/external/tensorflow/tensorflow/core/kernels/ |
D | constant_op.cc | 105 REGISTER_KERNEL(GPU, Eigen::half); 106 REGISTER_KERNEL(GPU, bfloat16); 107 REGISTER_KERNEL(GPU, float); 108 REGISTER_KERNEL(GPU, double); 109 REGISTER_KERNEL(GPU, uint8); 110 REGISTER_KERNEL(GPU, int8); 111 REGISTER_KERNEL(GPU, qint8); 112 REGISTER_KERNEL(GPU, uint16); 113 REGISTER_KERNEL(GPU, int16); 114 REGISTER_KERNEL(GPU, qint16); [all …]
|
D | depthwise_conv_ops_test.cc | 38 enum class Device { CPU, GPU }; enumerator 42 if (device == Device::GPU) { in Run() 106 TEST_F(DepthwiseConvOpTest, DepthwiseConvFloatGpu) { Run<float>(Device::GPU); } in TEST_F() 108 Run<double>(Device::GPU); in TEST_F() 111 Run<Eigen::half>(Device::GPU); in TEST_F()
|
D | cwise_op_reciprocal.cc | 22 REGISTER4(UnaryOp, GPU, "Inv", functor::inverse, float, Eigen::half, double, 29 REGISTER3(SimpleBinaryOp, GPU, "InvGrad", functor::inverse_grad, float, 43 REGISTER4(UnaryOp, GPU, "Reciprocal", functor::inverse, float, Eigen::half, 53 REGISTER3(SimpleBinaryOp, GPU, "ReciprocalGrad", functor::inverse_grad, float,
|
D | cwise_op_igammas.cc | 24 REGISTER2(BinaryOp, GPU, "Igamma", functor::igamma, float, double); 25 REGISTER2(BinaryOp, GPU, "IgammaGradA", functor::igamma_grad_a, float, double); 26 REGISTER2(BinaryOp, GPU, "Igammac", functor::igammac, float, double);
|
D | cwise_op_div.cc | 32 REGISTER9(BinaryOp, GPU, "Div", functor::div, float, Eigen::half, double, uint8, 34 REGISTER4(BinaryOp, GPU, "TruncateDiv", functor::div, uint8, uint16, int16, 36 REGISTER5(BinaryOp, GPU, "RealDiv", functor::div, float, Eigen::half, double, 38 REGISTER5(BinaryOp, GPU, "DivNoNan", functor::div_no_nan, Eigen::half, float,
|
/external/tensorflow/tensorflow/compiler/tests/ |
D | lstm_layer_inference.pbtxt | 6 device: "/device:GPU:*" 31 device: "/device:GPU:*" 53 device: "/device:GPU:*" 76 device: "/device:GPU:*" 107 device: "/device:GPU:*" 120 device: "/device:GPU:*" 133 device: "/device:GPU:*" 144 device: "/device:GPU:*" 182 device: "/device:GPU:*" 214 device: "/device:GPU:*" [all …]
|
/external/perfetto/test/trace_processor/ |
D | gpu_log.out | 2 "gpu_log","GPU Log",1,0,"VERBOSE","message","message0" 3 "gpu_log","GPU Log",1,0,"VERBOSE","tag","tag0" 4 "gpu_log","GPU Log",2,0,"DEBUG","message","message1" 5 "gpu_log","GPU Log",2,0,"DEBUG","tag","tag0" 6 "gpu_log","GPU Log",3,0,"INFO","message","message2" 7 "gpu_log","GPU Log",3,0,"INFO","tag","tag0" 8 "gpu_log","GPU Log",4,0,"ERROR","message","message4" 9 "gpu_log","GPU Log",4,0,"ERROR","tag","tag0" 10 "gpu_log","GPU Log",4,0,"WARNING","message","message3" 11 "gpu_log","GPU Log",4,0,"WARNING","tag","tag0" [all …]
|
/external/tensorflow/tensorflow/compiler/jit/tests/ |
D | keras_imagenet_main.pbtxt | 4 device: "/job:localhost/replica:0/task:0/device:GPU:0" 29 device: "/job:localhost/replica:0/task:0/device:GPU:0" 51 device: "/job:localhost/replica:0/task:0/device:GPU:0" 88 device: "/job:localhost/replica:0/task:0/device:GPU:0" 128 device: "/job:localhost/replica:0/task:0/device:GPU:0" 153 device: "/job:localhost/replica:0/task:0/device:GPU:0" 176 device: "/job:localhost/replica:0/task:0/device:GPU:0" 213 device: "/job:localhost/replica:0/task:0/device:GPU:0" 250 device: "/job:localhost/replica:0/task:0/device:GPU:0" 296 device: "/job:localhost/replica:0/task:0/device:GPU:0" [all …]
|
