• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1// Copyright 2019 Google LLC
2//
3// This source code is licensed under the BSD-style license found in the
4// LICENSE file in the root directory of this source tree.
5
6$assert BATCH_TILE % 4 == 0
7$assert BATCH_TILE >= 4
8$assert RR_STEPS in [1, 2]
9$assert DIV_ALGO in ["div", "nr2fma", "nr2recps", "nr1recps1fma"]
10$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
11$VMULADDQ_F32 = "vfmaq_f32" if FMA else "vmlaq_f32"
12#include <assert.h>
13
14#include <arm_neon.h>
15
16#include <xnnpack/common.h>
17#include <xnnpack/vunary.h>
18
19
20extern XNN_INTERNAL const float xnn_table_exp2_k_over_2048[2048];
21
22void xnn_f32_sigmoid_ukernel__${"neonfma" if FMA else "neon"}_rr${RR_STEPS}_lut2048_p1_${DIV_ALGO}_x${BATCH_TILE}(
23    size_t n,
24    const float* x,
25    float* y,
26    const void* params)
27{
28  assert(n % sizeof(float) == 0);
29
30  const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
31  // The largest z for which sigmoidf(-z) is normalized.
32  // This number is also the largest z for which expf(-z) is normalized.
33  const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f);
34  const float32x4_t vminus_log2e_x2048  = vmovq_n_f32(-0x1.715476p11f);
35  $if RR_STEPS == 1:
36    const float32x4_t vln2_o2048 = vmovq_n_f32(0x1.62E43p-12f);
37  $else:
38    $if FMA:
39      const float32x4_t vln2_o2048_hi = vmovq_n_f32(0x1.62E43p-12f);
40      const float32x4_t vln2_o2048_lo = vmovq_n_f32(-0x1.05C61p-40f);
41    $else:
42      // Last 18 bits are zeroes
43      const float32x4_t vln2_o2048_hi = vmovq_n_f32(0x1.600000p-12f);
44      const float32x4_t vln2_o2048_lo = vmovq_n_f32(0x1.7217F8p-19f);
45  const float32x4_t vone = vmovq_n_f32(1.0f);
46
47  const float32x4_t vc1 = vmovq_n_f32(-0x1.FFFFFEp-1f);
48
49  const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x7FF));
50
51  $if BATCH_TILE > 4:
52    for (; n >= ${BATCH_TILE} * sizeof(float); n -= ${BATCH_TILE} * sizeof(float)) {
53      $for N in range(0, BATCH_TILE, 4):
54        const float32x4_t vx${ABC[N:N+4]} = vld1q_f32(x); x += 4;
55
56      // General structure of the algorithm:
57      //           / exp(x) / (1 + exp(x)) if x <= 0
58      //   f[x] :=
59      //           \ 1 - f[-x] if x >= 0
60      //
61      // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
62      // then replace result with 1 - f[-z] if x >= 0.
63      $for N in range(0, BATCH_TILE, 4):
64        const float32x4_t vz${ABC[N:N+4]} = vabsq_f32(vx${ABC[N:N+4]});
65
66      // Compute reduced argument n := round(-z * 2048 / log(2)).
67      // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
68      // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
69      // The trick with adding large number is valid only within certain bounds (|z * 2048 / log(2)| <= 2**22, i.e.
70      // |z| <= 0x1.62E43p+10 = 1419.5654296875), but that is acceptable, because inputs x outside of
71      // [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result
72      // for such inputs at the very end of the algorithm.
73      $for N in range(0, BATCH_TILE, 4):
74        float32x4_t vn${ABC[N:N+4]} = ${VMULADDQ_F32}(vmagic_bias, vz${ABC[N:N+4]}, vminus_log2e_x2048);
75
76      // Create a floating-point number s (scale) such that s := 2**(n / 2048) for such inputs that sigmoidf(-z) is
77      // normalized, i.e. 0 <= z <= 87.33642. As n has 11 fractional bits, we split s == 2**(n / 2048) =
78      // = 2**e * 2**(n / 2048 - e), where e := int(n / 2048). We create s in two steps:
79      // 1. Fetch 2**(n / 2048 - e) = 2**(n % 2048) from the table using the 6 low bits of n, as integer. Note that the
80      //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
81      // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
82      //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
83      //    and thus the adjusted exponent is not lower than -126.
