1 // Auto-generated file. Do not edit!
2 // Template: src/f32-sigmoid/neon-lut64-p2.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <arm_neon.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16
17
18 extern XNN_INTERNAL const float xnn_table_exp2_k_over_64[64];
19
xnn_f32_sigmoid_ukernel__neonfma_rr1_lut64_p2_nr2fma_x12(size_t n,const float * x,float * y,const void * params)20 void xnn_f32_sigmoid_ukernel__neonfma_rr1_lut64_p2_nr2fma_x12(
21 size_t n,
22 const float* x,
23 float* y,
24 const void* params)
25 {
26 assert(n % sizeof(float) == 0);
27
28 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
29 // The largest z for which sigmoidf(-z) is normalized.
30 // This number is also the largest z for which expf(-z) is normalized.
31 const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f);
32 const float32x4_t vminus_log2e_x64 = vmovq_n_f32(-0x1.715476p6f);
33 const float32x4_t vln2_o64 = vmovq_n_f32(0x1.62E43p-7f);
34 const float32x4_t vone = vmovq_n_f32(1.0f);
35
36 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFF0Ap-2f);
37
38 const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F));
39
40 for (; n >= 12 * sizeof(float); n -= 12 * sizeof(float)) {
41 const float32x4_t vx0123 = vld1q_f32(x); x += 4;
42 const float32x4_t vx4567 = vld1q_f32(x); x += 4;
43 const float32x4_t vx89AB = vld1q_f32(x); x += 4;
44
45 // General structure of the algorithm:
46 // / exp(x) / (1 + exp(x)) if x <= 0
47 // f[x] :=
48 // \ 1 - f[-x] if x >= 0
49 //
50 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
51 // then replace result with 1 - f[-z] if x >= 0.
52 const float32x4_t vz0123 = vabsq_f32(vx0123);
53 const float32x4_t vz4567 = vabsq_f32(vx4567);
54 const float32x4_t vz89AB = vabsq_f32(vx89AB);
55
56 // Compute reduced argument n := round(-z * 64 / log(2)).
57 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
58 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
59 // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
60 // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
61 // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result for such inputs at the
62 // very end of the algorithm.
63 float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vz0123, vminus_log2e_x64);
64 float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vz4567, vminus_log2e_x64);
65 float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vz89AB, vminus_log2e_x64);
66
67 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
68 // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
69 // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
70 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
71 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
72 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
73 // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
74 // and thus the adjusted exponent is not lower than -126.
75 //
76 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
77 const int32x4_t ve0123 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn0123), vmovq_n_s32(INT32_C(0x3F))), 17);
78 const int32x4_t ve4567 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn4567), vmovq_n_s32(INT32_C(0x3F))), 17);
79 const int32x4_t ve89AB = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn89AB), vmovq_n_s32(INT32_C(0x3F))), 17);
80
81 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
82 const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask));
83 const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask));
84 const uint64x2_t vidx89AB = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn89AB), vindex_mask));
85
86 const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0);
87 const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1);
88 float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx01]);
89 float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx23]);
90 const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0);
91 const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1);
92 float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx45]);
93 float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx67]);
94 const uint64_t vidx89 = vgetq_lane_u64(vidx89AB, 0);
95 const uint64_t vidxAB = vgetq_lane_u64(vidx89AB, 1);
96 float32x2_t vl89 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx89]);
97 float32x2_t vlAB = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxAB]);
98
99 vl01 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx01 >> 32)], vl01, 1);
100 vl23 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx23 >> 32)], vl23, 1);
101 const float32x4_t vl0123 = vcombine_f32(vl01, vl23);
102 vl45 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx45 >> 32)], vl45, 1);
103 vl67 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx67 >> 32)], vl67, 1);
104 const float32x4_t vl4567 = vcombine_f32(vl45, vl67);
105 vl89 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx89 >> 32)], vl89, 1);
106 vlAB = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxAB >> 32)], vlAB, 1);
107 const float32x4_t vl89AB = vcombine_f32(vl89, vlAB);
108
109 // Adjust exponent of the value l fetched from the table to get the final s value.
