• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1// Copyright 2019 Google LLC
2//
3// This source code is licensed under the BSD-style license found in the
4// LICENSE file in the root directory of this source tree.
5
6$assert BATCH_TILE % 8 == 0
7$assert BATCH_TILE >= 8
8$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
9$assert OP in ["ADD", "DIV", "MAX", "MIN", "MUL", "SUB"]
10#include <assert.h>
11
12#include <immintrin.h>
13
14#include <xnnpack/common.h>
15#include <xnnpack/vbinary.h>
16
17
18static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
19
20$_MM256_OP_PS = {
21$  "ADD": lambda x, y: "_mm256_add_ps(%s, %s)" % (x, y),
22$  "DIV": lambda x, y: "_mm256_div_ps(%s, %s)" % (x, y),
23$  "MAX": lambda x, y: "_mm256_max_ps(%s, %s)" % (x, y),
24$  "MIN": lambda x, y: "_mm256_min_ps(%s, %s)" % (x, y),
25$  "MUL": lambda x, y: "_mm256_mul_ps(%s, %s)" % (x, y),
26$  "SUB": lambda x, y: "_mm256_sub_ps(%s, %s)" % (x, y),
27$}[OP]
28void xnn_f32_v${OP.lower()}_ukernel__avx_x${BATCH_TILE}(
29    size_t n,
30    const float* a,
31    const float* b,
32    float* y,
33    const union xnn_f32_output_params params[restrict static 1])
34{
35  assert(n != 0);
36  assert(n % sizeof(float) == 0);
37
38  const __m256 vy_min = _mm256_broadcast_ps((const __m128*) params->sse.min);
39  const __m256 vy_max = _mm256_broadcast_ps((const __m128*) params->sse.max);
40
41  for (; n >= ${BATCH_TILE} * sizeof(float); n -= ${BATCH_TILE} * sizeof(float)) {
42    const __m256 va${ABC[0:8]} = _mm256_loadu_ps(a);
43    $for N in range(8, BATCH_TILE, 8):
44      const __m256 va${ABC[N:N+8]} = _mm256_loadu_ps(a + ${N});
45    a += ${BATCH_TILE};
46
47    const __m256 vb${ABC[0:8]} = _mm256_loadu_ps(b);
48    $for N in range(8, BATCH_TILE, 8):
49      const __m256 vb${ABC[N:N+8]} = _mm256_loadu_ps(b + ${N});
50    b += ${BATCH_TILE};
51
52    $for N in range(0, BATCH_TILE, 8):
53      __m256 vy${ABC[N:N+8]} = ${_MM256_OP_PS("va" + ABC[N:N+8], "vb" + ABC[N:N+8])};
54
55    $for N in range(0, BATCH_TILE, 8):
56      vy${ABC[N:N+8]} = _mm256_max_ps(vy${ABC[N:N+8]}, vy_min);
57
58    $for N in range(0, BATCH_TILE, 8):
59      vy${ABC[N:N+8]} = _mm256_min_ps(vy${ABC[N:N+8]}, vy_max);
60
61    _mm256_storeu_ps(y, vy${ABC[0:8]});
62    $for N in range(8, BATCH_TILE, 8):
63      _mm256_storeu_ps(y + ${N}, vy${ABC[N:N+8]});
64    y += ${BATCH_TILE};
65  }
66  $if BATCH_TILE >= 8:
67    for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
68      const __m256 va = _mm256_loadu_ps(a);
69      a += 8;
70
71      const __m256 vb = _mm256_loadu_ps(b);
72      b += 8;
73
74      __m256 vy = ${_MM256_OP_PS("va", "vb")};
75      vy = _mm256_max_ps(vy, vy_min);
76      vy = _mm256_min_ps(vy, vy_max);
77      _mm256_storeu_ps(y, vy);
78      y += 8;
79    }
80  if XNN_UNLIKELY(n != 0) {
81    assert(n >= 1 * sizeof(float));
82    assert(n <= 7 * sizeof(float));
83    __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
84
85    const __m256 va = _mm256_maskload_ps(a, vmask);
86    const __m256 vb = _mm256_maskload_ps(b, vmask);
87
88    __m256 vy = ${_MM256_OP_PS("va", "vb")};
89    vy = _mm256_max_ps(vy, vy_min);
90    vy = _mm256_min_ps(vy, vy_max);
91
92    // _mm256_maskstore_ps(y, vmask, vy) could be used here, but triggers msan failures (probably an msan bug).
93    __m128 vy_lo = _mm256_castps256_ps128(vy);
94    if (n & (4 * sizeof(float))) {
95      _mm_storeu_ps(y, vy_lo);
96      vy_lo = _mm256_extractf128_ps(vy, 1);
97      y += 4;
98    }
99    if (n & (2 * sizeof(float))) {
100      _mm_storel_pi((__m64*) y, vy_lo);
101      vy_lo = _mm_movehl_ps(vy_lo, vy_lo);
102      y += 2;
103    }
104    if (n & (1 * sizeof(float))) {
105      _mm_store_ss(y, vy_lo);
106    }
107  }
108}
109