/external/tensorflow/tensorflow/lite/toco/graph_transformations/ |
D | propagate_array_data_types.cc | 30 model->GetArray(output).data_type = data_type; in SetDataTypeForAllOutputs() 45 model->GetArray(input).data_type == ArrayDataType::kNone) { in Run() 53 old_output_data_types[output] = model->GetArray(output).data_type; in Run() 90 const ArrayDataType data_type = model->GetArray(op->inputs[1]).data_type; in Run() 97 const ArrayDataType data_type = model->GetArray(op->inputs[0]).data_type; in Run() 104 const ArrayDataType data_type = model->GetArray(op->inputs[2]).data_type; in Run() 112 model->GetArray(op->outputs[0]).data_type = cast_op->dst_data_type; in Run() 119 model->GetArray(op->outputs[0]).data_type = argmax_op->output_data_type; in Run() 126 model->GetArray(op->outputs[0]).data_type = argmin_op->output_data_type; in Run() 139 data_type = model->GetArray(op->inputs[0]).data_type; in Run() [all …]
|
D | propagate_fixed_sizes.cc | 126 const auto& input_array = model->GetArray(op->inputs[0]); in ProcessConvOperator() 136 const auto& weights_array = model->GetArray(op->inputs[1]); in ProcessConvOperator() 144 auto& output_array = model->GetArray(op->outputs[0]); in ProcessConvOperator() 159 auto& im2col_array = model->GetArray(op->outputs[1]); in ProcessConvOperator() 178 model->GetArray(op->inputs[TransposeConvOperator::OUTPUT_SHAPE]); in ProcessTransposeConvOperator() 198 model->GetArray(op->inputs[TransposeConvOperator::WEIGHTS]); in ProcessTransposeConvOperator() 225 model->GetArray(op->inputs[TransposeConvOperator::DATA_INPUT]); in ProcessTransposeConvOperator() 241 auto& output_array = model->GetArray(op->outputs[0]); in ProcessTransposeConvOperator() 247 auto& im2col_array = model->GetArray(op->outputs[1]); in ProcessTransposeConvOperator() 255 const auto& input_array = model->GetArray(op->inputs[0]); in ProcessDepthwiseConvOperator() [all …]
|
D | hardcode_min_max.cc | 33 auto& im2col_array = model->GetArray(op->outputs[1]); in HardcodeMinMaxForIm2colArray() 37 const auto& input_array = model->GetArray(op->inputs[0]); in HardcodeMinMaxForIm2colArray() 50 auto& output_array = model->GetArray(op->outputs[0]); in HardcodeMinMaxForL2Normalization() 54 const auto& input_array = model->GetArray(op->inputs[0]); in HardcodeMinMaxForL2Normalization() 67 auto& input = model->GetArray(op->inputs[0]); in HardcodeInputMinMaxFromOutput() 74 auto& output = model->GetArray(op->outputs[0]); in HardcodeInputMinMaxFromOutput() 76 const auto* minmax = model->GetArray(op->outputs[0]).minmax.get(); in HardcodeInputMinMaxFromOutput() 92 if (model->GetArray(input).minmax) { in HardcodeMinMaxForConcatenation() 94 const auto* minmax = model->GetArray(input).minmax.get(); in HardcodeMinMaxForConcatenation() 101 auto& output = model->GetArray(op->outputs[0]); in HardcodeMinMaxForConcatenation() [all …]
|
