1 /* Copyright 2018 The TensorFlow Authors. All Rights Reserved. 2 3 Licensed under the Apache License, Version 2.0 (the "License"); 4 you may not use this file except in compliance with the License. 5 You may obtain a copy of the License at 6 7 http://www.apache.org/licenses/LICENSE-2.0 8 9 Unless required by applicable law or agreed to in writing, software 10 distributed under the License is distributed on an "AS IS" BASIS, 11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 See the License for the specific language governing permissions and 13 limitations under the License. 14 ==============================================================================*/ 15 #ifndef TENSORFLOW_CORE_COMMON_RUNTIME_BASE_COLLECTIVE_EXECUTOR_H_ 16 #define TENSORFLOW_CORE_COMMON_RUNTIME_BASE_COLLECTIVE_EXECUTOR_H_ 17 18 #include <memory> 19 #include <string> 20 21 #include "tensorflow/core/common_runtime/buf_rendezvous.h" 22 #include "tensorflow/core/framework/collective.h" 23 #include "tensorflow/core/framework/device_attributes.pb.h" 24 25 namespace tensorflow { 26 class CollectiveImplementation; 27 class DeviceMgr; 28 class Device; 29 30 // Helper interface that aliases regular subfields of a Tensor as separate 31 // Tensors for in-place update. 32 class CollectiveAdapter { 33 public: ~CollectiveAdapter()34 virtual ~CollectiveAdapter() {} 35 36 // Move the backing tensor to 'output' with its original storage and 37 // shape. After this call this CollectiveAdapter object should be 38 // deleted immediately without calling any of its other methods. 39 virtual void ConsumeFinalValue(Tensor* output) = 0; 40 41 // const access to entire intermediate value for debugging 42 virtual const Tensor& Value() const = 0; 43 44 // Returns tensor for chunk i which aliases the backing buffer. 45 virtual Tensor ChunkAlias(int i) = 0; 46 47 // Returns tensor allocated on the same device but with its own 48 // separate backing buffer. Will have same type and size as 49 // chunk i. 50 virtual Tensor TempChunk(int i) const = 0; 51 52 // Bytes in chunk i 53 virtual int64 ChunkBytes(int i) const = 0; 54 55 // Generate a CPU RAM scalar tensor of the same DataType as the 56 // backing tensor with the given integer value. 57 virtual Tensor Scalar(int v) const = 0; 58 59 // Generate a scalar tensor of same DataType and on the same device 60 // as the backing tensor. 61 virtual Tensor Scalar(Allocator* a, 62 const AllocationAttributes& attr) const = 0; 63 64 // Debugging string describing buffer location 65 virtual string TBounds(const Tensor& t) const = 0; 66 67 virtual string DebugString() const = 0; 68 69 // Computes the number of elements per alias chunk tensor. 70 // 71 // A CHECK in tensor.cc expects that the memory buffer backing a 72 // Tensor will be aligned according to EIGEN_MAX_ALIGN_BYTES. To 73 // ensure that all chunk aliasing Tensors maintain this alignment we 74 // need to pick a chunk size that preserves it. Note than in extreme 75 // cases (impractical, but possible with very small tensors) one or 76 // more tail chunks can end up emptby. 77 static int64 AlignedChunkElts(int64 elt_bytes, int64 total_elts, 78 int64 num_chunks); 79 }; 80 81 // Create a CollectiveAdaptor wrapping 'output', specialized to its 82 // data-type and shape. If align_chunks == true then chunk size may 83 // be larger than output->NumElements() / num_chunks and one or more 84 // of the suffix chunks may be empty. Chunks will be arranged to start 85 // and end on alignment boundaries. If align_chunks == false then 86 // output->NumElements() % num_chunks must be 0 and all chunks will 87 // have exactly the same size, ignoring alignment issues. 88 CollectiveAdapter* MakeCollectiveAdapter(Tensor* output, int num_chunks, 89 Allocator* allocator, 90 bool align_chunks = true); 91 92 // Default implementation of CollectiveExecutor. Delegates the actual 93 // work of moving data to a class specialized for the operation type, 94 // arguments and device+interconnect topology. 