• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1
2
3
4
5<!DOCTYPE html>
6<html lang="en">
7<head>
8  <meta charset="utf-8"  />
9  <meta name="viewport" content="width=device-width,minimum-scale=1,initial-scale=1,shrink-to-fit=no"  />
10  <title>ImageMagick - Architecture</title>
11  <meta name="application-name" content="ImageMagick" />
12  <meta name="description" content="Use ImageMagick® to create, edit, compose, and convert bitmap images. Resize an image, crop it, change its shades and colors, add captions, and more." />
13  <meta name="application-url" content="https://imagemagick.org" />
14  <meta name="generator" content="PHP" />
15  <meta name="keywords" content="architecture, ImageMagick, PerlMagick, image processing, image, photo, software, Magick++, OpenMP, convert" />
16  <meta name="rating" content="GENERAL" />
17  <meta name="robots" content="INDEX, FOLLOW" />
18  <meta name="generator" content="ImageMagick Studio LLC" />
19  <meta name="author" content="ImageMagick Studio LLC" />
20  <meta name="revisit-after" content="2 DAYS" />
21  <meta name="resource-type" content="document" />
22  <meta name="copyright" content="Copyright (c) 1999-2020 ImageMagick Studio LLC" />
23  <meta name="distribution" content="Global" />
24  <meta name="magick-serial" content="P131-S030410-R485315270133-P82224-A6668-G1245-1" />
25  <meta property='og:url' content='../' />
26  <meta property='og:title' content='ImageMagick' />
27  <meta property='og:image' content='../images/logo.png' />
28  <meta property='og:type' content='website' />
29  <meta property='og:site_name' content='ImageMagick' />
30  <meta property='og:description' content="Convert, Edit, or Compose Bitmap Images" />
31  <meta name="google-site-verification" content="_bMOCDpkx9ZAzBwb2kF3PRHbfUUdFj2uO8Jd1AXArz4" />
32  <link href="../www/architecture.html" rel="canonical" />
33  <link href="../images/wand.png" rel="icon" />
34  <link href="../images/wand.ico" rel="shortcut icon" />
35  <link href="assets/magick.css" rel="stylesheet" />
36</head>
37<body>
38  <nav class="navbar navbar-expand-md navbar-dark fixed-top bg-dark">
39    <a class="navbar-brand" href="../index.html"><img class="d-block" id="icon" alt="ImageMagick" width="32" height="32" src="../images/wand.ico"/></a>
40    <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarsMagick" aria-controls="navbarsMagick" aria-expanded="false" aria-label="Toggle navigation">
41      <span class="navbar-toggler-icon"></span>
42    </button>
43
44    <div class="navbar-collapse collapse" id="navbarsMagick" style="">
45    <ul class="navbar-nav mr-auto">
46      <li class="nav-item ">
47        <a class="nav-link" href="../index.html">Home <span class="sr-only">(current)</span></a>
48      </li>
49      <li class="nav-item ">
50        <a class="nav-link" href="download.html">Download</a>
51      </li>
52      <li class="nav-item ">
53        <a class="nav-link" href="command-line-tools.html">Tools</a>
54      </li>
55      <li class="nav-item ">
56        <a class="nav-link" href="command-line-processing.html">Command-line</a>
57      </li>
58      <li class="nav-item ">
59        <a class="nav-link" href="resources.html">Resources</a>
60      </li>
61      <li class="nav-item ">
62        <a class="nav-link" href="develop.html">Develop</a>
63      </li>
64      <li class="nav-item">
65        <a class="nav-link" target="_blank" href="https://imagemagick.org/discourse-server/">Community</a>
66      </li>
67    </ul>
68    <form class="form-inline my-2 my-lg-0" action="https://imagemagick.org/script/search.php">
69      <input class="form-control mr-sm-2" type="text" name="q" placeholder="Search" aria-label="Search">
70      <button class="btn btn-outline-success my-2 my-sm-0" type="submit" name="sa">Search</button>
71    </form>
72    </div>
73  </nav>
74  <div class="container">
75   <script async="async" src="http://localhost/pagead/js/adsbygoogle.js"></script>    <ins class="adsbygoogle"
76         style="display:block"
77         data-ad-client="ca-pub-3129977114552745"
78         data-ad-slot="6345125851"
79         data-full-width-responsive="true"
80         data-ad-format="horizontal"></ins>
81    <script>
82      (adsbygoogle = window.adsbygoogle || []).push({});
83    </script>
84
85  </div>
86
87  <main class="container">
88    <div class="magick-template">
89<div class="magick-header">
90<p class="text-center"><a href="architecture.html#cache">The Pixel Cache</a> • <a href="architecture.html#stream">Streaming Pixels</a> • <a href="architecture.html#properties">Image Properties and Profiles</a> • <a href="architecture.html#tera-pixel">Large Image Support</a> • <a href="architecture.html#threads">Threads of Execution</a> • <a href="architecture.html#distributed">Heterogeneous Distributed Processing</a> • <a href="architecture.html#coders">Custom Image Coders</a> • <a href="architecture.html#filters">Custom Image Filters</a></p>
91
92<p class="lead magick-description">The citizens of Oz were quite content with their benefactor, the all-powerful Wizard.  They accepted his wisdom and benevolence without ever questioning the who, why, and where of his power.  Like the citizens of Oz, if you feel comfortable that ImageMagick can help you convert, edit, or compose your images without knowing what goes on behind the curtain, feel free to skip this section.  However, if you want to know more about the software and algorithms behind ImageMagick, read on.  To fully benefit from this discussion, you should be comfortable with image nomenclature and be familiar with computer programming.</p>
93
94<h2><a class="anchor" id="overview"></a>Architecture Overview</h2>
95
96<p>An image typically consists of a rectangular region of pixels and metadata.  To convert, edit, or compose an image in an efficient manner, we need convenient access to any pixel anywhere within the region (and sometimes outside the region).  And in the case of an image sequence, we need access to any pixel of any region of any image in the sequence.  However, there are hundreds of image formats such JPEG, TIFF, PNG, GIF, etc., that makes it difficult to access pixels on demand.  Within these formats we find differences in:</p>
97
98<ul>
99  <li>colorspace (e.g sRGB, linear RGB, linear GRAY, CMYK, YUV, Lab, etc.)</li>
100  <li>bit depth (.e.g 1, 4, 8, 12, 16, etc.)</li>
101  <li>storage format (e.g. unsigned, signed, float, double, etc.)</li>
102  <li>compression (e.g. uncompressed, RLE, Zip, BZip, etc.)</li>
103  <li>orientation (i.e. top-to-bottom, right-to-left, etc.),</li>
104  <li>layout (.e.g. raw, interspersed with opcodes, etc.)</li>
105</ul>
106
107<p>In addition, some image pixels may require attenuation, some formats permit more than one frame, and some formats contain vector graphics that must first be rasterized (converted from vector to pixels).</p>
108
109<p>An efficient implementation of an image processing algorithm may require we get or set:</p>
110
111<ul>
112  <li>one pixel a time (e.g. pixel at location 10,3)</li>
113  <li>a single scanline (e.g. all pixels from row 4)</li>
114  <li>a few scanlines at once (e.g. pixel rows 4-7)</li>
115  <li>a single column or columns of pixels (e.g. all pixels from column 11)</li>
116  <li>an arbitrary region of pixels from the image (e.g. pixels defined at 10,7 to 10,19)</li>
117  <li>a pixel in random order (e.g. pixel at 14,15 and 640,480)</li>
118  <li>pixels from two different images (e.g. pixel at 5,1 from image 1 and pixel at 5,1 from image 2)</li>
119  <li>pixels outside the boundaries of the image (e.g. pixel at -1,-3)</li>
120  <li>a pixel component that is unsigned (65311) or in a floating-point representation (e.g. 0.17836)</li>
121  <li>a high-dynamic range pixel that can include negative values (e.g. -0.00716) as well as values that exceed the quantum depth (e.g. 65931)</li>
122  <li>one or more pixels simultaneously in different threads of execution</li>
123  <li>all the pixels in memory to take advantage of speed-ups offered by executing in concert across heterogeneous platforms consisting of CPUs, GPUs, and other processors</li>
124  <li>traits associated with each channel to specify whether the pixel channel is copied, updated, or blended</li>
125  <li>masks that define which pixels are eligible to be updated</li>
126  <li>extra channels that benefits the user but otherwise remain untouched by ImageMagick image processing algorithms</li>
127</ul>
128
129<p>Given the varied image formats and image processing requirements, we implemented the ImageMagick <a href="architecture.html#cache">pixel cache</a> to provide convenient sequential or parallel access to any pixel on demand anywhere inside the image region (i.e. <a href="architecture.html#authentic-pixels">authentic pixels</a>)  and from any image in a sequence.  In addition, the pixel cache permits access to pixels outside the boundaries defined by the image (i.e. <a href="architecture.html#virtual-pixels">virtual pixels</a>).</p>
130
131<p>In addition to pixels, images have a plethora of <a href="architecture.html#properties">image properties and profiles</a>.  Properties include the well known attributes such as width, height, depth, and colorspace.  An image may have optional properties which might include the image author, a comment, a create date, and others.  Some images also include profiles for color management, or EXIF, IPTC, 8BIM, or XMP informational profiles.  ImageMagick provides command line options and programming methods to get, set, or view image properties or profiles or apply profiles.</p>
132
133<p>ImageMagick consists of nearly a half million lines of C code and optionally depends on several million lines of code in dependent libraries (e.g. JPEG, PNG, TIFF libraries).  Given that, one might expect a huge architecture document.  However, a great majority of image processing is simply accessing pixels and its metadata and our simple, elegant, and efficient implementation makes this easy for the ImageMagick developer.  We discuss the implementation of the pixel cache and getting and setting image properties and profiles in the next few sections. Next, we discuss using ImageMagick within a <a href="architecture.html#threads">thread</a> of execution.  In the final sections, we discuss <a href="architecture.html#coders">image coders</a> to read or write a particular image format followed by a few words on creating a <a href="architecture.html#filters">filter</a> to access or update pixels based on your custom requirements.</p>
134
135<h2><a class="anchor" id="cache"></a>The Pixel Cache</h2>
136