D | identify_lstm_merge_inputs.cc | 60 int num_cell = model->GetArray(src_op->inputs[kInputToInputWeightsTensor]) in Run() 63 int num_input = model->GetArray(src_op->inputs[kInputToInputWeightsTensor]) in Run() 67 model->GetArray(src_op->inputs[kRecurrentToInputWeightsTensor]) in Run() 90 model->GetArray(src_op->inputs[kInputToInputWeightsTensor]), 0, 0); in Run() 93 model->GetArray(src_op->inputs[kInputToCellWeightsTensor]), num_cell, 0); in Run() 96 model->GetArray(src_op->inputs[kInputToForgetWeightsTensor]), in Run() 100 model->GetArray(src_op->inputs[kInputToOutputWeightsTensor]), in Run() 104 model->GetArray(src_op->inputs[kRecurrentToInputWeightsTensor]), 0, in Run() 108 model->GetArray(src_op->inputs[kRecurrentToCellWeightsTensor]), num_cell, in Run() 112 model->GetArray(src_op->inputs[kRecurrentToForgetWeightsTensor]), in Run() [all …]
|
D | merge_reshape_into_preceding_transpose.cc | 39 if (!model.GetArray(op->inputs[0]).has_shape() || in OperatorReady() 40 !model.GetArray(op->outputs[0]).has_shape()) { in OperatorReady() 45 if (!model.GetArray(op->inputs[1]).buffer) { in OperatorReady() 60 const auto& input_array = model.GetArray(op->inputs[0]); in ReshapeToTranspose() 61 const auto& output_array = model.GetArray(op->outputs[0]); in ReshapeToTranspose() 180 model->GetArray(transpose_op->inputs[1]) in Run() 186 model->GetArray(transpose_op->outputs[0]).clear_shape(); in Run()
|
D | move_binary_operator_before_reshape.cc | 99 model->GetArray(binary_op->inputs[variable_input_idx]); in Run() 107 model->GetArray(binary_op->inputs[constant_input_idx]).shape(), in Run() 108 model->GetArray(binary_op->inputs[variable_input_idx]).shape())) { in Run() 127 const auto& reshape_input_array = model->GetArray(reshape_op->inputs[0]); in Run() 136 model->GetArray(binary_op->inputs[constant_input_idx]).shape(), in Run() 137 model->GetArray(reshape_op->outputs[0]).shape())) { in Run() 176 model->GetArray(binary_op->outputs[0]).clear_shape(); in Run()
|
D | fuse_binary_into_following_affine.cc | 45 const auto& weights = model->GetArray(following_op->inputs[1]); in FuseAddOrSubParamsIntoFollowingAffine() 46 auto& bias = model->GetArray(following_op->inputs[2]); in FuseAddOrSubParamsIntoFollowingAffine() 49 model->GetArray(add_or_sub_op->inputs[index_of_constant_input]); in FuseAddOrSubParamsIntoFollowingAffine() 125 auto& weights = model->GetArray(weights_name); in FuseMulOrDivParamsIntoFollowingAffine() 129 model->GetArray(mul_or_div_op->inputs[index_of_constant_input]); in FuseMulOrDivParamsIntoFollowingAffine() 203 model->GetArray(binary_op->inputs[index_of_constant_input]).shape(); in Run() 252 const auto& weights = model->GetArray(following_op->inputs[1]); in Run() 253 const auto& bias = model->GetArray(following_op->inputs[2]); in Run()
|
D | resolve_constant_binary.cc | 71 const auto& input0_array = model->GetArray(binary_op->inputs[0]); in EvaluateBinaryOperatorOnConstantInputs() 72 const auto& input1_array = model->GetArray(binary_op->inputs[1]); in EvaluateBinaryOperatorOnConstantInputs() 74 auto& output_array = model->GetArray(output_name); in EvaluateBinaryOperatorOnConstantInputs() 170 const auto inputs_data_type = model->GetArray(binary_op->inputs[0]).data_type; in EvaluateBinaryOperatorOnConstantInputs() 172 model->GetArray(binary_op->outputs[0]).data_type; in EvaluateBinaryOperatorOnConstantInputs() 214 const auto& input0_array = model->GetArray(binary_op->inputs[0]); in Run() 215 const auto& input1_array = model->GetArray(binary_op->inputs[1]); in Run() 221 auto& output_array = model->GetArray(binary_op->outputs[0]); in Run()
