/external/tensorflow/tensorflow/lite/kernels/internal/reference/ |
D | legacy_reference_ops.h | 36 inline void ShapeFromDims(const tflite::Dims<4>& dims, RuntimeShape* shape) { in ShapeFromDims() 41 inline void DepthwiseConv(const float* input_data, const Dims<4>& input_dims, in DepthwiseConv() 42 const float* filter_data, const Dims<4>& filter_dims, in DepthwiseConv() 43 const float* bias_data, const Dims<4>& bias_dims, in DepthwiseConv() 49 const Dims<4>& output_dims) { in DepthwiseConv() 68 inline void DepthwiseConv(const float* input_data, const Dims<4>& input_dims, in DepthwiseConv() 69 const float* filter_data, const Dims<4>& filter_dims, in DepthwiseConv() 70 const float* bias_data, const Dims<4>& bias_dims, in DepthwiseConv() 75 const Dims<4>& output_dims) { in DepthwiseConv() 84 void DepthwiseConv(const float* input_data, const Dims<4>& input_dims, in DepthwiseConv() [all …]
|
D | process_broadcast_shapes.h | 57 if (extended_shape0.Dims(i) == extended_shape1.Dims(i)) { in ProcessBroadcastShapes() 59 } else if (extended_shape0.Dims(i) == 1) { in ProcessBroadcastShapes() 63 } else if (extended_shape1.Dims(i) == 1) { in ProcessBroadcastShapes() 99 while (i >= 0 && shape_a->Dims(i) == shape_b->Dims(i)) { in ProcessBroadcastShapes() 100 params->broadcast_shape[4] *= shape_b->Dims(i); in ProcessBroadcastShapes() 105 while (i >= 0 && shape_a->Dims(i) == 1) { in ProcessBroadcastShapes() 106 params->broadcast_shape[3] *= shape_b->Dims(i); in ProcessBroadcastShapes() 109 while (i >= 0 && shape_a->Dims(i) == shape_b->Dims(i)) { in ProcessBroadcastShapes() 110 params->broadcast_shape[2] *= shape_a->Dims(i); in ProcessBroadcastShapes() 114 while (i >= 0 && shape_b->Dims(i) == 1) { in ProcessBroadcastShapes() [all …]
|
D | pooling.h | 34 const int input_height = input_shape.Dims(1); in AveragePool() 35 const int input_width = input_shape.Dims(2); in AveragePool() 36 const int output_height = output_shape.Dims(1); in AveragePool() 37 const int output_width = output_shape.Dims(2); in AveragePool() 89 const int input_height = input_shape.Dims(1); in AveragePool() 90 const int input_width = input_shape.Dims(2); in AveragePool() 91 const int output_height = output_shape.Dims(1); in AveragePool() 92 const int output_width = output_shape.Dims(2); in AveragePool() 142 const int input_height = input_shape.Dims(1); in L2Pool() 143 const int input_width = input_shape.Dims(2); in L2Pool() [all …]
|
D | conv.h | 54 const int input_height = input_shape.Dims(1); in Conv() 55 const int input_width = input_shape.Dims(2); in Conv() 56 const int filter_height = filter_shape.Dims(1); in Conv() 57 const int filter_width = filter_shape.Dims(2); in Conv() 58 const int output_height = output_shape.Dims(1); in Conv() 59 const int output_width = output_shape.Dims(2); in Conv() 134 const int input_height = input_shape.Dims(1); in Conv() 135 const int input_width = input_shape.Dims(2); in Conv() 136 const int filter_height = filter_shape.Dims(1); in Conv() 137 const int filter_width = filter_shape.Dims(2); in Conv() [all …]
|