137<p>The ImageMagick pixel cache is a repository for image pixels with up to 32 channels.  The channels are stored contiguously at the depth specified when ImageMagick was built.  The channel depths are 8 bits-per-pixel component for the Q8 version of ImageMagick, 16 bits-per-pixel component for the Q16 version, and 32 bits-per-pixel component for the Q32 version.  By default pixel components are 32-bit floating-bit <a href="high-dynamic-range.html">high dynamic-range</a> quantities. The channels can hold any value but typically contain red, green, blue, and alpha intensities or cyan, magenta, yellow, black and alpha intensities.  A channel might contain the colormap indexes for colormapped images or the black channel for CMYK images.  The pixel cache storage may be heap memory, disk-backed memory mapped, or on disk.  The pixel cache is reference-counted.  Only the cache properties are copied when the cache is cloned.  The cache pixels are subsequently copied only when you signal your intention to update any of the pixels.</p>
138
139<h3>Create the Pixel Cache</h3>
140
141<p>The pixel cache is associated with an image when it is created and it is initialized when you try to get or put pixels.  Here are three common methods to associate a pixel cache with an image:</p>
142
143<dl>
144<dt class="col-md-8">Create an image canvas initialized to the background color:</dt><br/>
145<dd class="col-md-8"><pre class="highlight"><code>image=AllocateImage(image_info);
146if (SetImageExtent(image,640,480) == MagickFalse)
147  { /* an exception was thrown */ }
148(void) QueryMagickColor("red",&amp;image-&gt;background_color,&amp;image-&gt;exception);
149SetImageBackgroundColor(image);
150</code></pre></dd>
151
152<dt class="col-md-8">Create an image from a JPEG image on disk:</dt><br/>
153<dd class="col-md-8"><pre class="highlight"><code>(void) strcpy(image_info-&gt;filename,"image.jpg"):
154image=ReadImage(image_info,exception);
155if (image == (Image *) NULL)
156  { /* an exception was thrown */ }
157</code></pre></dd>
158<dt class="col-md-8">Create an image from a memory based image:</dt><br/>
159<dd class="col-md-8"><pre class="highlight"><code>image=BlobToImage(blob_info,blob,extent,exception);
160if (image == (Image *) NULL)
161  { /* an exception was thrown */ }
162</code></pre></dd>
163</dl>
164
165<p>In our discussion of the pixel cache, we use the <a href="magick-core.html">MagickCore API</a> to illustrate our points, however, the principles are the same for other program interfaces to ImageMagick.</p>
166
167<p>When the pixel cache is initialized, pixels are scaled from whatever bit depth they originated from to that required by the pixel cache.  For example, a 1-channel 1-bit monochrome PBM image is scaled to 8-bit gray image, if you are using the Q8 version of ImageMagick, and 16-bit RGBA for the Q16 version.  You can determine which version you have with the <a href="command-line-options.html#version">&#x2011;version</a> option: </p>
168
169<pre class="highlight"><span class="crtprompt">$ </span><span class='crtin'>identify -version</span><span class='crtout'><br/></span><span class="crtprompt">$ </span><span class='crtin'>Version: ImageMagick 7.0.9-14 2020-01-01 Q16 https://imagemagick.org</span></pre>
170<p>As you can see, the convenience of the pixel cache sometimes comes with a trade-off in storage (e.g. storing a 1-bit monochrome image as 16-bit is wasteful) and speed (i.e. storing the entire image in memory is generally slower than accessing one scanline of pixels at a time).  In most cases, the benefits of the pixel cache typically outweigh any disadvantages.</p>
171
172<h3><a class="anchor" id="authentic-pixels"></a>Access the Pixel Cache</h3>
173
174<p>Once the pixel cache is associated with an image, you typically want to get, update, or put pixels into it.  We refer to pixels inside the image region as <a href="architecture.html#authentic-pixels">authentic pixels</a> and outside the region as <a href="architecture.html#virtual-pixels">virtual pixels</a>.  Use these methods to access the pixels in the cache:</p>
175<ul>
176  <li><a href="api/cache.html#GetVirtualPixels">GetVirtualPixels()</a>: gets pixels that you do not intend to modify or pixels that lie outside the image region (e.g. pixel @ -1,-3)</li>
177  <li><a href="api/cache.html#GetAuthenticPixels">GetAuthenticPixels()</a>: gets pixels that you intend to modify</li>
178  <li><a href="api/cache.html#QueueAuthenticPixels">QueueAuthenticPixels()</a>: queue pixels that you intend to set</li>
179  <li><a href="api/cache.html#SyncAuthenticPixels">SyncAuthenticPixels()</a>: update the pixel cache with any modified pixels</li>
180</ul>
181
182<p>Here is a typical <a href="magick-core.html">MagickCore</a> code snippet for manipulating pixels in the pixel cache.  In our example, we copy pixels from the input image to the output image and decrease the intensity by 10%:</p>
183
184<pre class="pre-scrollable"><code>const Quantum
185  *p;
186
187Quantum
188  *q;
189
190ssize_t
191  x,
192  y;
193
194destination=CloneImage(source,source->columns,source->rows,MagickTrue,
195  exception);
196if (destination == (Image *) NULL)
197  { /* an exception was thrown */ }
198for (y=0; y &lt; (ssize_t) source-&gt;rows; y++)
199{
200  p=GetVirtualPixels(source,0,y,source-&gt;columns,1,exception);
201  q=GetAuthenticPixels(destination,0,y,destination-&gt;columns,1,exception);
202  if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)
203    break;
204  for (x=0; x &lt; (ssize_t) source-&gt;columns; x++)
205  {
206    SetPixelRed(image,90*p-&gt;red/100,q);
207    SetPixelGreen(image,90*p-&gt;green/100,q);
208    SetPixelBlue(image,90*p-&gt;blue/100,q);
209    SetPixelAlpha(image,90*p-&gt;opacity/100,q);
210    p+=GetPixelChannels(source);
211    q+=GetPixelChannels(destination);
212  }
213  if (SyncAuthenticPixels(destination,exception) == MagickFalse)
214    break;
215}
216if (y &lt; (ssize_t) source-&gt;rows)
217  { /* an exception was thrown */ }
218</code></pre>
219
220<p>When we first create the destination image by cloning the source image, the pixel cache pixels are not copied.  They are only copied when you signal your intentions to modify or set the pixel cache by calling <a href="api/cache.html#GetAuthenticPixels">GetAuthenticPixels()</a> or <a href="api/cache.html#QueueAuthenticPixels">QueueAuthenticPixels()</a>. Use <a href="api/cache.html#QueueAuthenticPixels">QueueAuthenticPixels()</a> if you want to set new pixel values rather than update existing ones.  You could use GetAuthenticPixels() to set pixel values but it is slightly more efficient to use QueueAuthenticPixels() instead. Finally, use <a href="api/cache.html#SyncAuthenticPixels">SyncAuthenticPixels()</a> to ensure any updated pixels are pushed to the pixel cache.</p>
221
222<p>You can associate arbitrary content with each pixel, called <em>meta</em> content.  Use  <a href="api/cache.html#GetVirtualMetacontent">GetVirtualMetacontent()</a> (to read the content) or <a href="api/cache.html#GetAuthenticMetacontent">GetAuthenticMetacontent()</a> (to update the content) to gain access to this content.  For example, to print the metacontent, use:</p>
223
224<pre class="highlight"><code>const void
225  *metacontent;
226
227for (y=0; y &lt; (ssize_t) source-&gt;rows; y++)
228{
229  p=GetVirtualPixels(source,0,y,source-&gt;columns,1);
230  if (p == (const Quantum *) NULL)
231    break;
232  metacontent=GetVirtualMetacontent(source);
233  /* print meta content here */
234}
235if (y &lt; (ssize_t) source-&gt;rows)
236  /* an exception was thrown */
237</code></pre>
238
239<p>The pixel cache manager decides whether to give you direct or indirect access to the image pixels.  In some cases the pixels are staged to an intermediate buffer-- and that is why you must call SyncAuthenticPixels() to ensure this buffer is <var>pushed</var> out to the pixel cache to guarantee the corresponding pixels in the cache are updated.  For this reason we recommend that you only read or update a scanline or a few scanlines of pixels at a time.  However, you can get any rectangular region of pixels you want.  GetAuthenticPixels() requires that the region you request is within the bounds of the image area.  For a 640 by 480 image, you can get a scanline of 640 pixels at row 479 but if you ask for a scanline at row 480, an exception is returned (rows are numbered starting at 0).  GetVirtualPixels() does not have this constraint.  For example,</p>
240
241<pre class="highlight"><code>p=GetVirtualPixels(source,-3,-3,source-&gt;columns+3,6,exception);
242</code></pre>
243
244<p>gives you the pixels you asked for without complaint, even though some are not within the confines of the image region.</p>
245
246<h3><a class="anchor" id="virtual-pixels"></a>Virtual Pixels</h3>
247
248<p>There are a plethora of image processing algorithms that require a neighborhood of pixels about a pixel of interest.  The algorithm typically includes a caveat concerning how to handle pixels around the image boundaries, known as edge pixels.  With virtual pixels, you do not need to concern yourself about special edge processing other than choosing  which virtual pixel method is most appropriate for your algorithm.</p>
249 <p>Access to the virtual pixels are controlled by the <a href="api/cache.html#SetImageVirtualPixelMethod">SetImageVirtualPixelMethod()</a> method from the MagickCore API or the <a href="command-line-options.html#virtual-pixel">&#x2011;virtual&#x2011;pixel</a> option from the command line.  The methods include:</p>
250
251<dl class="row">
252<dt class="col-md-4">background</dt>
253<dd class="col-md-8">the area surrounding the image is the background color</dd>
254<dt class="col-md-4">black</dt>
255<dd class="col-md-8">the area surrounding the image is black</dd>
256<dt class="col-md-4">checker-tile</dt>
257<dd class="col-md-8">alternate squares with image and background color</dd>
258<dt class="col-md-4">dither</dt>
259<dd class="col-md-8">non-random 32x32 dithered pattern</dd>
260<dt class="col-md-4">edge</dt>
261<dd class="col-md-8">extend the edge pixel toward infinity (default)</dd>
262<dt class="col-md-4">gray</dt>
263<dd class="col-md-8">the area surrounding the image is gray</dd>
264<dt class="col-md-4">horizontal-tile</dt>
265<dd class="col-md-8">horizontally tile the image, background color above/below</dd>
266<dt class="col-md-4">horizontal-tile-edge</dt>
267<dd class="col-md-8">horizontally tile the image and replicate the side edge pixels</dd>
268<dt class="col-md-4">mirror</dt>
269<dd class="col-md-8">mirror tile the image</dd>
270<dt class="col-md-4">random</dt>
271<dd class="col-md-8">choose a random pixel from the image</dd>
272<dt class="col-md-4">tile</dt>
273<dd class="col-md-8">tile the image</dd>
274<dt class="col-md-4">transparent</dt>
275<dd class="col-md-8">the area surrounding the image is transparent blackness</dd>
276<dt class="col-md-4">vertical-tile</dt>
277<dd class="col-md-8">vertically tile the image, sides are background color</dd>
278<dt class="col-md-4">vertical-tile-edge</dt>
279<dd class="col-md-8">vertically tile the image and replicate the side edge pixels</dd>
280<dt class="col-md-4">white</dt>
281<dd class="col-md-8">the area surrounding the image is white</dd>
282</dl>
283
284
285<h3>Cache Storage and Resource Requirements</h3>
286