D | keras_imagenet_main_graph_mode.pbtxt | 4 device: "/job:localhost/replica:0/task:0/device:GPU:0" 54 device: "/job:localhost/replica:0/task:0/device:GPU:0" 98 device: "/job:localhost/replica:0/task:0/device:GPU:0" 139 device: "/job:localhost/replica:0/task:0/device:GPU:0" 180 device: "/job:localhost/replica:0/task:0/device:GPU:0" 221 device: "/job:localhost/replica:0/task:0/device:GPU:0" 262 device: "/job:localhost/replica:0/task:0/device:GPU:0" 303 device: "/job:localhost/replica:0/task:0/device:GPU:0" 344 device: "/job:localhost/replica:0/task:0/device:GPU:0" 385 device: "/job:localhost/replica:0/task:0/device:GPU:0" [all …]
|
D | opens2s_gnmt_mixed_precision.pbtxt.gz |
|
/external/skia/src/gpu/vk/ |
D | GrVkUtil.h | 24 #define GR_VK_CALL_RESULT(GPU, RESULT, X) \ argument 26 (RESULT) = GR_VK_CALL(GPU->vkInterface(), X); \ 28 if (RESULT != VK_SUCCESS && !GPU->isDeviceLost()) { \ 32 GPU->setDeviceLost(); \ 36 #define GR_VK_CALL_RESULT_NOCHECK(GPU, RESULT, X) \ argument 38 (RESULT) = GR_VK_CALL(GPU->vkInterface(), X); \ 40 GPU->setDeviceLost(); \ 45 #define GR_VK_CALL_ERRCHECK(GPU, X) \ argument 47 GR_VK_CALL_RESULT(GPU, SK_MACRO_APPEND_LINE(ret), X) \
|
/external/llvm/lib/Target/AMDGPU/ |
D | AMDGPUSubtarget.cpp | 38 StringRef GPU, StringRef FS) { in initializeSubtargetDependencies() argument 53 ParseSubtargetFeatures(GPU, FullFS); in initializeSubtargetDependencies() 70 AMDGPUSubtarget::AMDGPUSubtarget(const Triple &TT, StringRef GPU, StringRef FS, in AMDGPUSubtarget() argument 72 : AMDGPUGenSubtargetInfo(TT, GPU, FS), in AMDGPUSubtarget() 119 InstrItins(getInstrItineraryForCPU(GPU)) { in AMDGPUSubtarget() 120 initializeSubtargetDependencies(TT, GPU, FS); in AMDGPUSubtarget() 181 R600Subtarget::R600Subtarget(const Triple &TT, StringRef GPU, StringRef FS, in R600Subtarget() argument 183 AMDGPUSubtarget(TT, GPU, FS, TM), in R600Subtarget() 188 SISubtarget::SISubtarget(const Triple &TT, StringRef GPU, StringRef FS, in SISubtarget() argument 190 AMDGPUSubtarget(TT, GPU, FS, TM), in SISubtarget()
|
D | AMDGPUTargetMachine.cpp | 125 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { in getGPUOrDefault() argument 126 if (!GPU.empty()) in getGPUOrDefault() 127 return GPU; in getGPUOrDefault() 185 StringRef GPU = getGPUName(F); in getSubtargetImpl() local 188 SmallString<128> SubtargetKey(GPU); in getSubtargetImpl() 197 I = llvm::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); in getSubtargetImpl() 226 StringRef GPU = getGPUName(F); in getSubtargetImpl() local 229 SmallString<128> SubtargetKey(GPU); in getSubtargetImpl() 238 I = llvm::make_unique<SISubtarget>(TargetTriple, GPU, FS, *this); in getSubtargetImpl()
|
/external/tensorflow/tensorflow/lite/g3doc/performance/ |
D | gpu.md | 1 # TensorFlow Lite GPU delegate 4 accelerators. This document describes how to use the GPU backend using the 11 resulting in lower latency. In the best scenario, inference on the GPU may now 17 Another benefit with GPU inference is its power efficiency. GPUs carry out the 23 The easiest way to try out the GPU delegate is to follow the below tutorials, 24 which go through building our classification demo applications with GPU support. 25 The GPU code is only binary for now; it will be open-sourced soon. Once you 32 [GPU Delegate for Android](https://youtu.be/Xkhgre8r5G0) video. 42 #### Step 2. Edit `app/build.gradle` to use the nightly GPU AAR 58 enabling the GPU. Change from quantized to a float model and then click GPU to [all …]