D | concatenation.h | 45 concat_size += input_shapes[i]->Dims(axis); in Concatenation() 47 TFLITE_DCHECK_EQ(concat_size, output_shape.Dims(axis)); in Concatenation() 50 outer_size *= output_shape.Dims(i); in Concatenation() 56 base_inner_size *= output_shape.Dims(i); in Concatenation() 62 const int copy_size = input_shapes[i]->Dims(axis) * base_inner_size; in Concatenation() 97 concat_size += input_shapes[i]->Dims(axis); in ConcatenationWithScaling() 99 TFLITE_DCHECK_EQ(concat_size, output_shape.Dims(axis)); in ConcatenationWithScaling() 102 outer_size *= output_shape.Dims(i); in ConcatenationWithScaling() 108 base_inner_size *= output_shape.Dims(i); in ConcatenationWithScaling() 115 const int copy_size = input_shapes[i]->Dims(axis) * base_inner_size; in ConcatenationWithScaling()
|
D | arg_min_max.h | 35 const int axis_size = input1_shape.Dims(axis); in ArgMinMax() 39 TFLITE_DCHECK_EQ(input1_shape.Dims(i), output_shape.Dims(i)); in ArgMinMax() 40 outer_size *= input1_shape.Dims(i); in ArgMinMax() 46 TFLITE_DCHECK_EQ(input1_shape.Dims(i), output_shape.Dims(i - 1)); in ArgMinMax() 47 inner_size *= input1_shape.Dims(i); in ArgMinMax()
|
D | reference_ops.h | 80 const int input_depth = input_shape.Dims(3); in DepthToSpace() 81 const int input_width = input_shape.Dims(2); in DepthToSpace() 82 const int input_height = input_shape.Dims(1); in DepthToSpace() 83 const int input_batch = input_shape.Dims(0); in DepthToSpace() 85 const int output_depth = output_shape.Dims(3); in DepthToSpace() 86 const int output_width = output_shape.Dims(2); in DepthToSpace() 87 const int output_height = output_shape.Dims(1); in DepthToSpace() 88 const int output_batch = output_shape.Dims(0); in DepthToSpace() 133 const int input_depth = input_shape.Dims(3); in SpaceToDepth() 134 const int input_width = input_shape.Dims(2); in SpaceToDepth() [all …]
|
D | depthwiseconv_uint8.h | 120 const int input_height = input_shape.Dims(1); in Run() 121 const int input_width = input_shape.Dims(2); in Run() 122 const int input_depth = input_shape.Dims(3); in Run() 123 const int filter_height = filter_shape.Dims(1); in Run() 124 const int filter_width = filter_shape.Dims(2); in Run() 125 const int output_height = output_shape.Dims(1); in Run() 126 const int output_width = output_shape.Dims(2); in Run() 207 const int input_height = input_shape.Dims(1); in RunPerChannel() 208 const int input_width = input_shape.Dims(2); in RunPerChannel() 209 const int input_depth = input_shape.Dims(3); in RunPerChannel() [all …]
|
D | depthwiseconv_float.h | 46 const int input_height = input_shape.Dims(1); in DepthwiseConv() 47 const int input_width = input_shape.Dims(2); in DepthwiseConv() 48 const int input_depth = input_shape.Dims(3); in DepthwiseConv() 49 const int filter_height = filter_shape.Dims(1); in DepthwiseConv() 50 const int filter_width = filter_shape.Dims(2); in DepthwiseConv() 51 const int output_height = output_shape.Dims(1); in DepthwiseConv() 52 const int output_width = output_shape.Dims(2); in DepthwiseConv()
|
/external/tensorflow/tensorflow/lite/kernels/internal/ |
D | types.h | 124 struct Dims { struct 189 inline int32 Dims(int i) const { in Dims() function 302 inline tflite::Dims<4> ToRuntimeDims(const tflite::RuntimeShape& array_shape) { in ToRuntimeDims() 303 tflite::Dims<4> result; in ToRuntimeDims() 309 (i < dimensions_count) ? array_shape.Dims(dimensions_count - 1 - i) : 1; in ToRuntimeDims() 318 inline RuntimeShape DimsToShape(const tflite::Dims<4>& dims) { in DimsToShape() 389 inline int Offset(const Dims<4>& dims, int i0, int i1, int i2, int i3) { in Offset() 398 inline int Offset(const Dims<4>& dims, int* index) { in Offset() 411 int ArraySize(const Dims<N>& array, int index) { in ArraySize() 434 TFLITE_DCHECK_EQ(shape1.Dims(index1), shape2.Dims(index2)); in MatchingDim() [all …]