287<p>Recall that this simple and elegant design of the ImageMagick pixel cache comes at a cost in terms of storage and processing speed.  The pixel cache storage requirements scales with the area of the image and the bit depth of the pixel components.  For example, if we have a 640 by 480 image and we are using the non-HDRI Q16 version of ImageMagick, the pixel cache consumes image <var>width * height * bit-depth / 8 * channels</var> bytes or approximately 2.3 mebibytes (i.e. 640 * 480 * 2 * 4).  Not too bad, but what if your image is 25000 by 25000 pixels?  The pixel cache requires approximately 4.7 gibibytes of storage.  Ouch.  ImageMagick accounts for possible huge storage requirements by caching large images to disk rather than memory.  Typically the pixel cache is stored in memory using heap memory. If heap memory is exhausted, we create the pixel cache on disk and attempt to memory-map it. If memory-map memory is exhausted, we simply use standard disk I/O.  Disk storage is cheap but it is also very slow, upwards of 1000 times slower than memory.  We can get some speed improvements, up to 5 times, if we use memory mapping to the disk-based cache.  These decisions about storage are made <var>automagically</var> by the pixel cache manager negotiating with the operating system.  However, you can influence how the pixel cache manager allocates the pixel cache with <var>cache resource limits</var>.  The limits include:</p>
288
289<dl class="row">
290  <dt class="col-md-4">width</dt>
291  <dd class="col-md-8">maximum width of an image.  Exceed this limit and an exception is thrown and processing stops.</dd>
292  <dt class="col-md-4">height</dt>
293  <dd class="col-md-8">maximum height of an image.  Exceed this limit and an exception is thrown and processing stops.</dd>
294  <dt class="col-md-4">area</dt>
295  <dd class="col-md-8">maximum area in bytes of any one image that can reside in the pixel cache memory.  If this limit is exceeded, the image is automagically cached to disk and optionally memory-mapped.</dd>
296  <dt class="col-md-4">memory</dt>
297  <dd class="col-md-8">maximum amount of memory in bytes to allocate for the pixel cache from the heap.</dd>
298  <dt class="col-md-4">map</dt>
299  <dd class="col-md-8">maximum amount of memory map in bytes to allocate for the pixel cache.</dd>
300  <dt class="col-md-4">disk</dt>
301  <dd class="col-md-8">maximum amount of disk space in bytes permitted for use by the pixel cache.  If this limit is exceeded, the pixel cache is not created and a fatal exception is thrown.</dd>
302  <dt class="col-md-4">files</dt>
303  <dd class="col-md-8">maximum number of open pixel cache files.  When this limit is exceeded, any subsequent pixels cached to disk are closed and reopened on demand. This behavior permits a large number of images to be accessed simultaneously on disk, but without a speed penalty due to repeated open/close calls.</dd>
304  <dt class="col-md-4">thread</dt>
305  <dd class="col-md-8">maximum number of threads that are permitted to run in parallel.</dd>
306  <dt class="col-md-4">time</dt>
307  <dd class="col-md-8">maximum number of seconds that the process is permitted to execute.  Exceed this limit and an exception is thrown and processing stops.</dd>
308</dl>
309
310<p>Note, these limits pertain to the ImageMagick pixel cache.  Certain algorithms within ImageMagick do not respect these limits nor does any of the external delegate libraries (e.g. JPEG, TIFF, etc.).</p>
311
312<p>To determine the current setting of these limits, use this command:</p>
313<pre class="highlight">-> identify -list resource
314Resource limits:
315  Width: 100MP
316  Height: 100MP
317  Area: 25.181GB
318  Memory: 11.726GiB
319  Map: 23.452GiB
320  Disk: unlimited
321  File: 768
322  Thread: 12
323  Throttle: 0
324  Time: unlimited
325</pre>
326
327<p>You can set these limits either as a <a href="security-policy.html">security policy</a> (see <a href="https://imagemagick.org/source/policy.xml">policy.xml</a>), with an <a href="resources.html#environment">environment variable</a>, with the <a href="command-line-options.html#limit">-limit</a> command line option, or with the <a href="api/resource.html#SetMagickResourceLimit">SetMagickResourceLimit()</a> MagickCore API method. As an example, our online web interface to ImageMagick, <a href="../MagickStudio/scripts/MagickStudio.cgi">ImageMagick Studio</a>, includes these policy limits to help prevent a denial-of-service:</p>
328<pre class="highlight"><code>&lt;policymap>
329  &lt;policy domain="resource" name="temporary-path" value="/tmp"/>
330  &lt;policy domain="resource" name="memory" value="256MiB"/>
331  &lt;policy domain="resource" name="map" value="512MiB"/>
332  &lt;policy domain="resource" name="width" value="8KP"/>
333  &lt;policy domain="resource" name="height" value="8KP"/>
334  &lt;policy domain="resource" name="area" value="128MB"/>
335  &lt;policy domain="resource" name="disk" value="1GiB"/>
336  &lt;policy domain="resource" name="file" value="768"/>
337  &lt;policy domain="resource" name="thread" value="2"/>
338  &lt;policy domain="resource" name="throttle" value="0"/>
339  &lt;policy domain="resource" name="time" value="120"/>
340  &lt;policy domain="system" name="precision" value="6"/>
341  &lt;policy domain="cache" name="shared-secret" value="replace with your secret phrase" stealth="true"/>
342  &lt;policy domain="delegate" rights="none" pattern="HTTPS" />
343  &lt;policy domain="path" rights="none" pattern="@*"/>  &lt;!-- indirect reads not permitted -->
344&lt;/policymap>
345</code></pre>
346<p>Since we process multiple simultaneous sessions, we don't want any one session consuming all the available memory.With this policy, large images are cached to disk. If the image is too large and exceeds the pixel cache disk limit, the program exits. In addition, we place a time limit to prevent any run-away processing tasks. If any one image has a width or height that exceeds 8192 pixels, an exception is thrown and processing stops. As of ImageMagick 7.0.1-8 you can prevent the use of any delegate or all delegates (set the pattern to "*"). Note, prior to this release, use a domain of "coder" to prevent delegate usage (e.g. domain="coder" rights="none" pattern="HTTPS"). The policy also prevents indirect reads.  If you want to, for example, read text from a file (e.g. caption:@myCaption.txt), you'll need to remove this policy.</p>
347
348<p>Note, the cache limits are global to each invocation of ImageMagick, meaning if you create several images, the combined resource requirements are compared to the limit to determine the pixel cache storage disposition.</p>
349
350<p>To determine which type and how much resources are consumed by the pixel cache, add the <a href="command-line-options.html#debug">-debug cache</a> option to the command-line:</p>
351<pre class="highlight">-> convert -debug cache logo: -sharpen 3x2 null:
3522016-12-17T13:33:42-05:00 0:00.000 0.000u 7.0.0 Cache convert: cache.c/DestroyPixelCache/1275/Cache
353  destroy
3542016-12-17T13:33:42-05:00 0:00.000 0.000u 7.0.0 Cache convert: cache.c/OpenPixelCache/3834/Cache
355  open LOGO[0] (Heap Memory, 640x480x4 4.688MiB)
3562016-12-17T13:33:42-05:00 0:00.010 0.000u 7.0.0 Cache convert: cache.c/OpenPixelCache/3834/Cache
357  open LOGO[0] (Heap Memory, 640x480x3 3.516MiB)
3582016-12-17T13:33:42-05:00 0:00.010 0.000u 7.0.0 Cache convert: cache.c/ClonePixelCachePixels/1044/Cache
359  Memory => Memory
3602016-12-17T13:33:42-05:00 0:00.020 0.010u 7.0.0 Cache convert: cache.c/ClonePixelCachePixels/1044/Cache
361  Memory => Memory
3622016-12-17T13:33:42-05:00 0:00.020 0.010u 7.0.0 Cache convert: cache.c/OpenPixelCache/3834/Cache
363  open LOGO[0] (Heap Memory, 640x480x3 3.516MiB)
3642016-12-17T13:33:42-05:00 0:00.050 0.100u 7.0.0 Cache convert: cache.c/DestroyPixelCache/1275/Cache
365  destroy LOGO[0]
3662016-12-17T13:33:42-05:00 0:00.050 0.100u 7.0.0 Cache convert: cache.c/DestroyPixelCache/1275/Cache
367  destroy LOGO[0]
368</pre>
369<p>This command utilizes a pixel cache in memory.  The logo consumed 4.688MiB and after it was sharpened, 3.516MiB.</p>
370
371
372<h3>Distributed Pixel Cache</h3>
373<p>A distributed pixel cache is an extension of the traditional pixel cache available on a single host.  The distributed pixel cache may span multiple servers so that it can grow in size and transactional capacity to support very large images.  Start up the pixel cache server on one or more machines.  When you read or operate on an image and the local pixel cache resources are exhausted, ImageMagick contacts one or more of these remote pixel servers to store or retrieve pixels.  The distributed pixel cache relies on network bandwidth to marshal pixels to and from the remote server.  As such, it will likely be significantly slower than a pixel cache utilizing local storage (e.g. memory, disk, etc.).</p>
374<pre class="highlight"><code>convert -distribute-cache 6668 &amp;  // start on 192.168.100.50
375convert -define registry:cache:hosts=192.168.100.50:6668 myimage.jpg -sharpen 5x2 mimage.png
376</code></pre>
377
378<h3>Cache Views</h3>
379
380<p>GetVirtualPixels(), GetAuthenticPixels(), QueueAuthenticPixels(), and SyncAuthenticPixels(), from the MagickCore API, can only deal with one pixel cache area per image at a time.  Suppose you want to access the first and last scanline from the same image at the same time?  The solution is to use a <var>cache view</var>.  A cache view permits you to access as many areas simultaneously in the pixel cache as you require.  The cache view <a href="api/cache-view.html">methods</a> are analogous to the previous methods except you must first open a view and close it when you are finished with it. Here is a snippet of MagickCore code that permits us to access the first and last pixel row of the image simultaneously:</p>
381<pre class="pre-scrollable"><code>CacheView
382  *view_1,
383  *view_2;
384
385view_1=AcquireVirtualCacheView(source,exception);
386view_2=AcquireVirtualCacheView(source,exception);
387for (y=0; y &lt; (ssize_t) source-&gt;rows; y++)
388{
389  u=GetCacheViewVirtualPixels(view_1,0,y,source-&gt;columns,1,exception);
390  v=GetCacheViewVirtualPixels(view_2,0,source-&gt;rows-y-1,source-&gt;columns,1,exception);
391  if ((u == (const Quantum *) NULL) || (v == (const Quantum *) NULL))
392    break;
393  for (x=0; x &lt; (ssize_t) source-&gt;columns; x++)
394  {
395    /* do something with u &amp; v here */
396  }
397}
398view_2=DestroyCacheView(view_2);
399view_1=DestroyCacheView(view_1);
400if (y &lt; (ssize_t) source-&gt;rows)
401  { /* an exception was thrown */ }
402</code></pre>
403
404<h3>Magick Persistent Cache Format</h3>
405
