• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  /*
2   * Copyright (C) 2005 The Android Open Source Project
3   *
4   * Licensed under the Apache License, Version 2.0 (the "License");
5   * you may not use this file except in compliance with the License.
6   * You may obtain a copy of the License at
7   *
8   *      http://www.apache.org/licenses/LICENSE-2.0
9   *
10   * Unless required by applicable law or agreed to in writing, software
11   * distributed under the License is distributed on an "AS IS" BASIS,
12   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13   * See the License for the specific language governing permissions and
14   * limitations under the License.
15   */
16  
17  #ifndef ANDROID_SORTED_VECTOR_H
18  #define ANDROID_SORTED_VECTOR_H
19  
20  #include <assert.h>
21  #include <stdint.h>
22  #include <sys/types.h>
23  
24  #include <log/log.h>
25  #include <utils/TypeHelpers.h>
26  #include <utils/Vector.h>
27  #include <utils/VectorImpl.h>
28  
29  // ---------------------------------------------------------------------------
30  
31  namespace android {
32  
33  // DO NOT USE: please use std::set
34  
35  template <class TYPE>
36  class SortedVector : private SortedVectorImpl
37  {
38      friend class Vector<TYPE>;
39  
40  public:
41              typedef TYPE    value_type;
42  
43      /*!
44       * Constructors and destructors
45       */
46  
47                              SortedVector();
48                              SortedVector(const SortedVector<TYPE>& rhs);
49      virtual                 ~SortedVector();
50  
51      /*! copy operator */
52      const SortedVector<TYPE>&   operator = (const SortedVector<TYPE>& rhs) const;
53      SortedVector<TYPE>&         operator = (const SortedVector<TYPE>& rhs);
54  
55      /*
56       * empty the vector
57       */
58  
clear()59      inline  void            clear()             { VectorImpl::clear(); }
60  
61      /*!
62       * vector stats
63       */
64  
65      //! returns number of items in the vector
size()66      inline  size_t          size() const                { return VectorImpl::size(); }
67      //! returns whether or not the vector is empty
isEmpty()68      inline  bool            isEmpty() const             { return VectorImpl::isEmpty(); }
69      //! returns how many items can be stored without reallocating the backing store
capacity()70      inline  size_t          capacity() const            { return VectorImpl::capacity(); }
71      //! sets the capacity. capacity can never be reduced less than size()
setCapacity(size_t size)72      inline  ssize_t         setCapacity(size_t size)    { return VectorImpl::setCapacity(size); }
73  
74      /*!
75       * C-style array access
76       */
77  
78      //! read-only C-style access
79      inline  const TYPE*     array() const;
80  
81      //! read-write C-style access. BE VERY CAREFUL when modifying the array
82      //! you must keep it sorted! You usually don't use this function.
83              TYPE*           editArray();
84  
85              //! finds the index of an item
86              ssize_t         indexOf(const TYPE& item) const;
87  
88              //! finds where this item should be inserted
89              size_t          orderOf(const TYPE& item) const;
90  
91  
92      /*!
93       * accessors
94       */
95  
96      //! read-only access to an item at a given index
97      inline  const TYPE&     operator [] (size_t index) const;
98      //! alternate name for operator []
99      inline  const TYPE&     itemAt(size_t index) const;
100      //! stack-usage of the vector. returns the top of the stack (last element)
101              const TYPE&     top() const;
102  
103      /*!
104       * modifying the array
105       */
106  
107              //! add an item in the right place (and replace the one that is there)
108              ssize_t         add(const TYPE& item);
109  
110              //! editItemAt() MUST NOT change the order of this item
editItemAt(size_t index)111              TYPE&           editItemAt(size_t index) {
112                  return *( static_cast<TYPE *>(VectorImpl::editItemLocation(index)) );
113              }
114  
115              //! merges a vector into this one
116              ssize_t         merge(const Vector<TYPE>& vector);
117              ssize_t         merge(const SortedVector<TYPE>& vector);
118  
119              //! removes an item
120              ssize_t         remove(const TYPE&);
121  
122      //! remove several items
123      inline  ssize_t         removeItemsAt(size_t index, size_t count = 1);
124      //! remove one item
removeAt(size_t index)125      inline  ssize_t         removeAt(size_t index)  { return removeItemsAt(index); }
126  
127      /*
128       * these inlines add some level of compatibility with STL.
