• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 #ifndef _BTRFS_CTREE_H_
3 #define _BTRFS_CTREE_H_
4 
5 #include <linux/btrfs.h>
6 #include <linux/types.h>
7 
8 /*
9  * This header contains the structure definitions and constants used
10  * by file system objects that can be retrieved using
11  * the BTRFS_IOC_SEARCH_TREE ioctl.  That means basically anything that
12  * is needed to describe a leaf node's key or item contents.
13  */
14 
15 /* holds pointers to all of the tree roots */
16 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
17 
18 /* stores information about which extents are in use, and reference counts */
19 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
20 
21 /*
22  * chunk tree stores translations from logical -> physical block numbering
23  * the super block points to the chunk tree
24  */
25 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL
26 
27 /*
28  * stores information about which areas of a given device are in use.
29  * one per device.  The tree of tree roots points to the device tree
30  */
31 #define BTRFS_DEV_TREE_OBJECTID 4ULL
32 
33 /* one per subvolume, storing files and directories */
34 #define BTRFS_FS_TREE_OBJECTID 5ULL
35 
36 /* directory objectid inside the root tree */
37 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
38 
39 /* holds checksums of all the data extents */
40 #define BTRFS_CSUM_TREE_OBJECTID 7ULL
41 
42 /* holds quota configuration and tracking */
43 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL
44 
45 /* for storing items that use the BTRFS_UUID_KEY* types */
46 #define BTRFS_UUID_TREE_OBJECTID 9ULL
47 
48 /* tracks free space in block groups. */
49 #define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
50 
51 /* device stats in the device tree */
52 #define BTRFS_DEV_STATS_OBJECTID 0ULL
53 
54 /* for storing balance parameters in the root tree */
55 #define BTRFS_BALANCE_OBJECTID -4ULL
56 
57 /* orhpan objectid for tracking unlinked/truncated files */
58 #define BTRFS_ORPHAN_OBJECTID -5ULL
59 
60 /* does write ahead logging to speed up fsyncs */
61 #define BTRFS_TREE_LOG_OBJECTID -6ULL
62 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
63 
64 /* for space balancing */
65 #define BTRFS_TREE_RELOC_OBJECTID -8ULL
66 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
67 
68 /*
69  * extent checksums all have this objectid
70  * this allows them to share the logging tree
71  * for fsyncs
72  */
73 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
74 
75 /* For storing free space cache */
76 #define BTRFS_FREE_SPACE_OBJECTID -11ULL
77 
78 /*
79  * The inode number assigned to the special inode for storing
80  * free ino cache
81  */
82 #define BTRFS_FREE_INO_OBJECTID -12ULL
83 
84 /* dummy objectid represents multiple objectids */
85 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL
86 
87 /*
88  * All files have objectids in this range.
89  */
90 #define BTRFS_FIRST_FREE_OBJECTID 256ULL
91 #define BTRFS_LAST_FREE_OBJECTID -256ULL
92 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
93 
94 
95 /*
96  * the device items go into the chunk tree.  The key is in the form
97  * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
98  */
99 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL
100 
101 #define BTRFS_BTREE_INODE_OBJECTID 1
102 
103 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
104 
105 #define BTRFS_DEV_REPLACE_DEVID 0ULL
106 
107 /*
108  * inode items have the data typically returned from stat and store other
109  * info about object characteristics.  There is one for every file and dir in
110  * the FS
111  */
112 #define BTRFS_INODE_ITEM_KEY		1
113 #define BTRFS_INODE_REF_KEY		12
114 #define BTRFS_INODE_EXTREF_KEY		13
115 #define BTRFS_XATTR_ITEM_KEY		24
116 #define BTRFS_ORPHAN_ITEM_KEY		48
117 /* reserve 2-15 close to the inode for later flexibility */
118 
119 /*
120  * dir items are the name -> inode pointers in a directory.  There is one
121  * for every name in a directory.
122  */
123 #define BTRFS_DIR_LOG_ITEM_KEY  60
124 #define BTRFS_DIR_LOG_INDEX_KEY 72
125 #define BTRFS_DIR_ITEM_KEY	84
126 #define BTRFS_DIR_INDEX_KEY	96
127 /*
128  * extent data is for file data
129  */
130 #define BTRFS_EXTENT_DATA_KEY	108
131 
132 /*
133  * extent csums are stored in a separate tree and hold csums for
134  * an entire extent on disk.