406<p>Recall that each image format is decoded by ImageMagick and the pixels are deposited in the pixel cache.  If you write an image, the pixels are read from the pixel cache and encoded as required by the format you are writing (e.g. GIF, PNG, etc.).  The Magick Persistent Cache (MPC) format is designed to eliminate the overhead of decoding and encoding pixels to and from an image format.  MPC writes two files.  One, with the extension <code>.mpc</code>, retains all the properties associated with the image or image sequence (e.g. width, height, colorspace, etc.) and the second, with the extension <code>.cache</code>, is the pixel cache in the native raw format.  When reading an MPC image file, ImageMagick reads the image properties and memory maps the pixel cache on disk eliminating the need for decoding the image pixels.  The tradeoff is in disk space.  MPC is generally larger in file size than most other image formats.</p>
407<p>The most efficient use of MPC image files is a write-once, read-many-times pattern.  For example, your workflow requires extracting random blocks of pixels from the source image.  Rather than re-reading and possibly decompressing the source image each time, we use MPC and map the image directly to memory.</p>
408
409<h3>Best Practices</h3>
410
411<p>Although you can request any pixel from the pixel cache, any block of pixels, any scanline, multiple scanlines, any row, or multiple rows with the GetVirtualPixels(), GetAuthenticPixels(), QueueAuthenticPixels, GetCacheViewVirtualPixels(), GetCacheViewAuthenticPixels(), and QueueCacheViewAuthenticPixels() methods, ImageMagick is optimized to return a few pixels or a few pixels rows at time.  There are additional optimizations if you request a single scanline or a few scanlines at a time.  These methods also permit random access to the pixel cache, however, ImageMagick is optimized for sequential access.  Although you can access scanlines of pixels sequentially from the last row of the image to the first, you may get a performance boost if you access scanlines from the first row of the image to the last, in sequential order.</p>
412
413<p>You can get, modify, or set pixels in row or column order.  However, it is more efficient to access the pixels by row rather than by column.</p>
414
415<p>If you update pixels returned from GetAuthenticPixels() or GetCacheViewAuthenticPixels(), don't forget to call SyncAuthenticPixels() or SyncCacheViewAuthenticPixels() respectively to ensure your changes are synchronized with the pixel cache.</p>
416
417<p>Use QueueAuthenticPixels() or QueueCacheViewAuthenticPixels() if you are setting an initial pixel value.  The GetAuthenticPixels() or GetCacheViewAuthenticPixels() method reads pixels from the cache and if you are setting an initial pixel value, this read is unnecessary. Don't forget to call SyncAuthenticPixels() or SyncCacheViewAuthenticPixels() respectively to push any pixel changes to the pixel cache.</p>
418
419<p>GetVirtualPixels(), GetAuthenticPixels(), QueueAuthenticPixels(), and SyncAuthenticPixels() are slightly more efficient than their cache view counter-parts.  However, cache views are required if you need access to more than one region of the image simultaneously or if more than one <a href="architecture.html#threads">thread of execution</a> is accessing the image.</p>
420
421<p>You can request pixels outside the bounds of the image with GetVirtualPixels() or GetCacheViewVirtualPixels(), however, it is more efficient to request pixels within the confines of the image region.</p>
422
423<p>Although you can force the pixel cache to disk using appropriate resource limits, disk access can be upwards of 1000 times slower than memory access.  For fast, efficient, access to the pixel cache, try to keep the pixel cache in heap memory.</p>
424
425<p>The ImageMagick Q16 version of ImageMagick permits you to read and write 16 bit images without scaling but the pixel cache consumes twice as many resources as the Q8 version.  If your system has constrained memory or disk resources, consider the Q8 version of ImageMagick.  In addition, the Q8 version typically executes faster than the Q16 version.</p>
426
427<p>A great majority of image formats and algorithms restrict themselves to a fixed range of pixel values from 0 to some maximum value, for example, the Q16 version of ImageMagick permit intensities from 0 to 65535.  High dynamic-range imaging (HDRI), however, permits a far greater dynamic range of exposures (i.e. a large difference between light and dark areas) than standard digital imaging techniques. HDRI accurately represents the wide range of intensity levels found in real scenes ranging from the brightest direct sunlight to the deepest darkest shadows.  Enable <a href="high-dynamic-range.html">HDRI</a> at ImageMagick build time to deal with high dynamic-range images, but be mindful that each pixel component is a 32-bit floating point value. In addition, pixel values are not clamped by default so some algorithms may have unexpected results due to out-of-band pixel values than the non-HDRI version.</p>
428
429<p>If you are dealing with large images, make sure the pixel cache is written to a disk area with plenty of free space.  Under Unix, this is typically <code>/tmp</code> and for Windows, <code>c:/temp</code>.  You can tell ImageMagick to write the pixel cache to an alternate location and conserve memory with these options:</p>
430<pre class="highlight"><code>convert -limit memory 2GB -limit map 4GB -define registry:temporary-path=/data/tmp ...
431</code></pre>
432
433<p>Set global resource limits for your environment in the <code>policy.xml</code> configuration file.</p>
434
435<p>If you plan on processing the same image many times, consider the MPC format.  Reading a MPC image has near-zero overhead because its in the native pixel cache format eliminating the need for decoding the image pixels.  Here is an example:</p>
436<pre class="highlight"><code>convert image.tif image.mpc
437convert image.mpc -crop 100x100+0+0 +repage 1.png
438convert image.mpc -crop 100x100+100+0 +repage 2.png
439convert image.mpc -crop 100x100+200+0 +repage 3.png
440</code></pre>
441
442<p>MPC is ideal for web sites.  It reduces the overhead of reading and writing an image.  We use it exclusively at our <a href="../MagickStudio/scripts/MagickStudio.cgi">online image studio</a>.</p>
443
444<h2><a class="anchor" id="stream"></a>Streaming Pixels</h2>
445
446<p>ImageMagick provides for streaming pixels as they are read from or written to an image.  This has several advantages over the pixel cache.  The time and resources consumed by the pixel cache scale with the area of an image, whereas the pixel stream resources scale with the width of an image.  The disadvantage is the pixels must be consumed as they are streamed so there is no persistence.</p>
447
448<p>Use <a href="api/stream.html#ReadStream">ReadStream()</a> or <a href="api/stream.html#WriteStream">WriteStream()</a> with an appropriate callback method in your MagickCore program to consume the pixels as they are streaming.  Here's an abbreviated example of using ReadStream:</p>
449<pre class="pre-scrollable"><code>static size_t StreamPixels(const Image *image,const void *pixels,const size_t columns)
450{
451  register const Quantum
452    *p;
453
454  MyData
455    *my_data;
456
457  my_data=(MyData *) image->client_data;
458  p=(Quantum *) pixels;
459  if (p != (const Quantum *) NULL)
460    {
461      /* process pixels here */
462    }
463  return(columns);
464}
465
466...
467
468/* invoke the pixel stream here */
469image_info->client_data=(void *) MyData;
470image=ReadStream(image_info,&amp;StreamPixels,exception);
471</code></pre>
472
473<p>We also provide a lightweight tool, <a href="stream.html">stream</a>, to stream one or more pixel components of the image or portion of the image to your choice of storage formats.  It writes the pixel components as they are read from the input image a row at a time making <a href="stream.html">stream</a> desirable when working with large images or when you require raw pixel components.  A majority of the image formats stream pixels (red, green, and blue) from left to right and top to bottom.  However, a few formats do not support this common ordering (e.g. the PSD format).</p>
474
475<h2><a class="anchor" id="properties"></a>Image Properties and Profiles</h2>
476
477<p>Images have metadata associated with them in the form of properties (e.g. width, height, description, etc.) and profiles (e.g. EXIF, IPTC, color management).  ImageMagick provides convenient methods to get, set, or update image properties and get, set, update, or apply profiles.  Some of the more popular image properties are associated with the Image structure in the MagickCore API.  For example:</p>
478<pre class="highlight"><code>(void) printf("image width: %lu, height: %lu\n",image-&gt;columns,image-&gt;rows);
479</code></pre>
480
481<p>For a great majority of image properties, such as an image comment or description, we use the <a href="api/property.html#GetImageProperty">GetImageProperty()</a> and <a href="api/property.html#SetImageProperty">SetImageProperty()</a> methods.  Here we set a property and fetch it right back:</p>
482<pre class="highlight"><code>const char
483  *comment;
484
485(void) SetImageProperty(image,"comment","This space for rent");
486comment=GetImageProperty(image,"comment");
487if (comment == (const char *) NULL)
488  (void) printf("Image comment: %s\n",comment);
489</code></pre>
490
491<p>ImageMagick supports artifacts with the GetImageArtifact() and SetImageArtifact() methods.  Artifacts are stealth properties that are not exported to image formats (e.g. PNG).</p>
492
493<p>Image profiles are handled with <a href="api/profile.html#GetImageProfile">GetImageProfile()</a>, <a href="api/profile.html#SetImageProfile">SetImageProfile()</a>, and <a href="api/profile.html#ProfileImage">ProfileImage()</a> methods.  Here we set a profile and fetch it right back:</p>
494<pre class="highlight"><code>StringInfo
495  *profile;
496
497profile=AcquireStringInfo(length);
498SetStringInfoDatum(profile,my_exif_profile);
499(void) SetImageProfile(image,"EXIF",profile);
500DestroyStringInfo(profile);
501profile=GetImageProfile(image,"EXIF");
502if (profile != (StringInfo *) NULL)
503  (void) PrintStringInfo(stdout,"EXIF",profile);
504</code></pre>
505
506<h2><a class="anchor" id="tera-pixel"></a>Large Image Support</h2>
507<p>ImageMagick can read, process, or write mega-, giga-, or tera-pixel image sizes.  An image width or height can range from 1 to 2 giga-pixels on a 32 bit OS (up to 2147483647 rows/columns) and up to 9 exa-pixels on a 64-bit OS (up to 9223372036854775807 rows/columns).  Note, that some image formats have restrictions on image size.  For example, Photoshop images are limited to 300,000 pixels for width or height.  Here we resize an image to a quarter million pixels square:</p>
508<pre class="highlight"><code>convert logo: -resize 250000x250000 logo.miff
509</code></pre>
510
511<p>For large images, memory resources will likely be exhausted and ImageMagick will instead create a pixel cache on disk.  Make sure you have plenty of temporary disk space.  If your default temporary disk partition is too small, tell ImageMagick to use another partition with plenty of free space.  For example:</p>