110 const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123));
111 const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567));
112 const float32x4_t vs89AB = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl89AB), ve89AB));
113
114 // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
115 vn0123 = vsubq_f32(vn0123, vmagic_bias);
116 vn4567 = vsubq_f32(vn4567, vmagic_bias);
117 vn89AB = vsubq_f32(vn89AB, vmagic_bias);
118
119 // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
120 float32x4_t vt0123 = vfmaq_f32(vz0123, vn0123, vln2_o64);
121 float32x4_t vt4567 = vfmaq_f32(vz4567, vn4567, vln2_o64);
122 float32x4_t vt89AB = vfmaq_f32(vz89AB, vn89AB, vln2_o64);
123
124 // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
125 // P1(t) = 1 + t * (-1 + t * c2)
126 float32x4_t vp0123 = vmulq_f32(vt0123, vc2);
127 float32x4_t vp4567 = vmulq_f32(vt4567, vc2);
128 float32x4_t vp89AB = vmulq_f32(vt89AB, vc2);
129
130 vp0123 = vfmsq_f32(vt0123, vp0123, vt0123);
131 vp4567 = vfmsq_f32(vt4567, vp4567, vt4567);
132 vp89AB = vfmsq_f32(vt89AB, vp89AB, vt89AB);
133
134 // Reconstruct the exp(-z) value:
135 // f = s * (1 + t * (-1 + t * c2))
136 // = s * (1 - t + t * (t * c2))
137 // = s - s * (t - t * (t * c2))
138 // = s - s * p
139 const float32x4_t vy0123 = vfmsq_f32(vs0123, vs0123, vp0123);
140 const float32x4_t vy4567 = vfmsq_f32(vs4567, vs4567, vp4567);
141 const float32x4_t vy89AB = vfmsq_f32(vs89AB, vs89AB, vp89AB);
142
143 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
144 const float32x4_t vd0123 = vaddq_f32(vy0123, vone);
145 const float32x4_t vd4567 = vaddq_f32(vy4567, vone);
146 const float32x4_t vd89AB = vaddq_f32(vy89AB, vone);
147
148 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
149 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
150 // Thus the reciprocal of the denominator never overflows.
151 float32x4_t vr0123 = vrecpeq_f32(vd0123);
152 float32x4_t vr4567 = vrecpeq_f32(vd4567);
153 float32x4_t vr89AB = vrecpeq_f32(vd89AB);
154
155 vr0123 = vfmaq_f32(vr0123, vr0123, vfmsq_f32(vone, vr0123, vd0123));
156 vr4567 = vfmaq_f32(vr4567, vr4567, vfmsq_f32(vone, vr4567, vd4567));
157 vr89AB = vfmaq_f32(vr89AB, vr89AB, vfmsq_f32(vone, vr89AB, vd89AB));
158
159 vr0123 = vfmaq_f32(vr0123, vr0123, vfmsq_f32(vone, vr0123, vd0123));
160 vr4567 = vfmaq_f32(vr4567, vr4567, vfmsq_f32(vone, vr4567, vd4567));
161 vr89AB = vfmaq_f32(vr89AB, vr89AB, vfmsq_f32(vone, vr89AB, vd89AB));
162
163 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
164 float32x4_t vf0123 = vmulq_f32(vy0123, vr0123);
165 float32x4_t vf4567 = vmulq_f32(vy4567, vr4567);
166 float32x4_t vf89AB = vmulq_f32(vy89AB, vr89AB);
167
168 // For inputs below denormal cutoff, replace output with +0.0f.
169 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
170 vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcagtq_f32(vx0123, vdenorm_cutoff)));
171 vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcagtq_f32(vx4567, vdenorm_cutoff)));
172 vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcagtq_f32(vx89AB, vdenorm_cutoff)));
173
174 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
175 const uint32x4_t vm0123 = vcltq_f32(vx0123, vmovq_n_f32(0.0f));
176 const uint32x4_t vm4567 = vcltq_f32(vx4567, vmovq_n_f32(0.0f));
177 const uint32x4_t vm89AB = vcltq_f32(vx89AB, vmovq_n_f32(0.0f));
178
179 vf0123 = vbslq_f32(vm0123, vf0123, vsubq_f32(vone, vf0123));
180 vf4567 = vbslq_f32(vm4567, vf4567, vsubq_f32(vone, vf4567));
181 vf89AB = vbslq_f32(vm89AB, vf89AB, vsubq_f32(vone, vf89AB));
182
183 vst1q_f32(y, vf0123); y += 4;
184 vst1q_f32(y, vf4567); y += 4;
185 vst1q_f32(y, vf89AB); y += 4;
186 }
187 for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
188 const float32x4_t vx = vld1q_f32(x); x += 4;
189
190 // General structure of the algorithm:
191 // / exp(x) / (1 + exp(x)) if x <= 0
192 // f[x] :=
193 // \ 1 - f[-x] if x >= 0
194 //
195 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
196 // then replace result with 1 - f[-z] if x >= 0.
197 const float32x4_t vz = vabsq_f32(vx);
198
199 // Compute reduced argument n := round(-z * 64 / log(2)).
200 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
201 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
202 // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
203 // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
204 // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result for such inputs at the
205 // very end of the algorithm.
206 float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e_x64);
207
208 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
209 // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
210 // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
211 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
212 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
213 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
214 // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
215 // and thus the adjusted exponent is not lower than -126.