129       */
130      typedef TYPE* iterator;
131      typedef TYPE const* const_iterator;
132  
begin()133      inline iterator begin() { return editArray(); }
end()134      inline iterator end()   { return editArray() + size(); }
begin()135      inline const_iterator begin() const { return array(); }
end()136      inline const_iterator end() const   { return array() + size(); }
reserve(size_t n)137      inline void reserve(size_t n) { setCapacity(n); }
empty()138      inline bool empty() const{ return isEmpty(); }
erase(iterator pos)139      inline iterator erase(iterator pos) {
140          ssize_t index = removeItemsAt(pos-array());
141          return begin() + index;
142      }
143  
144  protected:
145      virtual void    do_construct(void* storage, size_t num) const;
146      virtual void    do_destroy(void* storage, size_t num) const;
147      virtual void    do_copy(void* dest, const void* from, size_t num) const;
148      virtual void    do_splat(void* dest, const void* item, size_t num) const;
149      virtual void    do_move_forward(void* dest, const void* from, size_t num) const;
150      virtual void    do_move_backward(void* dest, const void* from, size_t num) const;
151      virtual int     do_compare(const void* lhs, const void* rhs) const;
152  };
153  
154  // ---------------------------------------------------------------------------
155  // No user serviceable parts from here...
156  // ---------------------------------------------------------------------------
157  
158  template<class TYPE> inline
SortedVector()159  SortedVector<TYPE>::SortedVector()
160      : SortedVectorImpl(sizeof(TYPE),
161                  ((traits<TYPE>::has_trivial_ctor   ? HAS_TRIVIAL_CTOR   : 0)
162                  |(traits<TYPE>::has_trivial_dtor   ? HAS_TRIVIAL_DTOR   : 0)
163                  |(traits<TYPE>::has_trivial_copy   ? HAS_TRIVIAL_COPY   : 0))
164                  )
165  {
166  }
167  
168  template<class TYPE> inline
SortedVector(const SortedVector<TYPE> & rhs)169  SortedVector<TYPE>::SortedVector(const SortedVector<TYPE>& rhs)
170      : SortedVectorImpl(rhs) {
171  }
172  
173  template<class TYPE> inline
~SortedVector()174  SortedVector<TYPE>::~SortedVector() {
175      finish_vector();
176  }
177  
178  template<class TYPE> inline
179  SortedVector<TYPE>& SortedVector<TYPE>::operator = (const SortedVector<TYPE>& rhs) {
180      SortedVectorImpl::operator = (rhs);
181      return *this;
182  }
183  
184  template<class TYPE> inline
185  const SortedVector<TYPE>& SortedVector<TYPE>::operator = (const SortedVector<TYPE>& rhs) const {
186      SortedVectorImpl::operator = (rhs);
187      return *this;
188  }
189  
190  template<class TYPE> inline
array()191  const TYPE* SortedVector<TYPE>::array() const {
192      return static_cast<const TYPE *>(arrayImpl());
193  }
194  
195  template<class TYPE> inline
editArray()196  TYPE* SortedVector<TYPE>::editArray() {
197      return static_cast<TYPE *>(editArrayImpl());
198  }
199  
200  
201  template<class TYPE> inline
202  const TYPE& SortedVector<TYPE>::operator[](size_t index) const {
203      LOG_FATAL_IF(index>=size(),
204              "%s: index=%u out of range (%u)", __PRETTY_FUNCTION__,
205              int(index), int(size()));
206      return *(array() + index);
207  }
208  
209  template<class TYPE> inline
itemAt(size_t index)210  const TYPE& SortedVector<TYPE>::itemAt(size_t index) const {
211      return operator[](index);
212  }
213  
214  template<class TYPE> inline
top()215  const TYPE& SortedVector<TYPE>::top() const {