512<pre class="highlight"><code>convert -define registry:temporary-path=/data/tmp logo:  \ <br/>     -resize 250000x250000 logo.miff
513</code></pre>
514
515<p>To ensure large images do not consume all the memory on your system, force the image pixels to memory-mapped disk with resource limits:</p>
516<pre class="highlight"><code>convert -define registry:temporary-path=/data/tmp -limit memory 16mb \
517  logo: -resize 250000x250000 logo.miff
518</code></pre>
519
520<p>Here we force all image pixels to disk:</p>
521<pre class="highlight"><code>convert -define registry:temporary-path=/data/tmp -limit area 0 \
522  logo: -resize 250000x250000 logo.miff
523</code></pre>
524
525<p>Caching pixels to disk is about 1000 times slower than memory.  Expect long run times when processing large images on disk with ImageMagick.  You can monitor progress with this command:</p>
526<pre class="highlight"><code>convert -monitor -limit memory 2GiB -limit map 4GiB -define registry:temporary-path=/data/tmp \
527  logo: -resize 250000x250000 logo.miff
528</code></pre>
529
530<p>For really large images, or if there is limited resources on your host, you can utilize a distributed pixel cache on one or more remote hosts:</p>
531<pre class="highlight"><code>convert -distribute-cache 6668 &amp;  // start on 192.168.100.50
532convert -distribute-cache 6668 &amp;  // start on 192.168.100.51
533convert -limit memory 2mb -limit map 2mb -limit disk 2gb \
534  -define registry:cache:hosts=192.168.100.50:6668,192.168.100.51:6668 \
535  myhugeimage.jpg -sharpen 5x2 myhugeimage.png
536</code></pre>
537<p>Due to network latency, expect a substantial slow-down in processing your workflow.</p>
538
539<h2><a class="anchor" id="threads"></a>Threads of Execution</h2>
540
541<p>Many of ImageMagick's internal algorithms are threaded to take advantage of speed-ups offered by the multicore processor chips. However, you are welcome to use ImageMagick algorithms in your threads of execution with the exception of the MagickCore's GetVirtualPixels(), GetAuthenticPixels(), QueueAuthenticPixels(), or SyncAuthenticPixels() pixel cache methods.  These methods are intended for one thread of execution only with the exception of an OpenMP parallel section.  To access the pixel cache with more than one thread of execution, use a cache view.  We do this for the <a href="api/composite.html#CompositeImage">CompositeImage()</a> method, for example.  Suppose we want to composite a single source image over a different destination image in each thread of execution.  If we use GetVirtualPixels(), the results are unpredictable because multiple threads would likely be asking for different areas of the pixel cache simultaneously.  Instead we use GetCacheViewVirtualPixels() which creates a unique view for each thread of execution ensuring our program behaves properly regardless of how many threads are invoked.  The other program interfaces, such as the <a href="magick-wand.html">MagickWand API</a>, are completely thread safe so there are no special precautions for threads of execution.</p>
542
543<p>Here is an MagickCore code snippet that takes advantage of threads of execution with the <a href="openmp.html">OpenMP</a> programming paradigm:</p>
544<pre class="pre-scrollable"><code>CacheView
545  *image_view;
546
547MagickBooleanType
548  status;
549
550ssize_t
551  y;
552
553status=MagickTrue;
554image_view=AcquireVirtualCacheView(image,exception);
555#pragma omp parallel for schedule(static,4) shared(status)
556for (y=0; y &lt; (ssize_t) image-&gt;rows; y++)
557{
558  register Quantum
559    *q;
560
561  register ssize_t
562    x;
563
564  register void
565    *metacontent;
566
567  if (status == MagickFalse)
568    continue;
569  q=GetCacheViewAuthenticPixels(image_view,0,y,image-&gt;columns,1,exception);
570  if (q == (Quantum *) NULL)
571    {
572      status=MagickFalse;
573      continue;
574    }
575  metacontent=GetCacheViewAuthenticMetacontent(image_view);
576  for (x=0; x &lt; (ssize_t) image-&gt;columns; x++)
577  {
578    SetPixelRed(image,...,q);
579    SetPixelGreen(image,...,q);
580    SetPixelBlue(image,...,q);
581    SetPixelAlpha(image,...,q);
582    if (metacontent != NULL)
583      metacontent[indexes+x]=...;
584    q+=GetPixelChannels(image);
585  }
586  if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
587    status=MagickFalse;
588}
589image_view=DestroyCacheView(image_view);
590if (status == MagickFalse)
591  perror("something went wrong");
592</code></pre>
593
594<p>This code snippet converts an uncompressed Windows bitmap to a Magick++ image:</p>
595<pre class="pre-scrollable"><code>#include "Magick++.h"
596#include &lt;assert.h&gt;
597#include "omp.h"
598
599void ConvertBMPToImage(const BITMAPINFOHEADER *bmp_info,
600  const unsigned char *restrict pixels,Magick::Image *image)
601{
602  /*
603    Prepare the image so that we can modify the pixels directly.
604  */
605  assert(bmp_info->biCompression == BI_RGB);
606  assert(bmp_info->biWidth == image->columns());
607  assert(abs(bmp_info->biHeight) == image->rows());
608  image->modifyImage();
609  if (bmp_info->biBitCount == 24)
610    image->type(MagickCore::TrueColorType);
611  else
612    image->type(MagickCore::TrueColorMatteType);
613  register unsigned int bytes_per_row=bmp_info->biWidth*bmp_info->biBitCount/8;
614  if (bytes_per_row % 4 != 0) {
615    bytes_per_row=bytes_per_row+(4-bytes_per_row % 4);  // divisible by 4.
616  }
617  /*
618    Copy all pixel data, row by row.
619  */
620  #pragma omp parallel for
621  for (int y=0; y &lt; int(image->rows()); y++)
622  {
623    int
624      row;
625
626    register const unsigned char
627      *restrict p;
628
629    register MagickCore::Quantum
630      *restrict q;
631
632    row=(bmp_info->biHeight > 0) ? (image->rows()-y-1) : y;
633    p=pixels+row*bytes_per_row;
634    q=image->setPixels(0,y,image->columns(),1);
635    for (int x=0; x &lt; int(image->columns()); x++)
636    {
637      SetPixelBlue(image,p[0],q);
638      SetPixelGreen(image,p[1],q);
639      SetPixelRed(image,p[2],q);
640      if (bmp_info->biBitCount == 32) {
641        SetPixelAlpha(image,p[3],q);
642      }
643      q+=GetPixelChannels(image);
644      p+=bmp_info->biBitCount/8;
645    }
646    image->syncPixels();  // sync pixels to pixel cache.
647  }
648  return;
649}</code></pre>
650
651<p>If you call the ImageMagick API from your OpenMP-enabled application and you intend to dynamically increase the number of threads available in subsequent parallel regions, be sure to perform the increase <var>before</var> you call the API otherwise ImageMagick may fault.</p>
652
653<p><a href="api/wand-view.html">MagickWand</a> supports wand views.  A view iterates over the entire, or portion, of the image in parallel and for each row of pixels, it invokes a callback method you provide.  This limits most of your parallel programming activity to just that one module.  There are similar methods in <a href="api/image-view.html">MagickCore</a>.  For an example, see the same sigmoidal contrast algorithm implemented in both <a href="magick-wand.html#wand-view">MagickWand</a> and <a href="magick-core.html#image-view">MagickCore</a>.</p>
654
655<p>In most circumstances, the default number of threads is set to the number of processor cores on your system for optimal performance.  However, if your system is hyperthreaded or if you are running on a virtual host and only a subset of the processors are available to your server instance, you might get an increase in performance by setting the thread <a href="resources.html#configure">policy</a> or the <a href="resources.html#environment">MAGICK_THREAD_LIMIT</a> environment variable.  For example, your virtual host has 8 processors but only 2 are assigned to your server instance.  The default of 8 threads can cause severe performance problems.  One solution is to limit the number of threads to the available processors in your <a href="https://imagemagick.org/source/policy.xml">policy.xml</a> configuration file:</p>
656<pre class="highlight"><code>&lt;policy domain="resource" name="thread" value="2"/>
657</code></pre>
658
659<p>Or suppose your 12 core hyperthreaded computer defaults to 24 threads.  Set the MAGICK_THREAD_LIMIT environment variable and you will likely get improved performance:</p>
660<pre class="highlight"><code>export MAGICK_THREAD_LIMIT=12
661</code></pre>
662
663<p>The OpenMP committee has not defined the behavior of mixing OpenMP with other threading models such as Posix threads.  However, using modern releases of Linux, OpenMP and Posix threads appear to interoperate without complaint.  If you want to use Posix threads from a program module that calls one of the ImageMagick application programming interfaces (e.g. MagickCore, MagickWand, Magick++, etc.) from Mac OS X or an older Linux release, you may need to disable OpenMP support within ImageMagick.  Add the <code>--disable-openmp</code> option to the configure script command line and rebuild and reinstall ImageMagick.</p>
664
665<p>You can further increase performance by reducing lock contention with the <a href="http://goog-perftools.sourceforge.net/doc/tcmalloc.html">tcmalloc</a> memory allocation library.  To enable, add <code>--with-tcmalloc</code> to the <code>configure</code> command-line when you build ImageMagick.</p>
666
667<h5>Threading Performance</h5>
668<p>It can be difficult to predict behavior in a parallel environment.   Performance might depend on a number of factors including the compiler, the version of the OpenMP library, the processor type, the number of cores, the amount of memory, whether hyperthreading is enabled, the mix of applications that are executing concurrently with ImageMagick, or the particular image-processing algorithm you utilize.  The only way to be certain of optimal performance, in terms of the number of threads, is to benchmark.   ImageMagick includes progressive threading when benchmarking a command and returns the elapsed time and efficiency for one or more threads.  This can help you identify how many threads is the most efficient in your environment.  For this benchmark we sharpen a 1920x1080 image of a model 10 times with 1 to 12 threads:</p>
669<pre class="highlight">-> convert -bench 10 model.png -sharpen 5x2 null:
670Performance[1]: 10i 1.135ips 1.000e 8.760u 0:08.810
671Performance[2]: 10i 2.020ips 0.640e 9.190u 0:04.950
672Performance[3]: 10i 2.786ips 0.710e 9.400u 0:03.590
673Performance[4]: 10i 3.378ips 0.749e 9.580u 0:02.960
674Performance[5]: 10i 4.032ips 0.780e 9.580u 0:02.480
675Performance[6]: 10i 4.566ips 0.801e 9.640u 0:02.190
676Performance[7]: 10i 3.788ips 0.769e 10.980u 0:02.640
677Performance[8]: 10i 4.115ips 0.784e 12.030u 0:02.430
678Performance[9]: 10i 4.484ips 0.798e 12.860u 0:02.230
679Performance[10]: 10i 4.274ips 0.790e 14.830u 0:02.340
680Performance[11]: 10i 4.348ips 0.793e 16.500u 0:02.300
681Performance[12]: 10i 4.525ips 0.799e 18.320u 0:02.210
682</pre>
683<p>The sweet spot for this example is 6 threads. This makes sense since there are 6 physical cores.  The other 6 are hyperthreads. It appears that sharpening does not benefit from hyperthreading.</p>