84      //
85      // Extract e from bits 11:19 of n and shift it into bits 23:31 (position of floating-point exponent).
86      $for N in range(0, BATCH_TILE, 4):
87        const int32x4_t ve${ABC[N:N+4]} = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn${ABC[N:N+4]}), vmovq_n_s32(INT32_C(0x7FF))), 12);
88
89      // Use bits 0:11 bits of n, as integer, as an index for table lookup of l := 2**(n % 2048).
90      $for N in range(0, BATCH_TILE, 4):
91        const uint64x2_t vidx${ABC[N:N+4]} = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn${ABC[N:N+4]}), vindex_mask));
92
93      $for N in range(0, BATCH_TILE, 4):
94        const uint64_t vidx${ABC[N:N+2]} = vgetq_lane_u64(vidx${ABC[N:N+4]}, 0);
95        const uint64_t vidx${ABC[N+2:N+4]} = vgetq_lane_u64(vidx${ABC[N:N+4]}, 1);
96        float32x2_t vl${ABC[N:N+2]} = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx${ABC[N:N+2]}]);
97        float32x2_t vl${ABC[N+2:N+4]} = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx${ABC[N+2:N+4]}]);
98
99      $for N in range(0, BATCH_TILE, 4):
100        vl${ABC[N:N+2]} = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx${ABC[N:N+2]} >> 32)], vl${ABC[N:N+2]}, 1);
101        vl${ABC[N+2:N+4]} = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx${ABC[N+2:N+4]} >> 32)], vl${ABC[N+2:N+4]}, 1);
102        const float32x4_t vl${ABC[N:N+4]} = vcombine_f32(vl${ABC[N:N+2]}, vl${ABC[N+2:N+4]});
103
104      // Adjust exponent of the value l fetched from the table to get the final s value.
105      $for N in range(0, BATCH_TILE, 4):
106        const float32x4_t vs${ABC[N:N+4]} = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl${ABC[N:N+4]}), ve${ABC[N:N+4]}));
107
108      // Subtract the large number back to get the final n := round(-z * 2048 / log(2)) as a floating-point number.
109      $for N in range(0, BATCH_TILE, 4):
110        vn${ABC[N:N+4]} = vsubq_f32(vn${ABC[N:N+4]}, vmagic_bias);
111
112      // Compute reduced argument t := (z + n * log(2) / 2048). Note that -t = -z - n * log(2) / 2048.
113      $if RR_STEPS == 1:
114        $for N in range(0, BATCH_TILE, 4):
115          float32x4_t vt${ABC[N:N+4]} = ${VMULADDQ_F32}(vz${ABC[N:N+4]}, vn${ABC[N:N+4]}, vln2_o2048);
116      $else:
117        // Use Cody-Waite range reduction method (note two constants to represent log(2) / 2048) to improve accuracy.
118        $for N in range(0, BATCH_TILE, 4):
119          float32x4_t vt${ABC[N:N+4]} = ${VMULADDQ_F32}(vz${ABC[N:N+4]}, vn${ABC[N:N+4]}, vln2_o2048_hi);
120
121        $for N in range(0, BATCH_TILE, 4):
122          vt${ABC[N:N+4]} = ${VMULADDQ_F32}(vt${ABC[N:N+4]}, vn${ABC[N:N+4]}, vln2_o2048_lo);
123
124      // Compute degree-1 polynomial approximation for exp(-t) on [-log(2)/2048, log(2)/2048]:
125      //   P1(t) = 1 + t * c1
126      $for N in range(0, BATCH_TILE, 4):
127        const float32x4_t vp${ABC[N:N+4]} = vmulq_f32(vt${ABC[N:N+4]}, vc1);
128
129      // Reconstruct the exp(-z) value:
130      //   y = s * (1 + t * c1)
131      //     = s + s * (t * c1))
132      //     = s + s * p
133      $for N in range(0, BATCH_TILE, 4):
134        const float32x4_t vy${ABC[N:N+4]} = ${VMULADDQ_F32}(vs${ABC[N:N+4]}, vs${ABC[N:N+4]}, vp${ABC[N:N+4]});
135
136      // Denominator of the sigmoid fraction: 1.0 + exp(-z)
137      $for N in range(0, BATCH_TILE, 4):
138        const float32x4_t vd${ABC[N:N+4]} = vaddq_f32(vy${ABC[N:N+4]}, vone);
139
140      $if DIV_ALGO == "div":
141        // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
142        $for N in range(0, BATCH_TILE, 4):
143          float32x4_t vf${ABC[N:N+4]} = vdivq_f32(vy${ABC[N:N+4]}, vd${ABC[N:N+4]});
144      $else:
145        // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
146        // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
147        // Thus the reciprocal of the denominator never overflows.
