/external/tensorflow/tensorflow/python/keras/optimizer_v2/ |
D | adagrad.py | 107 def _prepare_local(self, var_device, var_dtype, apply_state): argument 108 super(Adagrad, self)._prepare_local(var_device, var_dtype, apply_state) 109 apply_state[(var_device, var_dtype)].update(dict( 111 neg_lr_t=-apply_state[(var_device, var_dtype)]['lr_t'], 147 def _resource_apply_dense(self, grad, var, apply_state=None): argument 149 coefficients = ((apply_state or {}).get((var_device, var_dtype)) 161 def _resource_apply_sparse(self, grad, var, indices, apply_state=None): argument 163 coefficients = ((apply_state or {}).get((var_device, var_dtype))
|
D | adadelta.py | 111 def _prepare_local(self, var_device, var_dtype, apply_state): argument 112 super(Adadelta, self)._prepare_local(var_device, var_dtype, apply_state) 113 apply_state[(var_device, var_dtype)].update(dict( 127 def _resource_apply_dense(self, grad, var, apply_state=None): argument 129 coefficients = ((apply_state or {}).get((var_device, var_dtype)) 144 def _resource_apply_sparse(self, grad, var, indices, apply_state=None): argument 146 coefficients = ((apply_state or {}).get((var_device, var_dtype))
|
D | adamax.py | 115 def _prepare_local(self, var_device, var_dtype, apply_state): argument 116 super(Adamax, self)._prepare_local(var_device, var_dtype, apply_state) 122 lr_t = apply_state[(var_device, var_dtype)]['lr_t'] 124 apply_state[(var_device, var_dtype)].update(dict( 134 def _resource_apply_dense(self, grad, var, apply_state=None): argument 136 coefficients = ((apply_state or {}).get((var_device, var_dtype)) 154 def _resource_apply_sparse(self, grad, var, indices, apply_state=None): argument 156 coefficients = ((apply_state or {}).get((var_device, var_dtype))
|
D | gradient_descent.py | 103 def _prepare_local(self, var_device, var_dtype, apply_state): argument 104 super(SGD, self)._prepare_local(var_device, var_dtype, apply_state) 105 apply_state[(var_device, var_dtype)]["momentum"] = array_ops.identity( 108 def _resource_apply_dense(self, grad, var, apply_state=None): argument 110 coefficients = ((apply_state or {}).get((var_device, var_dtype)) 140 def _resource_apply_sparse(self, grad, var, indices, apply_state=None): argument 143 coefficients = ((apply_state or {}).get((var_device, var_dtype))
|
D | ftrl.py | 148 def _prepare_local(self, var_device, var_dtype, apply_state): argument 149 super(Ftrl, self)._prepare_local(var_device, var_dtype, apply_state) 150 apply_state[(var_device, var_dtype)].update(dict( 161 def _resource_apply_dense(self, grad, var, apply_state=None): argument 163 coefficients = ((apply_state or {}).get((var_device, var_dtype)) 193 def _resource_apply_sparse(self, grad, var, indices, apply_state=None): argument 195 coefficients = ((apply_state or {}).get((var_device, var_dtype))
|
D | adam.py | 161 def _prepare_local(self, var_device, var_dtype, apply_state): argument 162 super(Adam, self)._prepare_local(var_device, var_dtype, apply_state) 169 lr = (apply_state[(var_device, var_dtype)]['lr_t'] * 171 apply_state[(var_device, var_dtype)].update(dict( 192 def _resource_apply_dense(self, grad, var, apply_state=None): argument 194 coefficients = ((apply_state or {}).get((var_device, var_dtype)) 229 def _resource_apply_sparse(self, grad, var, indices, apply_state=None): argument 231 coefficients = ((apply_state or {}).get((var_device, var_dtype))
|
D | rmsprop.py | 132 def _prepare_local(self, var_device, var_dtype, apply_state): argument 133 super(RMSprop, self)._prepare_local(var_device, var_dtype, apply_state) 136 apply_state[(var_device, var_dtype)].update(dict( 137 neg_lr_t=-apply_state[(var_device, var_dtype)]["lr_t"], 144 def _resource_apply_dense(self, grad, var, apply_state=None): argument 146 coefficients = ((apply_state or {}).get((var_device, var_dtype)) 190 def _resource_apply_sparse(self, grad, var, indices, apply_state=None): argument 192 coefficients = ((apply_state or {}).get((var_device, var_dtype))
|
D | optimizer_v2.py | 440 apply_state = self._prepare(var_list) 442 functools.partial(self._distributed_apply, apply_state=apply_state), 446 def _distributed_apply(self, distribution, grads_and_vars, name, apply_state): argument 464 apply_kwargs["apply_state"] = apply_state 469 apply_kwargs["apply_state"] = apply_state 621 apply_state = {} 623 apply_state[(var_device, var_dtype)] = {} 625 self._prepare_local(var_device, var_dtype, apply_state) 627 return apply_state 629 def _prepare_local(self, var_device, var_dtype, apply_state): argument [all …]
|
D | nadam.py | 124 def _prepare_local(self, var_device, var_dtype, apply_state): argument 144 apply_state[(var_device, var_dtype)] = dict( 166 def _resource_apply_dense(self, grad, var, apply_state=None): argument 168 coefficients = ((apply_state or {}).get((var_device, var_dtype)) 189 def _resource_apply_sparse(self, grad, var, indices, apply_state=None): argument 191 coefficients = ((apply_state or {}).get((var_device, var_dtype))
|