684<p>In certain cases, it might be optimal to set the number of threads to 1 or to disable OpenMP completely with the <a href="resources.html#environment">MAGICK_THREAD_LIMIT</a> environment variable, <a href="command-line-options.html#limit">-limit</a> command line option,  or the  <a href="resources.html#configure">policy.xml</a> configuration file.</p>
685
686<h2><a class="anchor" id="distributed"></a>Heterogeneous Distributed Processing</h2>
687<p>ImageMagick includes support for heterogeneous distributed processing with the <a href="http://en.wikipedia.org/wiki/OpenCL">OpenCL</a> framework.  OpenCL kernels within ImageMagick permit image processing algorithms to execute across heterogeneous platforms consisting of CPUs, GPUs, and other processors.  Depending on your platform, speed-ups can be an order of magnitude faster than the traditional single CPU.</p>
688
689<p>First verify that your version of ImageMagick includes support for the OpenCL feature:</p>
690<pre class="highlight"><code>identify -version
691Features: DPC Cipher Modules OpenCL OpenMP(4.5)
692</code></pre>
693
694<p>If so, run this command to realize a significant speed-up for image convolution:</p>
695
696<pre class="highlight"><code>convert image.png -convolve '-1, -1, -1, -1, 9, -1, -1, -1, -1' convolve.png
697</code></pre>
698
699<p>If an accelerator is not available or if the accelerator fails to respond, ImageMagick reverts to the non-accelerated convolution algorithm.</p>
700
701<p>Here is an example OpenCL kernel that convolves an image:</p>
702<pre class="pre-scrollable"><code>static inline long ClampToCanvas(const long offset,const ulong range)
703{
704  if (offset &lt; 0L)
705    return(0L);
706  if (offset >= range)
707    return((long) (range-1L));
708  return(offset);
709}
710
711static inline CLQuantum ClampToQuantum(const float value)
712{
713  if (value &lt; 0.0)
714    return((CLQuantum) 0);
715  if (value >= (float) QuantumRange)
716    return((CLQuantum) QuantumRange);
717  return((CLQuantum) (value+0.5));
718}
719
720__kernel void Convolve(const __global CLPixelType *source,__constant float *filter,
721  const ulong width,const ulong height,__global CLPixelType *destination)
722{
723  const ulong columns = get_global_size(0);
724  const ulong rows = get_global_size(1);
725
726  const long x = get_global_id(0);
727  const long y = get_global_id(1);
728
729  const float scale = (1.0/QuantumRange);
730  const long mid_width = (width-1)/2;
731  const long mid_height = (height-1)/2;
732  float4 sum = { 0.0, 0.0, 0.0, 0.0 };
733  float gamma = 0.0;
734  register ulong i = 0;
735
736  for (long v=(-mid_height); v &lt;= mid_height; v++)
737  {
738    for (long u=(-mid_width); u &lt;= mid_width; u++)
739    {
740      register const ulong index=ClampToCanvas(y+v,rows)*columns+ClampToCanvas(x+u,
741        columns);
742      const float alpha=scale*(QuantumRange-source[index].w);
743      sum.x+=alpha*filter[i]*source[index].x;
744      sum.y+=alpha*filter[i]*source[index].y;
745      sum.z+=alpha*filter[i]*source[index].z;
746      sum.w+=filter[i]*source[index].w;
747      gamma+=alpha*filter[i];
748      i++;
749    }
750  }
751
752  gamma=1.0/(fabs(gamma) &lt;= MagickEpsilon ? 1.0 : gamma);
753  const ulong index=y*columns+x;
754  destination[index].x=ClampToQuantum(gamma*sum.x);
755  destination[index].y=ClampToQuantum(gamma*sum.y);
756  destination[index].z=ClampToQuantum(gamma*sum.z);
757  destination[index].w=ClampToQuantum(sum.w);
758};</code></pre>
759
760<p>See <a href="https://github.com/ImageMagick/ImageMagick/blob/master/MagickCore/accelerate.c">MagickCore/accelerate.c</a> for a complete implementation of image convolution with an OpenCL kernel.</p>
761
762<p>Note, that under Windows, you might have an issue with TDR (Timeout Detection and Recovery of GPUs). Its purpose is to detect runaway tasks hanging the GPU by using an execution time threshold.  For some older low-end GPUs running the OpenCL filters in ImageMagick, longer execution times might trigger the TDR mechanism and pre-empt the GPU image filter.  When this happens, ImageMagick automatically falls back to the CPU code path and returns the expected results.  To avoid pre-emption, increase the <a href="http://msdn.microsoft.com/en-us/library/windows/hardware/gg487368.aspx">TdrDelay</a> registry key.</p>
763
764<h2><a class="anchor" id="coders"></a>Custom Image Coders</h2>
765
766<p>An image coder (i.e. encoder / decoder) is responsible for registering, optionally classifying, optionally reading, optionally writing, and unregistering one image format (e.g.  PNG, GIF, JPEG, etc.).  Registering an image coder alerts ImageMagick a particular format is available to read or write.  While unregistering tells ImageMagick the format is no longer available.  The classifying method looks at the first few bytes of an image and determines if the image is in the expected format.  The reader sets the image size, colorspace, and other properties and loads the pixel cache with the pixels.  The reader returns a single image or an image sequence (if the format supports multiple images per file), or if an error occurs, an exception and a null image.  The writer does the reverse.  It takes the image properties and unloads the pixel cache and writes them as required by the image format.</p>
767
768<p>Here is a listing of a sample <a href="https://imagemagick.org/source/mgk.c">custom coder</a>.  It reads and writes images in the MGK image format which is simply an ID followed by the image width and height followed by the RGB pixel values.</p>
769<pre class="pre-scrollable"><code>#include &lt;MagickCore/studio.h>
770#include &lt;MagickCore/blob.h>
771#include &lt;MagickCore/cache.h>
772#include &lt;MagickCore/colorspace.h>
773#include &lt;MagickCore/exception.h>
774#include &lt;MagickCore/image.h>
775#include &lt;MagickCore/list.h>
776#include &lt;MagickCore/magick.h>
777#include &lt;MagickCore/memory_.h>
778#include &lt;MagickCore/monitor.h>
779#include &lt;MagickCore/pixel-accessor.h>
780#include &lt;MagickCore/string_.h>
781#include &lt;MagickCore/module.h>
782#include "filter/blob-private.h"
783#include "filter/exception-private.h"
784#include "filter/image-private.h"
785#include "filter/monitor-private.h"
786#include "filter/quantum-private.h"
787
788/*
789  Forward declarations.
790*/
791static MagickBooleanType
792  WriteMGKImage(const ImageInfo *,Image *,ExceptionInfo *);
793
794/*
795%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
796%                                                                             %
797%                                                                             %
798%                                                                             %
799%   I s M G K                                                                 %
800%                                                                             %
801%                                                                             %
802%                                                                             %
803%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
804%
805%  IsMGK() returns MagickTrue if the image format type, identified by the
806%  magick string, is MGK.
807%
808%  The format of the IsMGK method is:
809%
810%      MagickBooleanType IsMGK(const unsigned char *magick,const size_t length)
811%
812%  A description of each parameter follows:
813%
814%    o magick: This string is generally the first few bytes of an image file
815%      or blob.
816%
817%    o length: Specifies the length of the magick string.
818%
819*/
820static MagickBooleanType IsMGK(const unsigned char *magick,const size_t length)
821{
822  if (length &lt; 7)
823    return(MagickFalse);
824  if (LocaleNCompare((char *) magick,"id=mgk",7) == 0)
825    return(MagickTrue);
826  return(MagickFalse);
827}
828
829/*
830%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
831%                                                                             %
832%                                                                             %
833%                                                                             %
834%   R e a d M G K I m a g e                                                   %
835%                                                                             %
836%                                                                             %
837%                                                                             %
838%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
839%
840%  ReadMGKImage() reads a MGK image file and returns it.  It allocates the
841%  memory necessary for the new Image structure and returns a pointer to the
842%  new image.
843%
844%  The format of the ReadMGKImage method is:
845%
846%      Image *ReadMGKImage(const ImageInfo *image_info,
847%        ExceptionInfo *exception)
848%
849%  A description of each parameter follows:
850%
851%    o image_info: the image info.
852%
853%    o exception: return any errors or warnings in this structure.
854%
855*/
856static Image *ReadMGKImage(const ImageInfo *image_info,ExceptionInfo *exception)
857{
858  char
859    buffer[MaxTextExtent];
860
861  Image
862    *image;
863
864  long
865    y;
866
867  MagickBooleanType
868    status;
869
870  register long
871    x;
872
873  register Quantum
874    *q;
875
876  register unsigned char
877    *p;
878
879  ssize_t
880    count;
881
882  unsigned char
883    *pixels;
884
885  unsigned long
886    columns,
887    rows;
888
889  /*
890    Open image file.
891  */
892  assert(image_info != (const ImageInfo *) NULL);
893  assert(image_info->signature == MagickCoreSignature);
894  if (image_info->debug != MagickFalse)
895    (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",
896      image_info->filename);
897  assert(exception != (ExceptionInfo *) NULL);
898  assert(exception->signature == MagickCoreSignature);
899  image=AcquireImage(image_info,exception);
900  status=OpenBlob(image_info,image,ReadBinaryBlobMode,exception);
901  if (status == MagickFalse)
902    {
903      image=DestroyImageList(image);
904      return((Image *) NULL);
905    }
906  /*
907    Read MGK image.
908  */
909  (void) ReadBlobString(image,buffer);  /* read magic number */
910  if (IsMGK(buffer,7) == MagickFalse)
911    ThrowReaderException(CorruptImageError,"ImproperImageHeader");
912  (void) ReadBlobString(image,buffer);
913  count=(ssize_t) sscanf(buffer,"%lu %lu\n",&columns,&rows);
914  if (count &lt;= 0)
915    ThrowReaderException(CorruptImageError,"ImproperImageHeader");
916  do
917  {
918    /*
919      Initialize image structure.
920    */
921    image->columns=columns;
922    image->rows=rows;
923    image->depth=8;
924    if ((image_info->ping != MagickFalse) && (image_info->number_scenes != 0))
925      if (image->scene >= (image_info->scene+image_info->number_scenes-1))
926        break;