148        $for N in range(0, BATCH_TILE, 4):
149          float32x4_t vr${ABC[N:N+4]} = vrecpeq_f32(vd${ABC[N:N+4]});
150
151        $if DIV_ALGO == "nr2fma":
152          $for N in range(0, BATCH_TILE, 4):
153            vr${ABC[N:N+4]} = vfmaq_f32(vr${ABC[N:N+4]}, vr${ABC[N:N+4]}, vfmsq_f32(vone, vr${ABC[N:N+4]}, vd${ABC[N:N+4]}));
154        $else:
155          $for N in range(0, BATCH_TILE, 4):
156            vr${ABC[N:N+4]} = vmulq_f32(vr${ABC[N:N+4]}, vrecpsq_f32(vr${ABC[N:N+4]}, vd${ABC[N:N+4]}));
157
158        $if DIV_ALGO == "nr2recps":
159          $for N in range(0, BATCH_TILE, 4):
160            vr${ABC[N:N+4]} = vmulq_f32(vr${ABC[N:N+4]}, vrecpsq_f32(vr${ABC[N:N+4]}, vd${ABC[N:N+4]}));
161        $else:
162          $for N in range(0, BATCH_TILE, 4):
163            vr${ABC[N:N+4]} = vfmaq_f32(vr${ABC[N:N+4]}, vr${ABC[N:N+4]}, vfmsq_f32(vone, vr${ABC[N:N+4]}, vd${ABC[N:N+4]}));
164
165        // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
166        $for N in range(0, BATCH_TILE, 4):
167          float32x4_t vf${ABC[N:N+4]} = vmulq_f32(vy${ABC[N:N+4]}, vr${ABC[N:N+4]});
168
169      // For inputs below denormal cutoff, replace output with +0.0f.
170      // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
171      $for N in range(0, BATCH_TILE, 4):
172        vf${ABC[N:N+4]} = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf${ABC[N:N+4]}), vcagtq_f32(vx${ABC[N:N+4]}, vdenorm_cutoff)));
173
174      // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
175      $for N in range(0, BATCH_TILE, 4):
176        const uint32x4_t vm${ABC[N:N+4]} = vcltq_f32(vx${ABC[N:N+4]}, vmovq_n_f32(0.0f));
177
178      $for N in range(0, BATCH_TILE, 4):
179        vf${ABC[N:N+4]} = vbslq_f32(vm${ABC[N:N+4]}, vf${ABC[N:N+4]}, vsubq_f32(vone, vf${ABC[N:N+4]}));
180
181      $for N in range(0, BATCH_TILE, 4):
182        vst1q_f32(y, vf${ABC[N:N+4]}); y += 4;
183    }
184  for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
185    const float32x4_t vx = vld1q_f32(x); x += 4;
186
187    // General structure of the algorithm:
188    //           / exp(x) / (1 + exp(x)) if x <= 0
189    //   f[x] :=
190    //           \ 1 - f[-x] if x >= 0
191    //
192    // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
193    // then replace result with 1 - f[-z] if x >= 0.
194    const float32x4_t vz = vabsq_f32(vx);
195
196    // Compute reduced argument n := round(-z * 2048 / log(2)).
197    // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
198    // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
199    // The trick with adding large number is valid only within certain bounds (|z * 2048 / log(2)| <= 2**22, i.e.