216      return *(array() + size() - 1);
217  }
218  
219  template<class TYPE> inline
add(const TYPE & item)220  ssize_t SortedVector<TYPE>::add(const TYPE& item) {
221      return SortedVectorImpl::add(&item);
222  }
223  
224  template<class TYPE> inline
indexOf(const TYPE & item)225  ssize_t SortedVector<TYPE>::indexOf(const TYPE& item) const {
226      return SortedVectorImpl::indexOf(&item);
227  }
228  
229  template<class TYPE> inline
orderOf(const TYPE & item)230  size_t SortedVector<TYPE>::orderOf(const TYPE& item) const {
231      return SortedVectorImpl::orderOf(&item);
232  }
233  
234  template<class TYPE> inline
merge(const Vector<TYPE> & vector)235  ssize_t SortedVector<TYPE>::merge(const Vector<TYPE>& vector) {
236      return SortedVectorImpl::merge(reinterpret_cast<const VectorImpl&>(vector));
237  }
238  
239  template<class TYPE> inline
merge(const SortedVector<TYPE> & vector)240  ssize_t SortedVector<TYPE>::merge(const SortedVector<TYPE>& vector) {
241      return SortedVectorImpl::merge(reinterpret_cast<const SortedVectorImpl&>(vector));
242  }
243  
244  template<class TYPE> inline
remove(const TYPE & item)245  ssize_t SortedVector<TYPE>::remove(const TYPE& item) {
246      return SortedVectorImpl::remove(&item);
247  }
248  
249  template<class TYPE> inline
removeItemsAt(size_t index,size_t count)250  ssize_t SortedVector<TYPE>::removeItemsAt(size_t index, size_t count) {
251      return VectorImpl::removeItemsAt(index, count);
252  }
253  
254  // ---------------------------------------------------------------------------
255  
256  template<class TYPE>
do_construct(void * storage,size_t num)257  UTILS_VECTOR_NO_CFI void SortedVector<TYPE>::do_construct(void* storage, size_t num) const {
258      construct_type( reinterpret_cast<TYPE*>(storage), num );
259  }
260  
261  template<class TYPE>
do_destroy(void * storage,size_t num)262  void SortedVector<TYPE>::do_destroy(void* storage, size_t num) const {
263      destroy_type( reinterpret_cast<TYPE*>(storage), num );
264  }
265  
266  template<class TYPE>
do_copy(void * dest,const void * from,size_t num)267  UTILS_VECTOR_NO_CFI void SortedVector<TYPE>::do_copy(void* dest, const void* from, size_t num) const {
268      copy_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
269  }
270  
271  template<class TYPE>
do_splat(void * dest,const void * item,size_t num)272  UTILS_VECTOR_NO_CFI void SortedVector<TYPE>::do_splat(void* dest, const void* item, size_t num) const {
273      splat_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(item), num );
274  }
275  
276  template<class TYPE>
do_move_forward(void * dest,const void * from,size_t num)277  UTILS_VECTOR_NO_CFI void SortedVector<TYPE>::do_move_forward(void* dest, const void* from, size_t num) const {
278      move_forward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
279  }
280  
281  template<class TYPE>
do_move_backward(void * dest,const void * from,size_t num)282  UTILS_VECTOR_NO_CFI void SortedVector<TYPE>::do_move_backward(void* dest, const void* from, size_t num) const {
283      move_backward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
284  }
285  
286  template<class TYPE>
do_compare(const void * lhs,const void * rhs)287  int SortedVector<TYPE>::do_compare(const void* lhs, const void* rhs) const {
288      return compare_type( *reinterpret_cast<const TYPE*>(lhs), *reinterpret_cast<const TYPE*>(rhs) );
289  }
290  
291  }  // namespace android
292  
293  // ---------------------------------------------------------------------------
294  
295  #endif // ANDROID_SORTED_VECTOR_H
296