927    /*
928      Convert MGK raster image to pixel packets.
929    */
930    if (SetImageExtent(image,image->columns,image->rows,exception) == MagickFalse)
931      return(DestroyImageList(image));
932    pixels=(unsigned char *) AcquireQuantumMemory((size_t) image->columns,
933      3UL*sizeof(*pixels));
934    if (pixels == (unsigned char *) NULL)
935      ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed");
936    for (y=0; y &lt; (long) image->rows; y++)
937    {
938      count=(ssize_t) ReadBlob(image,(size_t) (3*image->columns),pixels);
939      if (count != (ssize_t) (3*image->columns))
940        ThrowReaderException(CorruptImageError,"UnableToReadImageData");
941      p=pixels;
942      q=QueueAuthenticPixels(image,0,y,image->columns,1,exception);
943      if (q == (Quantum *) NULL)
944        break;
945      for (x=0; x &lt; (long) image->columns; x++)
946      {
947        SetPixelRed(image,ScaleCharToQuantum(*p++),q);
948        SetPixelGreen(image,ScaleCharToQuantum(*p++),q);
949        SetPixelBlue(image,ScaleCharToQuantum(*p++),q);
950        q+=GetPixelChannels(image);
951      }
952      if (SyncAuthenticPixels(image,exception) == MagickFalse)
953        break;
954      if (image->previous == (Image *) NULL)
955        if ((image->progress_monitor != (MagickProgressMonitor) NULL) &&
956            (QuantumTick(y,image->rows) != MagickFalse))
957          {
958            status=image->progress_monitor(LoadImageTag,y,image->rows,
959              image->client_data);
960            if (status == MagickFalse)
961              break;
962          }
963    }
964    pixels=(unsigned char *) RelinquishMagickMemory(pixels);
965    if (EOFBlob(image) != MagickFalse)
966      {
967        ThrowFileException(exception,CorruptImageError,"UnexpectedEndOfFile",
968          image->filename);
969        break;
970      }
971    /*
972      Proceed to next image.
973    */
974    if (image_info->number_scenes != 0)
975      if (image->scene >= (image_info->scene+image_info->number_scenes-1))
976        break;
977    *buffer='\0';
978    (void) ReadBlobString(image,buffer);
979    count=(ssize_t) sscanf(buffer,"%lu %lu\n",&columns,&rows);
980    if (count > 0)
981      {
982        /*
983          Allocate next image structure.
984        */
985        AcquireNextImage(image_info,image,exception);
986        if (GetNextImageInList(image) == (Image *) NULL)
987          {
988            image=DestroyImageList(image);
989            return((Image *) NULL);
990          }
991        image=SyncNextImageInList(image);
992        if (image->progress_monitor != (MagickProgressMonitor) NULL)
993          {
994            status=SetImageProgress(image,LoadImageTag,TellBlob(image),
995              GetBlobSize(image));
996            if (status == MagickFalse)
997              break;
998          }
999      }
1000  } while (count > 0);
1001  (void) CloseBlob(image);
1002  return(GetFirstImageInList(image));
1003}
1004
1005/*
1006%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1007%                                                                             %
1008%                                                                             %
1009%                                                                             %
1010%   R e g i s t e r M G K I m a g e                                           %
1011%                                                                             %
1012%                                                                             %
1013%                                                                             %
1014%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1015%
1016%  RegisterMGKImage() adds attributes for the MGK image format to
1017%  the list of supported formats.  The attributes include the image format
1018%  tag, a method to read and/or write the format, whether the format
1019%  supports the saving of more than one frame to the same file or blob,
1020%  whether the format supports native in-memory I/O, and a brief
1021%  description of the format.
1022%
1023%  The format of the RegisterMGKImage method is:
1024%
1025%      unsigned long RegisterMGKImage(void)
1026%
1027*/
1028ModuleExport unsigned long RegisterMGKImage(void)
1029{
1030  MagickInfo
1031    *entry;
1032
1033  entry=AcquireMagickInfo("MGK","MGK","MGK image");
1034  entry->decoder=(DecodeImageHandler *) ReadMGKImage;
1035  entry->encoder=(EncodeImageHandler *) WriteMGKImage;
1036  entry->magick=(IsImageFormatHandler *) IsMGK;
1037  (void) RegisterMagickInfo(entry);
1038  return(MagickImageCoderSignature);
1039}
1040
1041/*
1042%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1043%                                                                             %
1044%                                                                             %
1045%                                                                             %
1046%   U n r e g i s t e r M G K I m a g e                                       %
1047%                                                                             %
1048%                                                                             %
1049%                                                                             %
1050%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1051%
1052%  UnregisterMGKImage() removes format registrations made by the
1053%  MGK module from the list of supported formats.
1054%
1055%  The format of the UnregisterMGKImage method is:
1056%
1057%      UnregisterMGKImage(void)
1058%
1059*/
1060ModuleExport void UnregisterMGKImage(void)
1061{
1062  (void) UnregisterMagickInfo("MGK");
1063}
1064
1065/*
1066%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1067%                                                                             %
1068%                                                                             %
1069%                                                                             %
1070%   W r i t e M G K I m a g e                                                 %
1071%                                                                             %
1072%                                                                             %
1073%                                                                             %
1074%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1075%
1076%  WriteMGKImage() writes an image to a file in red, green, and blue MGK
1077%  rasterfile format.
1078%
1079%  The format of the WriteMGKImage method is:
1080%
1081%      MagickBooleanType WriteMGKImage(const ImageInfo *image_info,
1082%        Image *image)
1083%
1084%  A description of each parameter follows.
1085%
1086%    o image_info: the image info.
1087%
1088%    o image:  The image.
1089%
1090%    o exception:  return any errors or warnings in this structure.
1091%
1092*/
1093static MagickBooleanType WriteMGKImage(const ImageInfo *image_info,Image *image,
1094  ExceptionInfo *exception)
1095{
1096  char
1097    buffer[MaxTextExtent];
1098
1099  long
1100    y;
1101
1102  MagickBooleanType
1103    status;
1104
1105  MagickOffsetType
1106    scene;
1107
1108  register const Quantum
1109    *p;
1110
1111  register long
1112    x;
1113
1114  register unsigned char
1115    *q;
1116
1117  unsigned char
1118    *pixels;
1119
1120  /*
1121    Open output image file.
1122  */
1123  assert(image_info != (const ImageInfo *) NULL);
1124  assert(image_info->signature == MagickCoreSignature);
1125  assert(image != (Image *) NULL);
1126  assert(image->signature == MagickCoreSignature);
1127  if (image->debug != MagickFalse)
1128    (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
1129  status=OpenBlob(image_info,image,WriteBinaryBlobMode,exception);
1130  if (status == MagickFalse)
1131    return(status);
1132  scene=0;
1133  do
1134  {
1135    /*
1136      Allocate memory for pixels.
1137    */
1138    if (image->colorspace != RGBColorspace)
1139      (void) SetImageColorspace(image,RGBColorspace,exception);
1140    pixels=(unsigned char *) AcquireQuantumMemory((size_t) image->columns,
1141      3UL*sizeof(*pixels));
1142    if (pixels == (unsigned char *) NULL)
1143      ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed");
1144    /*
1145      Initialize raster file header.
1146    */
1147    (void) WriteBlobString(image,"id=mgk\n");
1148    (void) FormatLocaleString(buffer,MaxTextExtent,"%lu %lu\n",image->columns,
1149       image->rows);
1150    (void) WriteBlobString(image,buffer);
1151    for (y=0; y &lt; (long) image->rows; y++)
1152    {
1153      p=GetVirtualPixels(image,0,y,image->columns,1,exception);
1154      if (p == (const Quantum *) NULL)
1155        break;
1156      q=pixels;
1157      for (x=0; x &lt; (long) image->columns; x++)
1158      {
1159        *q++=ScaleQuantumToChar(GetPixelRed(image,p));
1160        *q++=ScaleQuantumToChar(GetPixelGreen(image,p));
1161        *q++=ScaleQuantumToChar(GetPixelBlue(image,p));
1162        p+=GetPixelChannels(image);
1163      }
1164      (void) WriteBlob(image,(size_t) (q-pixels),pixels);
1165      if (image->previous == (Image *) NULL)
1166        if ((image->progress_monitor != (MagickProgressMonitor) NULL) &&
1167            (QuantumTick(y,image->rows) != MagickFalse))
1168          {
1169            status=image->progress_monitor(SaveImageTag,y,image->rows,
1170              image->client_data);
1171            if (status == MagickFalse)
1172              break;
1173          }
1174    }
1175    pixels=(unsigned char *) RelinquishMagickMemory(pixels);
1176    if (GetNextImageInList(image) == (Image *) NULL)
1177      break;
1178    image=SyncNextImageInList(image);
1179    status=SetImageProgress(image,SaveImagesTag,scene,
1180      GetImageListLength(image));
1181    if (status == MagickFalse)
1182      break;
1183    scene++;
1184  } while (image_info->adjoin != MagickFalse);
1185  (void) CloseBlob(image);
1186  return(MagickTrue);
1187}</code></pre>
1188
1189<p>To invoke the custom coder from the command line, use these commands:</p>
1190<pre class="highlight"><code>convert logo: logo.mgk
1191display logo.mgk
1192</code></pre>
1193
1194<p>We provide the <a href="https://imagemagick.org/download/kits/">Magick Coder Kit</a> to help you get started writing your own custom coder.</p>
1195
1196<h2><a class="anchor" id="filters"></a>Custom Image Filters</h2>
1197
1198<p>ImageMagick provides a convenient mechanism for adding your own custom image processing algorithms.  We call these image filters and they are invoked from the command line with the <a href="command-line-options.html#process">-process</a> option or from the MagickCore API method <a href="api/module.html#ExecuteModuleProcess">ExecuteModuleProcess()</a>.</p>
1199
1200<p>Here is a listing of a sample <a href="https://imagemagick.org/source/analyze.c">custom image filter</a>.  It computes a few statistics such as the pixel brightness and saturation mean and standard-deviation.</p>
1201<pre class="pre-scrollable"><code>#include &lt;stdio.h>
1202#include &lt;stdlib.h>
1203#include &lt;string.h>
1204#include &lt;time.h>
1205#include &lt;assert.h>
1206#include &lt;math.h>
1207#include &lt;MagickCore/MagickCore.h>
1208
1209/*
1210%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1211%                                                                             %
1212%                                                                             %
1213%                                                                             %
1214%   a n a l y z e I m a g e                                                   %
1215%                                                                             %
1216%                                                                             %
1217%                                                                             %
1218%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1219%
1220%  analyzeImage() computes the brightness and saturation mean,  standard
1221%  deviation, kurtosis and skewness and stores these values as attributes
1222%  of the image.
1223%
1224%  The format of the analyzeImage method is:
1225%
1226%      size_t analyzeImage(Image *images,const int argc,char **argv,
1227%        ExceptionInfo *exception)
1228%
1229%  A description of each parameter follows:
1230%
1231%    o image: the address of a structure of type Image.
1232%
1233%    o argc: Specifies a pointer to an integer describing the number of
1234%      elements in the argument vector.
1235%
1236%    o argv: Specifies a pointer to a text array containing the command line
1237%      arguments.
1238%
1239%    o exception: return any errors or warnings in this structure.