|
D | gpu_advanced.md | 1 # TensorFlow Lite on GPU 4 hardware accelerators. This document describes how to use the GPU backend using 8 ## Benefits of GPU Acceleration 17 on the GPU may run fast enough to become suitable for real-time applications 25 neural network on a GPU may eliminate this concern. 29 Another benefit that comes with GPU inference is its power efficiency. A GPU 35 TensorFlow Lite on GPU supports the following ops in 16-bit and 32-bit float 62 Run TensorFlow Lite on GPU with `TfLiteDelegate`. In Java, you can specify the 66 // NEW: Prepare GPU delegate. 84 For C/C++ usage of TensorFlow Lite GPU on Android, the GPU delegate can be [all …]
|
/external/perfetto/docs/data-sources/ |
D | gpu.md | 1 # GPU chapter 5 ## GPU Frequency 7 GPU frequency can be included in the trace by adding the ftrace category. 20 ## GPU Counters 22 GPU counters can be configured by adding the data source to the trace config as follows:
|
/external/tensorflow/tensorflow/lite/delegates/gpu/ |
D | README.md | 1 # TFLite on GPU 4 describes how to use the GPU backend using the TFLite delegate APIs on Android 11 resulting in lower latency. In the best scenario, inference on the GPU may now 19 net models on the GPU. 21 Another benefit that comes with GPU inference is its power efficiency. GPUs 26 TFLite on GPU supports the following ops in 16-bit and 32-bit float precision: 51 Using TFLite on GPU is as simple as getting the GPU delegate via 65 // NEW: Prepare GPU delegate. 89 TFLite GPU backend uses OpenGL ES 3.1 compute shaders or OpenCL. 104 There are GPU options that can be set and passed on to [all …]
|
/external/tensorflow/tensorflow/python/eager/ |
D | benchmarks_test.py | 67 GPU = "/device:GPU:0" variable 195 if device == GPU: 294 self._benchmark_create_tensor([[3.0]], dtypes.float32.as_datatype_enum, GPU) 301 GPU) 307 self._benchmark_create_tensor([[3]], dtypes.int32.as_datatype_enum, GPU) 314 np.array([[3]], dtype=np.int32), dtypes.int32.as_datatype_enum, GPU) 352 with context.device(GPU): 364 with context.device(GPU): 578 with context.device(GPU): 586 with context.device(GPU): [all …]
|
/external/angle/src/feature_support_util/ |
D | feature_support_util.cpp | 425 class GPU class 428 GPU(const std::string vendor, uint32_t deviceId, const Version &version) in GPU() function in angle::GPU 431 GPU(const std::string vendor, uint32_t deviceId) in GPU() function in angle::GPU 434 GPU(const std::string vendor) : mVendor(vendor), mDeviceId(), mVersion(), mWildcard(false) {} in GPU() function in angle::GPU 435 GPU() : mVendor(), mDeviceId(), mVersion(), mWildcard(true) {} in GPU() function in angle::GPU 436 bool match(const GPU &toCheck) const in match() 452 ~GPU() {} in ~GPU() 454 static GPU *CreateGpuFromJson(const Json::Value &jObject) in CreateGpuFromJson() 456 GPU *gpu = nullptr; in CreateGpuFromJson() 469 gpu = new GPU(vendor, deviceId, *version); in CreateGpuFromJson() [all …]
|
/external/tensorflow/tensorflow/core/protobuf/ |