135  */
136 #define BTRFS_EXTENT_CSUM_KEY	128
137 
138 /*
139  * root items point to tree roots.  They are typically in the root
140  * tree used by the super block to find all the other trees
141  */
142 #define BTRFS_ROOT_ITEM_KEY	132
143 
144 /*
145  * root backrefs tie subvols and snapshots to the directory entries that
146  * reference them
147  */
148 #define BTRFS_ROOT_BACKREF_KEY	144
149 
150 /*
151  * root refs make a fast index for listing all of the snapshots and
152  * subvolumes referenced by a given root.  They point directly to the
153  * directory item in the root that references the subvol
154  */
155 #define BTRFS_ROOT_REF_KEY	156
156 
157 /*
158  * extent items are in the extent map tree.  These record which blocks
159  * are used, and how many references there are to each block
160  */
161 #define BTRFS_EXTENT_ITEM_KEY	168
162 
163 /*
164  * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
165  * the length, so we save the level in key->offset instead of the length.
166  */
167 #define BTRFS_METADATA_ITEM_KEY	169
168 
169 #define BTRFS_TREE_BLOCK_REF_KEY	176
170 
171 #define BTRFS_EXTENT_DATA_REF_KEY	178
172 
173 #define BTRFS_EXTENT_REF_V0_KEY		180
174 
175 #define BTRFS_SHARED_BLOCK_REF_KEY	182
176 
177 #define BTRFS_SHARED_DATA_REF_KEY	184
178 
179 /*
180  * block groups give us hints into the extent allocation trees.  Which
181  * blocks are free etc etc
182  */
183 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192
184 
185 /*
186  * Every block group is represented in the free space tree by a free space info
187  * item, which stores some accounting information. It is keyed on
188  * (block_group_start, FREE_SPACE_INFO, block_group_length).
189  */
190 #define BTRFS_FREE_SPACE_INFO_KEY 198
191 
192 /*
193  * A free space extent tracks an extent of space that is free in a block group.
194  * It is keyed on (start, FREE_SPACE_EXTENT, length).
195  */
196 #define BTRFS_FREE_SPACE_EXTENT_KEY 199
197 
198 /*
199  * When a block group becomes very fragmented, we convert it to use bitmaps
200  * instead of extents. A free space bitmap is keyed on
201  * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
202  * (length / sectorsize) bits.
203  */
204 #define BTRFS_FREE_SPACE_BITMAP_KEY 200
205 
206 #define BTRFS_DEV_EXTENT_KEY	204
207 #define BTRFS_DEV_ITEM_KEY	216
208 #define BTRFS_CHUNK_ITEM_KEY	228
209 
210 /*
211  * Records the overall state of the qgroups.
212  * There's only one instance of this key present,
213  * (0, BTRFS_QGROUP_STATUS_KEY, 0)
214  */
215 #define BTRFS_QGROUP_STATUS_KEY         240
216 /*
217  * Records the currently used space of the qgroup.
218  * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
219  */
220 #define BTRFS_QGROUP_INFO_KEY           242
221 /*
222  * Contains the user configured limits for the qgroup.
223  * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
224  */
225 #define BTRFS_QGROUP_LIMIT_KEY          244
226 /*
227  * Records the child-parent relationship of qgroups. For
228  * each relation, 2 keys are present:
229  * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
230  * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
231  */
232 #define BTRFS_QGROUP_RELATION_KEY       246
233 
234 /*
235  * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
236  */
237 #define BTRFS_BALANCE_ITEM_KEY	248
238 
239 /*
240  * The key type for tree items that are stored persistently, but do not need to
241  * exist for extended period of time. The items can exist in any tree.
242  *
243  * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
244  *
245  * Existing items:
246  *
247  * - balance status item
248  *   (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
249  */
250 #define BTRFS_TEMPORARY_ITEM_KEY	248
251 
252 /*
253  * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
254  */
255 #define BTRFS_DEV_STATS_KEY		249
256 
257 /*
258  * The key type for tree items that are stored persistently and usually exist
259  * for a long period, eg. filesystem lifetime. The item kinds can be status
260  * information, stats or preference values. The item can exist in any tree.
261  *
262  * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
263  *
264  * Existing items:
265  *
266  * - device statistics, store IO stats in the device tree, one key for all
267  *   stats
268  *   (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
269  */
270 #define BTRFS_PERSISTENT_ITEM_KEY	249
271 
272 /*
273  * Persistantly stores the device replace state in the device tree.
274  * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
275  */
276 #define BTRFS_DEV_REPLACE_KEY	250
277 
278 /*
279  * Stores items that allow to quickly map UUIDs to something else.
280  * These items are part of the filesystem UUID tree.
281  * The key is built like this:
282  * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
283  */
284 #if BTRFS_UUID_SIZE != 16
285 #error "UUID items require BTRFS_UUID_SIZE == 16!"
