Searched refs:batch_outs (Results 1 – 7 of 7) sorted by relevance
/external/tensorflow/tensorflow/python/keras/engine/ |
D | training_arrays.py | 304 batch_outs = f(actual_inputs) 338 if not isinstance(batch_outs, list): 339 batch_outs = [batch_outs] 342 batch_outs = distributed_training_utils._per_replica_aggregate_batch( 343 model._distribution_strategy, batch_outs, model, mode) 347 aggregator.create(batch_outs) 348 aggregator.aggregate(batch_outs) 351 batch_logs = cbks.make_logs(model, batch_logs, batch_outs, mode) 398 batch_outs = f(ins_batch) 399 if not isinstance(batch_outs, list): [all …]
|
D | training_v2_utils.py | 228 def _aggregate_predict_results(strategy, batch_outs, model): argument 233 if not isinstance(batch_outs, list): 234 batch_outs = [batch_outs] 248 batch_index, batch_outs = (batch_outs[:num_replicas], 249 batch_outs[num_replicas:]) 262 nested_outs = batch_outs[i * num_replicas:i * num_replicas + num_replicas]
|
D | training_v2.py | 128 batch_outs = execution_function(iterator) 160 data_batch_size = batch_outs['batch_size'] 161 batch_outs = (batch_outs['total_loss'] + batch_outs['output_losses'] 162 + batch_outs['metrics']) 167 batch_outs = training_v2_utils._aggregate_predict_results( 168 strategy, batch_outs, model) 171 aggregator.create(batch_outs) 174 aggregator.aggregate(batch_outs) 177 batch_outs, 180 cbks.make_logs(model, batch_logs, batch_outs, mode)
|
D | training_utils.py | 86 def create(self, batch_outs): argument 95 def aggregate(self, batch_outs, batch_start=None, batch_end=None): argument 130 def create(self, batch_outs): argument 131 self.results = [0.] * len(batch_outs) 133 def aggregate(self, batch_outs, batch_start=None, batch_end=None): argument 136 self.results[0] += batch_outs[0] 138 self.results[0] += batch_outs[0] * (batch_end - batch_start) 140 self.results[1:] = batch_outs[1:] 318 def create(self, batch_outs): argument 323 batch_outs) [all …]
|
D | training_generator.py | 265 batch_outs = batch_function(*batch_data) 266 if not isinstance(batch_outs, list): 267 batch_outs = [batch_outs] 270 aggregator.create(batch_outs) 290 aggregator.aggregate(batch_outs) 293 batch_logs = cbks.make_logs(model, batch_logs, batch_outs, mode)
|
D | training_distributed.py | 386 _, batch_outs = K.batch_get_value([test_op, output_tensors]) 398 outs[i] += batch_outs[label] 401 outs[i] = batch_outs[label] 532 _, batch_outs = K.batch_get_value([predict_ops, output_tensors]) 547 single_model_output = batch_outs[output_start_index:output_end_index] 550 batch_logs = cbks.make_logs(model, batch_logs, batch_outs, mode)
|
/external/tensorflow/tensorflow/python/keras/distribute/ |
D | distributed_training_utils.py | 1054 def _per_replica_aggregate_batch(strategy, batch_outs, model, mode): argument 1060 nested_outs = batch_outs[i * num_replicas:i * num_replicas + num_replicas] 1064 return batch_outs
|