200    // |z| <= 0x1.62E43p+10 = 1419.5654296875), but that is acceptable, because inputs x outside of
201    // [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result
202    // for such inputs at the very end of the algorithm.
203    float32x4_t vn = ${VMULADDQ_F32}(vmagic_bias, vz, vminus_log2e_x2048);
204
205    // Create a floating-point number s (scale) such that s := 2**(n / 2048) for such inputs that sigmoidf(-z) is
206    // normalized, i.e. 0 <= z <= 87.33642. As n has 11 fractional bits, we split s == 2**(n / 2048) =
207    // = 2**e * 2**(n / 2048 - e), where e := int(n / 2048). We create s in two steps:
208    // 1. Fetch 2**(n / 2048 - e) = 2**(n % 2048) from exp2_k_over_2048_table using the 6 low bits of n, as integer. Note that the
209    //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
210    // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
211    //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
212    //    and thus the adjusted exponent is not lower than -126.
213    //
214    // Extract e from bits 11:19 of n and shift it into bits 23:31 (position of floating-point exponent).
215    const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x7FF))), 12);
216
217    // Use bits 0:11 bits of n, as integer, as an index for table lookup of l := 2**(n % 2048).
218    const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
219    const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
220    const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
221    float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx_lo]);
222    float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx_hi]);
223    vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
224    vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
225    const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
226    // Adjust exponent of the value l fetched from the exp2_k_over_2048_table to get the final s value.
227    const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
228
229    // Subtract the large number back to get the final n := round(-z * 2048 / log(2)) as a floating-point number.
230    vn = vsubq_f32(vn, vmagic_bias);
231
232    // Compute reduced argument t := (z + n * log(2) / 2048). Note that -t = -z - n * log(2) / 2048.
233    $if RR_STEPS == 1:
234      float32x4_t vt = ${VMULADDQ_F32}(vz, vn, vln2_o2048);
235    $else:
236      // Use Cody-Waite range reduction method (note two constants to represent log(2) / 2048) to improve accuracy.
237      float32x4_t vt = ${VMULADDQ_F32}(vz, vn, vln2_o2048_hi);
238      vt = ${VMULADDQ_F32}(vt, vn, vln2_o2048_lo);
239
240    // Compute degree-1 polynomial approximation for exp(-t) on [-log(2)/2048, log(2)/2048]:
241    //   P1(t) = 1 + t * c1
242    const float32x4_t vp = vmulq_f32(vt, vc1);
243
244    // Reconstruct the exp(-z) value:
245    //   y = s * (1 + t * c1)
246    //     = s + s * (t * c1))
247    //     = s + s * p
248    const float32x4_t vy = ${VMULADDQ_F32}(vs, vs, vp);
249
250    // Denominator of the sigmoid fraction: 1.0 + exp(-z)
251    const float32x4_t vd = vaddq_f32(vy, vone);
252
253    $if DIV_ALGO == "div":
254      // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
255      float32x4_t vf = vdivq_f32(vy, vd);
256    $else:
257      // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
258      // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
259      // Thus the reciprocal of the denominator never overflows.
260      float32x4_t vr = vrecpeq_f32(vd);
261
262      $if DIV_ALGO == "nr2fma":
263        vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
264      $else:
265        vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
266
267      $if DIV_ALGO == "nr2recps":
268        vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
269      $else:
270        vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
271
272      // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
273      float32x4_t vf = vmulq_f32(vy, vr);
274
275    // For inputs below denormal cutoff, replace output with +0.0f.
276    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
277    vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
278
279    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
280    const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
281    vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
282
283    vst1q_f32(y, vf); y += 4;
284  }
285  if XNN_UNLIKELY(n != 0) {
286    const float32x4_t vx = vld1q_f32(x);
287
288    // General structure of the algorithm:
289    //           / exp(x) / (1 + exp(x)) if x <= 0
290    //   f[x] :=
291    //           \ 1 - f[-x] if x >= 0
292    //
293    // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
294    // then replace result with 1 - f[-z] if x >= 0.
295    const float32x4_t vz = vabsq_f32(vx);
296
297    // Compute reduced argument n := round(-z * 2048 / log(2)).