|
D | transpose_utils.cc | 26 *dim0 = input_shape.Dims(0); in IsTranspose2DApplicable() 27 *dim1 = input_shape.Dims(1); in IsTranspose2DApplicable() 45 *dim0 *= input_shape.Dims(i); in IsTranspose2DApplicable() 47 *dim1 *= input_shape.Dims(i); in IsTranspose2DApplicable() 61 if (input_shape->Dims(i) == 1) { in RemoveOneSizeDimensions() 84 if (input_shape->Dims(i) == 1) { in RemoveOneSizeDimensions() 87 input_shape->SetDim(new_dims_cnt, input_shape->Dims(i)); in RemoveOneSizeDimensions() 96 if (output_shape->Dims(i) == 1) { in RemoveOneSizeDimensions() 100 output_shape->SetDim(new_dims_cnt, output_shape->Dims(i)); in RemoveOneSizeDimensions() 130 flat_size /= input_shape.Dims(i); in Flatten() [all …]
|
D | depthwiseconv_quantized_test.cc | 190 << " input_width = " << input_shape.Dims(2) in DispatchDepthwiseConvImpl() 191 << " input_height = " << input_shape.Dims(1) in DispatchDepthwiseConvImpl() 192 << " output_width = " << output_shape.Dims(2) in DispatchDepthwiseConvImpl() 193 << " output_height = " << output_shape.Dims(1); in DispatchDepthwiseConvImpl() 203 /*thread_end=*/output_shape.Dims(1), /*thread_dim=*/1); in DispatchDepthwiseConvImpl() 211 /*thread_end=*/output_shape.Dims(1), /*thread_dim=*/1); in DispatchDepthwiseConvImpl() 237 /*thread_end=*/output_shape.Dims(1), /*thread_dim=*/1); in DispatchDepthwiseConvImpl() 260 << " input_width = " << input_shape.Dims(2) in DispatchDepthwiseConvImpl() 261 << " input_height = " << input_shape.Dims(1) in DispatchDepthwiseConvImpl() 262 << " output_width = " << output_shape.Dims(2) in DispatchDepthwiseConvImpl() [all …]
|
/external/tensorflow/tensorflow/core/kernels/ |
D | mirror_pad_op.h | 95 static constexpr int Dims = internal::array_size<PaddingDimensions>::value; 96 typedef DSizes<Index, Dims> Dimensions; 120 EIGEN_STATIC_ASSERT(Dims > 0, YOU_MADE_A_PROGRAMMING_MISTAKE) 131 for (int dim = 0; dim < Dims; ++dim) { 141 for (int i = 0; i < Dims - 1; ++i) { 146 input_strides_[numext::maxi(0, Dims - 1)] = 1; 147 output_strides_[numext::maxi(0, Dims - 1)] = 1; 148 for (int i = Dims - 1; i > 0; --i) { 174 coeff(array<Index, Dims> coords) const { 175 for (int dim = 0; dim < Dims; ++dim) { [all …]
|
D | reverse_sequence_op.h | 28 template <typename T, typename Tlen, size_t Dims> 32 ReverseGenerator(typename TTypes<T, Dims>::ConstTensor input, int32 batch_dim, in ReverseGenerator() 40 operator()(const Eigen::array<Eigen::DenseIndex, Dims>& coords) const { in operator() 41 Eigen::array<Eigen::DenseIndex, Dims> new_coords = coords; in operator() 51 typename TTypes<T, Dims>::ConstTensor input_; 61 template <typename Device, typename T, typename Tlen, size_t Dims> 64 const Device& d, typename TTypes<T, Dims>::ConstTensor input, in Compute() 67 typename TTypes<T, Dims>::Tensor output) { in Compute() 68 generator::ReverseGenerator<T, Tlen, Dims> generator(input, batch_dim, in Compute()
|
D | argmax_op.h | 30 #define DECLARE_COMPUTE_SPEC(Dims) \ argument 31 EIGEN_ALWAYS_INLINE static void Reduce##Dims( \ 32 const Device& d, typename TTypes<T, Dims>::ConstTensor input, \ 33 const int32 dimension, typename TTypes<Tout, Dims - 1>::Tensor output) { \ 50 #define DECLARE_COMPUTE_SPEC(Dims) \ argument 51 EIGEN_ALWAYS_INLINE static void Reduce##Dims( \ 52 const Device& d, typename TTypes<T, Dims>::ConstTensor input, \ 53 const int32 dimension, typename TTypes<Tout, Dims - 1>::Tensor output) { \