216 //
217 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
218 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
219
220 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
221 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
222 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
223 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
224 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
225 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
226 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
227 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
228 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
229 // Adjust exponent of the value l fetched from the table to get the final s value.
230 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
231
232 // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
233 vn = vsubq_f32(vn, vmagic_bias);
234
235 // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
236 float32x4_t vt = vfmaq_f32(vz, vn, vln2_o64);
237
238 // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
239 // P1(t) = 1 + t * (-1 + t * c2)
240 float32x4_t vp = vmulq_f32(vt, vc2);
241 vp = vfmsq_f32(vt, vp, vt);
242
243 // Reconstruct the exp(-z) value:
244 // f = s * (1 + t * (-1 + t * c2))
245 // = s * (1 - t + t * (t * c2))
246 // = s - s * (t - t * (t * c2))
247 // = s - s * p
248 const float32x4_t vy = vfmsq_f32(vs, vs, vp);
249
250 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
251 const float32x4_t vd = vaddq_f32(vy, vone);
252
253 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
254 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
255 // Thus the reciprocal of the denominator never overflows.
256 float32x4_t vr = vrecpeq_f32(vd);
257
258 vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
259
260 vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
261
262 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
263 float32x4_t vf = vmulq_f32(vy, vr);
264
265 // For inputs below denormal cutoff, replace output with +0.0f.
266 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
267 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
268
269 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
270 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
271 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
272
273 vst1q_f32(y, vf); y += 4;
274 }
275 if XNN_UNLIKELY(n != 0) {
276 const float32x4_t vx = vld1q_f32(x);
277
278 // General structure of the algorithm:
279 // / exp(x) / (1 + exp(x)) if x <= 0
280 // f[x] :=
281 // \ 1 - f[-x] if x >= 0
282 //
283 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
284 // then replace result with 1 - f[-z] if x >= 0.
285 const float32x4_t vz = vabsq_f32(vx);
286
287 // Compute reduced argument n := round(-z * 64 / log(2)).
288 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
289 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
290 // The trick with adding large number is valid only within certain bounds (|z * 64 / log(2)| <= 2**22, i.e.
291 // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
292 // (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result for such inputs at the
293 // very end of the algorithm.
294 float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e_x64);
295
296 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that sigmoidf(-z) is
297 // normalized, i.e. 0 <= z <= 87.33642. As n has 6 fractional bits, we split s == 2**(n / 64) =
298 // = 2**e * 2**(n / 64 - e), where e := int(n / 64). We create s in two steps:
299 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
300 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
301 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
302 // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
303 // and thus the adjusted exponent is not lower than -126.
304 //
305 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
306 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
307
308 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
309 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
310 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
311 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
312 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
313 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
314 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
315 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
316 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
317 // Adjust exponent of the value l fetched from the table to get the final s value.
318 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
319
320 // Subtract the large number back to get the final n := round(-z * 64 / log(2)) as a floating-point number.
321 vn = vsubq_f32(vn, vmagic_bias);
322
323 // Compute reduced argument t := (z + n * log(2) / 64). Note that -t = -z - n * log(2) / 64.
324 float32x4_t vt = vfmaq_f32(vz, vn, vln2_o64);
325
326 // Compute degree-2 polynomial approxiatmion for exp(-t) on [-log(2)/128, log(2)/128].
327 // P1(t) = 1 + t * (-1 + t * c2)
328 float32x4_t vp = vmulq_f32(vt, vc2);
329 vp = vfmsq_f32(vt, vp, vt);
330
331 // Reconstruct the exp(-z) value:
332 // f = s * (1 + t * (-1 + t * c2))
333 // = s * (1 - t + t * (t * c2))
334 // = s - s * (t - t * (t * c2))
335 // = s - s * p
336 const float32x4_t vy = vfmsq_f32(vs, vs, vp);
337
338 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
339 const float32x4_t vd = vaddq_f32(vy, vone);
340
341 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
342 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
343 // Thus the reciprocal of the denominator never overflows.
344 float32x4_t vr = vrecpeq_f32(vd);
345
346 vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
347
348 vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
349
350 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
351 float32x4_t vf = vmulq_f32(vy, vr);
352
353 // For inputs below denormal cutoff, replace output with +0.0f.
354 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
355 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
356
357 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
358 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
359 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
360
361 float32x2_t vf_lo = vget_low_f32(vf);
362 if (n & (2 * sizeof(float))) {
363 vst1_f32(y, vf_lo); y += 2;
364 vf_lo = vget_high_f32(vf);
365 }
366 if (n & (1 * sizeof(float))) {
367 vst1_lane_f32(y, vf_lo, 0);
368 }
369 }
370 }
371