|
D | convert_matrix_diag_v2_or_v3_to_v1.cc | 41 const auto& input_k = model->GetArray(op->inputs[1]); in Run() 42 const auto& input_num_rows = model->GetArray(op->inputs[2]); in Run() 43 const auto& input_num_cols = model->GetArray(op->inputs[3]); in Run() 44 const auto& input_padding_value = model->GetArray(op->inputs[4]); in Run()
|
D | resolve_constant_fill.cc | 26 const auto& val_array = model->GetArray(op->inputs[1]); in ComputeFillArray() 27 auto& output_array = model->GetArray(op->outputs[0]); in ComputeFillArray() 58 auto& output_array = model->GetArray(op->outputs[0]); in Run() 69 const auto& val_array = model->GetArray(op->inputs[1]); in Run()
|
D | resolve_constant_pack.cc | 28 auto& output_array = model->GetArray(op.outputs[0]); in Pack() 41 const auto& input_array = model->GetArray(op.inputs[i]); in Pack() 65 auto& output_array = model->GetArray(op->outputs[0]); in Run() 86 axis += model->GetArray(op->inputs[0]).shape().dims().size(); in Run()
|
D | reorder_reshape_transpose.cc | 36 if (!model.GetArray(op->inputs[0]).has_shape() || in OperatorReady() 37 !model.GetArray(op->outputs[0]).has_shape()) { in OperatorReady() 42 if (!model.GetArray(op->inputs[1]).buffer) { in OperatorReady() 161 const auto& input_array = model->GetArray(input_name); in Run() 162 const auto& intermediate_array = model->GetArray(intermediate_name); in Run() 163 const auto& output_array = model->GetArray(output_name); in Run()
|
D | identify_lstm_split_inputs.cc | 56 if (!model->GetArray(curr_op->outputs[LstmCellOperator::ACTIV_OUTPUT]) in Run() 65 int num_input = model->GetArray(curr_op->inputs[LstmCellOperator::DATA_INPUT]) in Run() 71 model->GetArray(curr_op->outputs[LstmCellOperator::ACTIV_OUTPUT]) in Run() 88 model->GetArray(curr_op->inputs[LstmCellOperator::WEIGHTS_INPUT]); in Run() 136 model->GetArray(curr_op->inputs[LstmCellOperator::BIASES_INPUT]); in Run()
|
D | resolve_constant_range.cc | 55 const auto& start_array = model->GetArray(op->inputs[0]); in Run() 60 const auto& limit_array = model->GetArray(op->inputs[1]); in Run() 65 const auto& delta_array = model->GetArray(op->inputs[2]); in Run() 79 auto& output_array = model->GetArray(op->outputs[0]); in Run()
|
D | convert_squeeze_to_reshape.cc | 45 const auto& input_array = model->GetArray(squeeze_op->inputs[0]); in Run() 55 !model->GetArray(squeeze_op->outputs[0]).has_shape()) { in Run() 61 const auto& output_shape = model->GetArray(squeeze_op->outputs[0]).shape(); in Run()
|
D | resolve_strided_slice_attributes.cc | 56 const auto& input_array = model->GetArray(op->inputs[0]); in Run() 62 auto& start_array = model->GetArray(op->inputs[1]); in Run() 69 auto& stop_array = model->GetArray(op->inputs[2]); in Run() 72 auto& stride_array = model->GetArray(op->inputs[3]); in Run()
|
D | convert_trivial_tile_to_concat.cc | 34 const auto& input_array = model->GetArray(tile_op->inputs[0]); in Run() 35 const auto& multiples_array = model->GetArray(tile_op->inputs[1]); in Run() 36 const auto& output_array = model->GetArray(tile_op->outputs[0]); in Run()
|