|
D | pad_op.cc | 242 template <int Dims> 244 typename TTypes<T, Dims>::ConstTensor input, in Operate() 247 CHECK_EQ(Dims, paddings.dimension(0)); in Operate() 249 Eigen::array<Eigen::IndexPair<Tpadding>, Dims> paddings_array; in Operate() 250 for (int i = 0; i < Dims; ++i) { in Operate() 253 functor::Pad<Device, T, Tpadding, Dims> functor; in Operate() 254 functor(context->eigen_device<Device>(), output->tensor<T, Dims>(), input, in Operate() 295 #define DECLARE_GPU_SPEC(T, Dims) \ argument 297 void Pad<GPUDevice, T, int32, Dims>::operator()( \ 298 const GPUDevice& d, typename TTypes<T, Dims>::Tensor output, \ [all …]
|
/external/tensorflow/tensorflow/lite/kernels/internal/optimized/ |
D | legacy_optimized_ops.h | 80 VectorMap<Scalar> MapAsVector(Scalar* data, const Dims<N>& dims) { in MapAsVector() 87 const Dims<N>& dims) { in MapAsMatrixWithFirstDimAsRows() 98 const Dims<N>& dims) { in MapAsMatrixWithLastDimAsCols() 109 const Dims<N>& dims) { in MapAsArrayWithFirstDimAsRows() 122 const Dims<N>& dims, in MapAsMatrixWithGivenNumberOfRows() 130 inline bool AreSameDims(const Dims<4>& dims1, const Dims<4>& dims2) { in AreSameDims() 139 inline void DepthwiseConv(const float* input_data, const Dims<4>& input_dims, in DepthwiseConv() 140 const float* filter_data, const Dims<4>& filter_dims, in DepthwiseConv() 141 const float* bias_data, const Dims<4>& bias_dims, in DepthwiseConv() 147 const Dims<4>& output_dims) { in DepthwiseConv() [all …]
|
D | im2col_utils.h | 136 const int input_height = input_shape.Dims(1); in DilatedIm2col() 137 const int input_width = input_shape.Dims(2); in DilatedIm2col() 139 const int filter_height = filter_shape.Dims(1); in DilatedIm2col() 140 const int filter_width = filter_shape.Dims(2); in DilatedIm2col() 141 const int output_height = output_shape.Dims(1); in DilatedIm2col() 142 const int output_width = output_shape.Dims(2); in DilatedIm2col() 210 const int input_depth = input_shape.Dims(3); in Im2col() 211 const int input_width = input_shape.Dims(2); in Im2col() 212 const int input_height = input_shape.Dims(1); in Im2col() 213 const int output_depth = output_shape.Dims(3); in Im2col() [all …]
|
/external/eigen/unsupported/Eigen/CXX11/src/Tensor/ |
D | TensorArgMax.h | 134 template<typename ReduceOp, typename Dims, typename XprType> 135 struct traits<TensorTupleReducerOp<ReduceOp, Dims, XprType> > : public traits<XprType> 143 static const int NumDimensions = XprTraits::NumDimensions - array_size<Dims>::value; 147 template<typename ReduceOp, typename Dims, typename XprType> 148 struct eval<TensorTupleReducerOp<ReduceOp, Dims, XprType>, Eigen::Dense> 150 typedef const TensorTupleReducerOp<ReduceOp, Dims, XprType>& type; 153 template<typename ReduceOp, typename Dims, typename XprType> 154 struct nested<TensorTupleReducerOp<ReduceOp, Dims, XprType>, 1, 155 typename eval<TensorTupleReducerOp<ReduceOp, Dims, XprType> >::type> 157 typedef TensorTupleReducerOp<ReduceOp, Dims, XprType> type; [all …]
|
/external/tensorflow/tensorflow/lite/kernels/internal/reference/integer_ops/ |