D | config.proto | 19 // Fraction of the available GPU memory to allocate for each process. 20 // 1 means to allocate all of the GPU memory, 0.5 means the process 21 // allocates up to ~50% of the available GPU memory. 23 // GPU memory is pre-allocated unless the allow_growth option is enabled. 26 // the amount of memory available on the GPU device by using host memory as a 39 // GPU memory region, instead starting small and growing as needed. 42 // The type of GPU allocation strategy to use. 57 // A comma-separated list of GPU ids that determines the 'visible' 58 // to 'virtual' mapping of GPU devices. For example, if TensorFlow 59 // can see 8 GPU devices in the process, and one wanted to map [all …]
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_Copy.pbtxt | 26 summary: "Copy a tensor from CPU-to-CPU or GPU-to-GPU." 28 Performs CPU-to-CPU or GPU-to-GPU deep-copying of tensor, depending on the
|
/external/tensorflow/tensorflow/compiler/xla/g3doc/ |
D | custom_call.md | 57 ## Custom-call on GPU 59 The GPU custom call framework is somewhat different than that on the CPU. Here 85 Notice first that the GPU custom call function *is still a function executed on 87 on the GPU. Here it launches a CUDA kernel, but it could also do something else, 91 contains points to device (i.e. GPU) memory. The parameters come first, followed 102 operands to our custom call, their values would live in GPU memory. We'd then 117 serialized proto inside of `opaque` and deserialize it within your GPU 145 On both CPU and GPU, a tuple is represented in memory as an array of pointers. 150 // and GPU. 166 Although the in-memory representation of tuples is the same in CPU and GPU, they [all …]
|
/external/mesa3d/docs/drivers/ |
D | vc4.rst | 5 Broadcom's VideoCore IV GPU. It is notably used in the Raspberry Pi 0 16 GPU block from Linux. 76 For GPU hangs, if you can get a short apitrace that produces the 99 (GPU) Initialize the per-tile draw call lists to empty. 100 (GPU) Run all draw calls collecting vertex data 101 (GPU) For each tile covered by a draw call's primitive. 117 from memory, in favor of a cheap GPU-side ``memset()`` of the tile 155 * Increasing GPU memory Increase CMA pool size 192 * Step 2: CPU vs GPU 195 application, the CPU is busy in the GL driver, the GPU is waiting for [all …]
|
/external/angle/extensions/ |
D | EGL_ANGLE_power_preference.txt | 36 This extension allows selection of the high- or low-power GPU on 37 dual-GPU systems, specifically on macOS. 65 created on the integrated (low-power) or discrete (high-power) GPU 66 on dual-GPU systems. EGL_POWER_PREFERENCE_ANGLE is only a legal
|
/external/swiftshader/third_party/llvm-7.0/llvm/lib/Target/AMDGPU/ |
D | AMDGPUSubtarget.cpp | 48 StringRef GPU, StringRef FS) { in initializeSubtargetDependencies() argument 51 ParseSubtargetFeatures(GPU, FullFS); in initializeSubtargetDependencies() 68 StringRef GPU, StringRef FS) { in initializeSubtargetDependencies() argument 94 ParseSubtargetFeatures(GPU, FullFS); in initializeSubtargetDependencies() 145 GCNSubtarget::GCNSubtarget(const Triple &TT, StringRef GPU, StringRef FS, in GCNSubtarget() argument 147 AMDGPUGenSubtargetInfo(TT, GPU, FS), in GCNSubtarget() 211 InstrInfo(initializeSubtargetDependencies(TT, GPU, FS)), in GCNSubtarget() 447 R600Subtarget::R600Subtarget(const Triple &TT, StringRef GPU, StringRef FS, in R600Subtarget() argument 449 R600GenSubtargetInfo(TT, GPU, FS), in R600Subtarget() 462 TLInfo(TM, initializeSubtargetDependencies(TT, GPU, FS)), in R600Subtarget() [all …]
|