D | quantize.cc | 42 const auto& array = model->GetArray(op.outputs[0]); in SupportsQuantization() 125 auto& array = model->GetArray(array_name); in GetOrComputeMinMax() 229 auto& array = model->GetArray(input); in ChooseQuantizationForOperatorInput() 259 model->GetArray(op.inputs[activations_input_index]); in ChooseQuantizationForOperatorInput() 260 const auto& input_weights = model->GetArray(op.inputs[weights_input_index]); in ChooseQuantizationForOperatorInput() 385 auto& array = model->GetArray(output); in ChooseQuantizationForOperatorOutput() 392 *quantized_data_type = model->GetArray(op.inputs[0]).data_type; in ChooseQuantizationForOperatorOutput() 415 const auto& input_array = model->GetArray(op.inputs[data_input_index]); in ChooseQuantizationForOperatorOutput() 526 const auto& input_array = model->GetArray(input); in Run() 543 const auto& array = model->GetArray(input); in Run() [all …]
|
D | fuse_binary_into_preceding_affine.cc | 39 auto& bias = model->GetArray(preceding_op->inputs[2]); in FuseAddOrSubParamsIntoPrecedingAffine() 42 model->GetArray(add_or_sub_op->inputs[index_of_constant_input]); in FuseAddOrSubParamsIntoPrecedingAffine() 105 auto& weights = model->GetArray(weights_name); in FuseMulOrDivParamsIntoPrecedingAffine() 107 auto& bias = model->GetArray(bias_name); in FuseMulOrDivParamsIntoPrecedingAffine() 110 model->GetArray(mul_or_div_op->inputs[index_of_constant_input]); in FuseMulOrDivParamsIntoPrecedingAffine() 282 const auto& weights = model->GetArray(weights_name); in Run() 283 const auto& bias = model->GetArray(bias_name); in Run()
|
D | remove_trivial_passthrough.cc | 45 const Array& from_array = model->GetArray(from); in Reroute() 86 if (!model->GetArray(passthru_op->inputs[i]).buffer) { in RemoveTrivialPassthroughOp() 116 model->GetArray(main_input_name).has_shape()) { in RemoveTrivialPassthroughOp()
|
D | resolve_batch_normalization.cc | 39 auto& mean_array = model->GetArray(bn_op->inputs[1]); in Run() 40 const auto& multiplier_array = model->GetArray(bn_op->inputs[2]); in Run() 41 const auto& offset_array = model->GetArray(bn_op->inputs[3]); in Run() 80 intermediate_array.data_type = model->GetArray(bn_op->inputs[0]).data_type; in Run()
|
D | remove_trivial_binary.cc | 86 const auto& input_array_0 = model->GetArray(binary_op->inputs[0]); in Run() 87 const auto& input_array_1 = model->GetArray(binary_op->inputs[1]); in Run() 106 model->GetArray(binary_op->inputs[index_of_constant_input]); in Run()
|
D | identify_nearest_upsample.cc | 107 ? model->GetArray(lhs) in Run() 108 : model->GetArray(rhs); in Run() 110 ? model->GetArray(rhs) in Run() 111 : model->GetArray(lhs); in Run() 112 Array& output_array = model->GetArray(output); in Run()
|
D | dequantize.cc | 56 auto* array = &model->GetArray(array_name); in ClearArrayQuantizationParams() 80 auto* array = &model->GetArray(array_name); in DequantizeArray() 196 auto& input_array = model->GetArray(op->inputs[0]); in Run() 205 auto& output_array = model->GetArray(op->outputs[0]); in Run()
|
/external/tensorflow/tensorflow/lite/toco/graph_transformations/tests/ |
D | unpack_quantize_test.cc | 122 const auto& unpack_input_array = model.GetArray("unpack_op_input"); in TEST_F() 123 const auto& unpack_array0 = model.GetArray("unpack_out0"); in TEST_F() 124 const auto& unpack_array1 = model.GetArray("unpack_out1"); in TEST_F()
|