• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 #ifndef TENSORFLOW_LITE_TOOLS_OPTIMIZE_QUANTIZATION_UTILS_H_
16 #define TENSORFLOW_LITE_TOOLS_OPTIMIZE_QUANTIZATION_UTILS_H_
17 
18 #include <cstdint>
19 
20 #include "tensorflow/lite/context.h"
21 #include "tensorflow/lite/core/api/error_reporter.h"
22 #include "tensorflow/lite/schema/schema_generated.h"
23 
24 namespace tflite {
25 namespace optimize {
26 namespace utils {
27 
28 // Returns the number of elements in the given tensor.
29 TfLiteStatus NumElements(const TensorT& tensor, uint64_t* num_elements);
30 
31 // Populates the scale and zero point for quantization parameters.
32 //
33 // Nudges min and max so that floating point 0 falls exactly on a quantized
34 // value, returning the nudges scale and zero_point.
35 void GetAsymmetricQuantizationParams(
36     float min, float max, const int quant_min, const int quant_max,
37     QuantizationParametersT* quantization_params);
38 
39 // Populates the single total max and min values for a tensor.
40 void FillSingleMinMax(const float* const input, const uint64_t input_size,
41                       QuantizationParametersT* quantization_params);
42 
43 // Populates the max and min values for per channel quantization.
44 TfLiteStatus FillPerChannelMinMax(const float* const input,
45                                   const std::vector<int>& dimension,
46                                   int32_t channel_dim_index,
47                                   QuantizationParametersT* quantization_params,
48                                   ErrorReporter* error_reporter);
49 
50 // Per-channel quantize a tensor at the given index and returns both scales and
51 // quantized values.
52 // Parameters:
53 // - tensor is the tensor to be quantized, needed to access associated
54 //   quantization parameters
55 // - input is the float input data to be quantized.
56 // - channel_dim_index is the channel index within "dimension".
57 //   dimension[channel_dim_index] gives the number of channels.
58 // - output_scale is the output scale, the size of which equals the number of
59 //   channels.
60 // - output_value is the output data, the size of which equals the number of
61 //   inputs.
62 TfLiteStatus SymmetricPerChannelQuantization(TensorT* tensor,
63                                              const float* const input,
64                                              int32_t channel_dim_index,
65                                              std::vector<float>* output_scales,
66                                              std::vector<int8_t>* output_value,
67                                              ErrorReporter* error_reporter);
68 
69 // Quantize the values given an array of scales.
70 void SymmetricPerChannelQuantizeValues(const float* const input,
71                                        const std::vector<float>& scales_inv,
72                                        const std::vector<int32_t>& dimension,
73                                        int32_t channel_dim_index,
74                                        std::vector<int8_t>* output_value);
75 
76 // Quantizes tensor using symmetric quantization with the min and max elements
77 // of the tensor.
78 TfLiteStatus SymmetricQuantizeTensor(ModelT* model, TensorT* tensor);
79 
80 // Quantizes tensor to float16.
81 TfLiteStatus QuantizeTensorFloat16(ModelT* model, TensorT* tensor);
82 
83 // Add quantization parameters.
84 TfLiteStatus AddQuantizationParams(const std::vector<float>& scales,
85                                    const std::vector<int64_t>& zero_point,
86                                    int quantized_dimension,
87                                    const uint8_t* buffer_data,
88                                    size_t buffer_size, TensorType output_type,
89                                    ModelT* model, TensorT* tensor,
90                                    ErrorReporter* error_reporter);
91 
92 // Populates the scales vector based on max and min values of quant_params
93 TfLiteStatus GetSymmetricScalesFromMaxMin(QuantizationParametersT* quant_params,
94                                           std::vector<float>* scales,
95                                           ErrorReporter* error_reporter);
96 
97 // Adjusts scale of weights if incompatible with bias scale and likely to
98 // cause overflow.
99 TfLiteStatus AdjustWeightsForBiasScale(QuantizationParametersT* quant_params,
100                                        const float* bias_data,
101                                        const size_t bias_size,
102                                        const float input_scale,
103                                        ErrorReporter* error_reporter);
104 
105 // Quantize tensor with per channel.
106 TfLiteStatus SymmetricQuantizeTensorPerChannel(ModelT* model, TensorT* tensor,
107                                                int32_t channel_dim_index,
108                                                ErrorReporter* error_reporter);
109 
110 // Symmetrically quantized float to 16bits.
111 TfLiteStatus SymmetricQuantizeFloatsToInt16(ModelT* model, TensorT* tensor,
112                                             float scaling_factor,
113                                             ErrorReporter* error_reporter);
114 
115 // Symmetrically quantized the bias for per-layer ops (i.e. FullyConnected).
116 TfLiteStatus SymmetricPerLayerBiasQuantize(ModelT* model, TensorT* tensor,
117                                            float scaling_factor,
118                                            ErrorReporter* error_reporter);
119 
120 // Symmetrically quantizes the bias for ops like Conv and DepthwiseConv.
121 // The scale of bias if weight_per_channel_scale[channel] * input_scale.
122 TfLiteStatus SymmetricPerChannelBiasQuantize(ModelT* model, TensorT* tensor,
123                                              float input_scale,
124                                              const float* weight_scales,
125                                              int number_of_dimension,
126                                              ErrorReporter* error_reporter);
127 
128 // Quantize weight with or without per channel.
129 TfLiteStatus QuantizeWeight(ModelT* model, TensorT* tensor, bool per_channel,
130                             int per_axis_index, ErrorReporter* error_reporter);
131 
132 // Get effective scale by combining input scale, intermediate scale and factors.
133 float GetEffectiveScale(ModelT* model, SubGraphT* subgraph, int op_idx,
134                         std::vector<int> input_index,
135                         std::vector<int> intermediate_index,
136                         std::vector<float> factors);
137 
138 // Quantize activation.
139 void QuantizeActivation(TensorT* tensor);
140 
141 // Quantize activation to 16bit.
142 TfLiteStatus QuantizeActivationToInt16(TensorT* tensor, float scale);
143 
144 // Get the power of two scale for min and max for symmetric quantization case.
145 int GetPowerOfTwoScale(float min, float max);
146 
147 }  // namespace utils
148 }  // namespace optimize
149 }  // namespace tflite
150 
151 #endif  // TENSORFLOW_LITE_TOOLS_OPTIMIZE_QUANTIZATION_UTILS_H_
152