298    // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
299    // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
300    // The trick with adding large number is valid only within certain bounds (|z * 2048 / log(2)| <= 2**22, i.e.
301    // |z| <= 0x1.62E43p+10 = 1419.5654296875), but that is acceptable, because inputs x outside of
302    // [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup the result
303    // for such inputs at the very end of the algorithm.
304    float32x4_t vn = ${VMULADDQ_F32}(vmagic_bias, vz, vminus_log2e_x2048);
305
306    // Create a floating-point number s (scale) such that s := 2**(n / 2048) for such inputs that sigmoidf(-z) is
307    // normalized, i.e. 0 <= z <= 87.33642. As n has 11 fractional bits, we split s == 2**(n / 2048) =
308    // = 2**e * 2**(n / 2048 - e), where e := int(n / 2048). We create s in two steps:
309    // 1. Fetch 2**(n / 2048 - e) = 2**(n % 2048) from exp2_k_over_2048_table using the 6 low bits of n, as integer. Note that the
310    //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
311    // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
312    //    number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(-z) is normalized) we have -126 <= e <= 0,
313    //    and thus the adjusted exponent is not lower than -126.
314    //
315    // Extract e from bits 11:19 of n and shift it into bits 23:31 (position of floating-point exponent).
316    const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x7FF))), 12);
317
318    // Use bits 0:11 bits of n, as integer, as an index for table lookup of l := 2**(n % 2048).
319    const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
320    const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
321    const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
322    float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx_lo]);
323    float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_2048[(uint32_t) vidx_hi]);
324    vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
325    vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_2048[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
326    const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
327    // Adjust exponent of the value l fetched from the exp2_k_over_2048_table to get the final s value.
328    const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
329
330    // Subtract the large number back to get the final n := round(-z * 2048 / log(2)) as a floating-point number.
331    vn = vsubq_f32(vn, vmagic_bias);
332
333    // Compute reduced argument t := (z + n * log(2) / 2048). Note that -t = -z - n * log(2) / 2048.
334    $if RR_STEPS == 1:
335      float32x4_t vt = ${VMULADDQ_F32}(vz, vn, vln2_o2048);
336    $else:
337      // Use Cody-Waite range reduction method (note two constants to represent log(2) / 2048) to improve accuracy.
338      float32x4_t vt = ${VMULADDQ_F32}(vz, vn, vln2_o2048_hi);
339      vt = ${VMULADDQ_F32}(vt, vn, vln2_o2048_lo);
340
341    // Compute degree-1 polynomial approximation for exp(-t) on [-log(2)/2048, log(2)/2048]:
342    //   P1(t) = 1 + t * c1
343    const float32x4_t vp = vmulq_f32(vt, vc1);
344
345    // Reconstruct the exp(-z) value:
346    //   y = s * (1 + t * c1)
347    //     = s + s * (t * c1))
348    //     = s + s * p
349    const float32x4_t vy = ${VMULADDQ_F32}(vs, vs, vp);
350
351    // Denominator of the sigmoid fraction: 1.0 + exp(-z)
352    const float32x4_t vd = vaddq_f32(vy, vone);
353
354    $if DIV_ALGO == "div":
355      // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
356      float32x4_t vf = vdivq_f32(vy, vd);
357    $else:
358      // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
359      // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
360      // Thus the reciprocal of the denominator never overflows.
361      float32x4_t vr = vrecpeq_f32(vd);
362
363      $if DIV_ALGO == "nr2fma":
364        vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
365      $else:
366        vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
367
368      $if DIV_ALGO == "nr2recps":
369        vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
370      $else:
371        vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
372
373      // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
374      float32x4_t vf = vmulq_f32(vy, vr);
375
376    // For inputs below denormal cutoff, replace output with +0.0f.
377    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
378    vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
379
380    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
381    const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
382    vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
383
384    float32x2_t vf_lo = vget_low_f32(vf);
385    if (n & (2 * sizeof(float))) {
386      vst1_f32(y, vf_lo); y += 2;
387      vf_lo = vget_high_f32(vf);
388    }
389    if (n & (1 * sizeof(float))) {
390      vst1_lane_f32(y, vf_lo, 0);
391    }
392  }
393}
394