); y += 2;
364       vf_lo = vget_high_f32(vf);
365     }
366     if (n & (1 * sizeof(float))) {
367       vst1_lane_f32(y, vf_lo, 0);
368     }
369   }
370 }
371