95 class BaseCollectiveExecutor : public CollectiveExecutor { 96 public: BaseCollectiveExecutor(CollectiveExecutorMgrInterface * cem,PerStepCollectiveRemoteAccess * remote_access,int64 step_id,const DeviceMgr * dev_mgr,const string * gpu_ring_order)97 BaseCollectiveExecutor(CollectiveExecutorMgrInterface* cem, 98 PerStepCollectiveRemoteAccess* remote_access, 99 int64 step_id, const DeviceMgr* dev_mgr, 100 const string* gpu_ring_order) 101 : CollectiveExecutor(cem), 102 step_id_(step_id), 103 dev_mgr_(dev_mgr), 104 remote_access_(remote_access), 105 gpu_ring_order_(gpu_ring_order) {} 106 107 ~BaseCollectiveExecutor() override; 108 109 void StartAbort(const Status& s) override; 110 111 void ExecuteAsync(OpKernelContext* ctx, const CollectiveParams& col_params, 112 const string& exec_key, StatusCallback done) override; 113 114 void CompleteParamsAsync(const string& device, CollectiveParams* cp, 115 CancellationManager* cancel_mgr, 116 StatusCallback done) override; 117 remote_access()118 PerStepCollectiveRemoteAccess* remote_access() override { 119 return remote_access_.get(); 120 } 121 RecvFromPeer(const string & peer_device,const string & peer_task,bool peer_is_local,const string & key,Device * to_device,DeviceContext * to_device_ctx,const AllocatorAttributes & to_alloc_attr,Tensor * to_tensor,const DeviceLocality & client_locality,int stream_index,const StatusCallback & done)122 void RecvFromPeer(const string& peer_device, const string& peer_task, 123 bool peer_is_local, const string& key, Device* to_device, 124 DeviceContext* to_device_ctx, 125 const AllocatorAttributes& to_alloc_attr, Tensor* to_tensor, 126 const DeviceLocality& client_locality, int stream_index, 127 const StatusCallback& done) override { 128 remote_access_->RecvFromPeer( 129 peer_device, peer_task, peer_is_local, key, to_device, to_device_ctx, 130 to_alloc_attr, to_tensor, client_locality, stream_index, done); 131 } 132 PostToPeer(const string & peer_device,const string & peer_task,const string & key,Device * from_device,DeviceContext * from_device_ctx,const AllocatorAttributes & from_alloc_attr,const Tensor * from_tensor,const DeviceLocality & client_locality,const StatusCallback & done)133 void PostToPeer(const string& peer_device, const string& peer_task, 134 const string& key, Device* from_device, 135 DeviceContext* from_device_ctx, 136 const AllocatorAttributes& from_alloc_attr, 137 const Tensor* from_tensor, 138 const DeviceLocality& client_locality, 139 const StatusCallback& done) override { 140 remote_access_->PostToPeer(peer_device, peer_task, key, from_device, 141 from_device_ctx, from_alloc_attr, from_tensor, 142 client_locality, done); 143 } 144 RunClosure(std::function<void ()> closure)145 void RunClosure(std::function<void()> closure) override { 146 remote_access_->RunClosure(std::move(closure)); 147 } 148 149 // If we need to enforce an ordering on any portion of collective 150 // implementation, and the ordering is encoded via attribute on the collective 151 // op, this function will block until all dependencies for this collective 152 // have completed. 153 void WaitForDependencies(const CollectiveParams& col_params) override; 154 // Record that this collective has completed the portion of the implementation 155 // that needs to be ordered wrt other collectives, to unblock any of its 156 // dependent ops. 157 void UnblockDependencies(const CollectiveParams& col_params) override; 158 159 protected: 160 const int64 step_id_; 161 const DeviceMgr* dev_mgr_; // Not owned. 162 std::unique_ptr<PerStepCollectiveRemoteAccess> remote_access_; 163 const string* gpu_ring_order_; // Not owned. 164 mutex launch_mu_; 165 condition_variable launch_cv_; 166 // collective instance key -> number of local devices for which NCCL ops have 167 // been launched. 168 std::unordered_map<int32, int32> launched_ GUARDED_BY(launch_mu_); 169 170 private: 171 Status CreateCollective(const CollectiveParams& col_params, 172 CollectiveImplementationInterface** col_impl); 173 // Check if all ops on which this collective depends on have launched. 174 bool CheckDependencies(const CollectiveParams& col_params) 175 EXCLUSIVE_LOCKS_REQUIRED(launch_mu_); 176 }; 177 178 } // namespace tensorflow 179 #endif // TENSORFLOW_CORE_COMMON_RUNTIME_BASE_COLLECTIVE_EXECUTOR_H_ 180