D | depthwise_conv.h | 51 const int input_height = input_shape.Dims(1); in DepthwiseConvPerChannel() 52 const int input_width = input_shape.Dims(2); in DepthwiseConvPerChannel() 53 const int input_depth = input_shape.Dims(3); in DepthwiseConvPerChannel() 54 const int filter_height = filter_shape.Dims(1); in DepthwiseConvPerChannel() 55 const int filter_width = filter_shape.Dims(2); in DepthwiseConvPerChannel() 56 const int output_height = output_shape.Dims(1); in DepthwiseConvPerChannel() 57 const int output_width = output_shape.Dims(2); in DepthwiseConvPerChannel() 145 const int input_height = input_shape.Dims(1); in DepthwiseConvHybridPerChannel() 146 const int input_width = input_shape.Dims(2); in DepthwiseConvHybridPerChannel() 147 const int input_depth = input_shape.Dims(3); in DepthwiseConvHybridPerChannel() [all …]
|
D | fully_connected.h | 41 const int batches = output_shape.Dims(0); in FullyConnected() 42 const int output_depth = output_shape.Dims(1); in FullyConnected() 43 TFLITE_DCHECK_LE(output_depth, filter_shape.Dims(filter_dim_count - 2)); in FullyConnected() 44 const int accum_depth = filter_shape.Dims(filter_dim_count - 1); in FullyConnected() 83 const int batches = output_shape.Dims(0); in FullyConnected() 84 const int output_depth = output_shape.Dims(1); in FullyConnected() 85 TFLITE_DCHECK_LE(output_depth, filter_shape.Dims(filter_dim_count - 2)); in FullyConnected() 86 const int accum_depth = filter_shape.Dims(filter_dim_count - 1); in FullyConnected()
|
D | mean.h | 36 const int output_batch = output_shape.Dims(0); in Mean() 37 const int output_height = output_shape.Dims(1); in Mean() 38 const int output_width = output_shape.Dims(2); in Mean() 39 const int output_depth = output_shape.Dims(3); in Mean() 40 const int input_height = input_shape.Dims(1); in Mean() 41 const int input_width = input_shape.Dims(2); in Mean()
|
D | pooling.h | 33 const int input_height = input_shape.Dims(1); in AveragePool() 34 const int input_width = input_shape.Dims(2); in AveragePool() 35 const int output_height = output_shape.Dims(1); in AveragePool() 36 const int output_width = output_shape.Dims(2); in AveragePool() 94 const int input_height = input_shape.Dims(1); in MaxPool() 95 const int input_width = input_shape.Dims(2); in MaxPool() 96 const int output_height = output_shape.Dims(1); in MaxPool() 97 const int output_width = output_shape.Dims(2); in MaxPool()
|
/external/tensorflow/tensorflow/lite/kernels/internal/optimized/integer_ops/ |
D | conv.h | 54 const int filter_width = filter_shape.Dims(2); in ConvPerChannel() 55 const int filter_height = filter_shape.Dims(1); in ConvPerChannel() 84 const int gemm_input_rows = gemm_input_shape->Dims(3); in ConvPerChannel() 86 const int filter_rows = filter_shape.Dims(0); in ConvPerChannel() 88 const int output_rows = output_shape.Dims(3); in ConvPerChannel() 92 output_shape.Dims(0) * output_shape.Dims(1) * output_shape.Dims(2); in ConvPerChannel()
|
D | transpose_conv.h | 34 const int batch_size = input_shape.Dims(0); in TransposeConvV2() 38 const int input_image_size = input_shape.Dims(1) * input_shape.Dims(2); in TransposeConvV2() 39 const int output_height = output_shape.Dims(1); in TransposeConvV2() 40 const int output_width = output_shape.Dims(2); in TransposeConvV2() 49 const int filter_height = hwoi_ordered_filter_shape.Dims(0); in TransposeConvV2() 50 const int filter_width = hwoi_ordered_filter_shape.Dims(1); in TransposeConvV2()
|