1240%
1241*/
1242
1243static void ConvertRGBToHSB(const double red,const double green,
1244  const double blue,double *hue,double *saturation,double *brightness)
1245{
1246  double
1247    delta,
1248    max,
1249    min;
1250
1251  /*
1252    Convert RGB to HSB colorspace.
1253  */
1254  assert(hue != (double *) NULL);
1255  assert(saturation != (double *) NULL);
1256  assert(brightness != (double *) NULL);
1257  *hue=0.0;
1258  *saturation=0.0;
1259  *brightness=0.0;
1260  min=red &lt; green ? red : green;
1261  if (blue &lt; min)
1262    min=blue;
1263  max=red > green ? red : green;
1264  if (blue > max)
1265    max=blue;
1266  if (fabs(max) &lt; MagickEpsilon)
1267    return;
1268  delta=max-min;
1269  *saturation=delta/max;
1270  *brightness=QuantumScale*max;
1271  if (fabs(delta) &lt; MagickEpsilon)
1272    return;
1273  if (fabs(red-max) &lt; MagickEpsilon)
1274    *hue=(green-blue)/delta;
1275  else
1276    if (fabs(green-max) &lt; MagickEpsilon)
1277      *hue=2.0+(blue-red)/delta;
1278    else
1279      *hue=4.0+(red-green)/delta;
1280  *hue/=6.0;
1281  if (*hue &lt; 0.0)
1282    *hue+=1.0;
1283}
1284
1285ModuleExport size_t analyzeImage(Image **images,const int argc,
1286  const char **argv,ExceptionInfo *exception)
1287{
1288  char
1289    text[MaxTextExtent];
1290
1291  double
1292    area,
1293    brightness,
1294    brightness_mean,
1295    brightness_standard_deviation,
1296    brightness_kurtosis,
1297    brightness_skewness,
1298    brightness_sum_x,
1299    brightness_sum_x2,
1300    brightness_sum_x3,
1301    brightness_sum_x4,
1302    hue,
1303    saturation,
1304    saturation_mean,
1305    saturation_standard_deviation,
1306    saturation_kurtosis,
1307    saturation_skewness,
1308    saturation_sum_x,
1309    saturation_sum_x2,
1310    saturation_sum_x3,
1311    saturation_sum_x4;
1312
1313  Image
1314    *image;
1315
1316  assert(images != (Image **) NULL);
1317  assert(*images != (Image *) NULL);
1318  assert((*images)->signature == MagickCoreSignature);
1319  (void) argc;
1320  (void) argv;
1321  image=(*images);
1322  for ( ; image != (Image *) NULL; image=GetNextImageInList(image))
1323  {
1324    CacheView
1325      *image_view;
1326
1327    long
1328      y;
1329
1330    MagickBooleanType
1331      status;
1332
1333    brightness_sum_x=0.0;
1334    brightness_sum_x2=0.0;
1335    brightness_sum_x3=0.0;
1336    brightness_sum_x4=0.0;
1337    brightness_mean=0.0;
1338    brightness_standard_deviation=0.0;
1339    brightness_kurtosis=0.0;
1340    brightness_skewness=0.0;
1341    saturation_sum_x=0.0;
1342    saturation_sum_x2=0.0;
1343    saturation_sum_x3=0.0;
1344    saturation_sum_x4=0.0;
1345    saturation_mean=0.0;
1346    saturation_standard_deviation=0.0;
1347    saturation_kurtosis=0.0;
1348    saturation_skewness=0.0;
1349    area=0.0;
1350    status=MagickTrue;
1351    image_view=AcquireVirtualCacheView(image,exception);
1352    for (y=0; y &lt; (long) image->rows; y++)
1353    {
1354      register const Quantum
1355        *p;
1356
1357      register long
1358        x;
1359
1360      if (status == MagickFalse)
1361        continue;
1362      p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
1363      if (p == (const Quantum *) NULL)
1364        {
1365          status=MagickFalse;
1366          continue;
1367        }
1368      for (x=0; x &lt; (long) image->columns; x++)
1369      {
1370        ConvertRGBToHSB(GetPixelRed(image,p),GetPixelGreen(image,p),
1371          GetPixelBlue(image,p),&hue,&saturation,&brightness);
1372        brightness*=QuantumRange;
1373        brightness_sum_x+=brightness;
1374        brightness_sum_x2+=brightness*brightness;
1375        brightness_sum_x3+=brightness*brightness*brightness;
1376        brightness_sum_x4+=brightness*brightness*brightness*brightness;
1377        saturation*=QuantumRange;
1378        saturation_sum_x+=saturation;
1379        saturation_sum_x2+=saturation*saturation;
1380        saturation_sum_x3+=saturation*saturation*saturation;
1381        saturation_sum_x4+=saturation*saturation*saturation*saturation;
1382        area++;
1383        p+=GetPixelChannels(image);
1384      }
1385    }
1386    image_view=DestroyCacheView(image_view);
1387    if (area &lt;= 0.0)
1388      break;
1389    brightness_mean=brightness_sum_x/area;
1390    (void) FormatLocaleString(text,MaxTextExtent,"%g",brightness_mean);
1391    (void) SetImageProperty(image,"filter:brightness:mean",text,exception);
1392    brightness_standard_deviation=sqrt(brightness_sum_x2/area-(brightness_sum_x/
1393      area*brightness_sum_x/area));
1394    (void) FormatLocaleString(text,MaxTextExtent,"%g",
1395      brightness_standard_deviation);
1396    (void) SetImageProperty(image,"filter:brightness:standard-deviation",text,
1397      exception);
1398    if (brightness_standard_deviation != 0)
1399      brightness_kurtosis=(brightness_sum_x4/area-4.0*brightness_mean*
1400        brightness_sum_x3/area+6.0*brightness_mean*brightness_mean*
1401        brightness_sum_x2/area-3.0*brightness_mean*brightness_mean*
1402        brightness_mean*brightness_mean)/(brightness_standard_deviation*
1403        brightness_standard_deviation*brightness_standard_deviation*
1404        brightness_standard_deviation)-3.0;
1405    (void) FormatLocaleString(text,MaxTextExtent,"%g",brightness_kurtosis);
1406    (void) SetImageProperty(image,"filter:brightness:kurtosis",text,
1407      exception);
1408    if (brightness_standard_deviation != 0)
1409      brightness_skewness=(brightness_sum_x3/area-3.0*brightness_mean*
1410        brightness_sum_x2/area+2.0*brightness_mean*brightness_mean*
1411        brightness_mean)/(brightness_standard_deviation*
1412        brightness_standard_deviation*brightness_standard_deviation);
1413    (void) FormatLocaleString(text,MaxTextExtent,"%g",brightness_skewness);
1414    (void) SetImageProperty(image,"filter:brightness:skewness",text,exception);
1415    saturation_mean=saturation_sum_x/area;
1416    (void) FormatLocaleString(text,MaxTextExtent,"%g",saturation_mean);
1417    (void) SetImageProperty(image,"filter:saturation:mean",text,exception);
1418    saturation_standard_deviation=sqrt(saturation_sum_x2/area-(saturation_sum_x/
1419      area*saturation_sum_x/area));
1420    (void) FormatLocaleString(text,MaxTextExtent,"%g",
1421      saturation_standard_deviation);
1422    (void) SetImageProperty(image,"filter:saturation:standard-deviation",text,
1423      exception);
1424    if (saturation_standard_deviation != 0)
1425      saturation_kurtosis=(saturation_sum_x4/area-4.0*saturation_mean*
1426        saturation_sum_x3/area+6.0*saturation_mean*saturation_mean*
1427        saturation_sum_x2/area-3.0*saturation_mean*saturation_mean*
1428        saturation_mean*saturation_mean)/(saturation_standard_deviation*
1429        saturation_standard_deviation*saturation_standard_deviation*
1430        saturation_standard_deviation)-3.0;
1431    (void) FormatLocaleString(text,MaxTextExtent,"%g",saturation_kurtosis);
1432    (void) SetImageProperty(image,"filter:saturation:kurtosis",text,exception);
1433    if (saturation_standard_deviation != 0)
1434      saturation_skewness=(saturation_sum_x3/area-3.0*saturation_mean*
1435        saturation_sum_x2/area+2.0*saturation_mean*saturation_mean*
1436        saturation_mean)/(saturation_standard_deviation*
1437        saturation_standard_deviation*saturation_standard_deviation);
1438    (void) FormatLocaleString(text,MaxTextExtent,"%g",saturation_skewness);
1439    (void) SetImageProperty(image,"filter:saturation:skewness",text,exception);
1440  }
1441  return(MagickImageFilterSignature);
1442}
1443</code></pre>
1444
1445<p>To invoke the custom filter from the command line, use this command:</p>
1446
1447<pre class="highlight"><code>convert logo: -process \"analyze\" -verbose info:
1448  Image: logo:
1449    Format: LOGO (ImageMagick Logo)
1450    Class: PseudoClass
1451    Geometry: 640x480
1452    ...
1453    filter:brightness:kurtosis: 8.17947
1454    filter:brightness:mean: 60632.1
1455    filter:brightness:skewness: -2.97118
1456    filter:brightness:standard-deviation: 13742.1
1457    filter:saturation:kurtosis: 4.33554
1458    filter:saturation:mean: 5951.55
1459    filter:saturation:skewness: 2.42848
1460    filter:saturation:standard-deviation: 15575.9
1461</code></pre>
1462
1463
1464<p>We provide the <a href="https://imagemagick.org/download/kits/">Magick Filter Kit</a> to help you get started writing your own custom image filter.</p>
1465
1466</div>
1467    </div>
1468  </main><!-- /.container -->
1469  <footer class="magick-footer">
1470    <p><a href="security-policy.html">Security</a> •
1471    <a href="architecture.html">Architecture</a>
1472
1473    <a href="architecture.html#"><img class="d-inline" id="wand" alt="And Now a Touch of Magick" width="16" height="16" src="../images/wand.ico"/></a>
1474
1475    <a href="links.html">Related</a> •
1476     <a href="sitemap.html">Sitemap</a>
1477    <br/>
1478    <a href="support.html">Donate</a> •
1479    <a href="http://pgp.mit.edu/pks/lookup?op=get&amp;search=0x89AB63D48277377A">Public Key</a> •
1480    <a href="https://imagemagick.org/script/contact.php">Contact Us</a>
1481    <br/>
1482    <small>© 1999-2020 ImageMagick Studio LLC</small></p>
1483  </footer>
1484
1485  <!-- Javascript assets -->
1486  <script src="assets/magick.js" crossorigin="anonymous"></script>
1487  <script>window.jQuery || document.write('<script src="https://localhost/ajax/libs/jquery/3.4.1/jquery.min.js"><\/script>')</script>
1488</body>
1489</html>
1490<!-- Magick Cache 5th January 2020 11:41 -->