286 #endif
287 #define BTRFS_UUID_KEY_SUBVOL	251	/* for UUIDs assigned to subvols */
288 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL	252	/* for UUIDs assigned to
289 						 * received subvols */
290 
291 /*
292  * string items are for debugging.  They just store a short string of
293  * data in the FS
294  */
295 #define BTRFS_STRING_ITEM_KEY	253
296 
297 
298 
299 /* 32 bytes in various csum fields */
300 #define BTRFS_CSUM_SIZE 32
301 
302 /* csum types */
303 enum btrfs_csum_type {
304 	BTRFS_CSUM_TYPE_CRC32	= 0,
305 	BTRFS_CSUM_TYPE_XXHASH	= 1,
306 	BTRFS_CSUM_TYPE_SHA256	= 2,
307 	BTRFS_CSUM_TYPE_BLAKE2	= 3,
308 };
309 
310 /*
311  * flags definitions for directory entry item type
312  *
313  * Used by:
314  * struct btrfs_dir_item.type
315  *
316  * Values 0..7 must match common file type values in fs_types.h.
317  */
318 #define BTRFS_FT_UNKNOWN	0
319 #define BTRFS_FT_REG_FILE	1
320 #define BTRFS_FT_DIR		2
321 #define BTRFS_FT_CHRDEV		3
322 #define BTRFS_FT_BLKDEV		4
323 #define BTRFS_FT_FIFO		5
324 #define BTRFS_FT_SOCK		6
325 #define BTRFS_FT_SYMLINK	7
326 #define BTRFS_FT_XATTR		8
327 #define BTRFS_FT_MAX		9
328 
329 /*
330  * The key defines the order in the tree, and so it also defines (optimal)
331  * block layout.
332  *
333  * objectid corresponds to the inode number.
334  *
335  * type tells us things about the object, and is a kind of stream selector.
336  * so for a given inode, keys with type of 1 might refer to the inode data,
337  * type of 2 may point to file data in the btree and type == 3 may point to
338  * extents.
339  *
340  * offset is the starting byte offset for this key in the stream.
341  *
342  * btrfs_disk_key is in disk byte order.  struct btrfs_key is always
343  * in cpu native order.  Otherwise they are identical and their sizes
344  * should be the same (ie both packed)
345  */
346 struct btrfs_disk_key {
347 	__le64 objectid;
348 	__u8 type;
349 	__le64 offset;
350 } __attribute__ ((__packed__));
351 
352 struct btrfs_key {
353 	__u64 objectid;
354 	__u8 type;
355 	__u64 offset;
356 } __attribute__ ((__packed__));
357 
358 struct btrfs_dev_item {
359 	/* the internal btrfs device id */
360 	__le64 devid;
361 
362 	/* size of the device */
363 	__le64 total_bytes;
364 
365 	/* bytes used */
366 	__le64 bytes_used;
367 
368 	/* optimal io alignment for this device */
369 	__le32 io_align;
370 
371 	/* optimal io width for this device */
372 	__le32 io_width;
373 
374 	/* minimal io size for this device */
375 	__le32 sector_size;
376 
377 	/* type and info about this device */
378 	__le64 type;
379 
380 	/* expected generation for this device */
381 	__le64 generation;
382 
383 	/*
384 	 * starting byte of this partition on the device,
385 	 * to allow for stripe alignment in the future
386 	 */
387 	__le64 start_offset;
388 
389 	/* grouping information for allocation decisions */
390 	__le32 dev_group;
391 
392 	/* seek speed 0-100 where 100 is fastest */
393 	__u8 seek_speed;
394 
395 	/* bandwidth 0-100 where 100 is fastest */
396 	__u8 bandwidth;
397 
398 	/* btrfs generated uuid for this device */
399 	__u8 uuid[BTRFS_UUID_SIZE];
400 
401 	/* uuid of FS who owns this device */
402 	__u8 fsid[BTRFS_UUID_SIZE];
403 } __attribute__ ((__packed__));
404 
405 struct btrfs_stripe {
406 	__le64 devid;
407 	__le64 offset;
408 	__u8 dev_uuid[BTRFS_UUID_SIZE];
409 } __attribute__ ((__packed__));
410 
411 struct btrfs_chunk {
412 	/* size of this chunk in bytes */
413 	__le64 length;
414 
415 	/* objectid of the root referencing this chunk */
416 	__le64 owner;
417 
418 	__le64 stripe_len;
419 	__le64 type;
420 
421 	/* optimal io alignment for this chunk */
422 	__le32 io_align;
423 
424 	/* optimal io width for this chunk */
425 	__le32 io_width;
426 
427 	/* minimal io size for this chunk */
428 	__le32 sector_size;
429 
430 	/* 2^16 stripes is quite a lot, a second limit is the size of a single
431 	 * item in the btree
432 	 */
433 	__le16 num_stripes;
434 
435 	/* sub stripes only matter for raid10 */
436 	__le16 sub_stripes;
437 	struct btrfs_stripe stripe;
438 	/* additional stripes go here */
439 } __attribute__ ((__packed__));
440 
441 #define BTRFS_FREE_SPACE_EXTENT	1
442 #define BTRFS_FREE_SPACE_BITMAP	2
443 
444 struct btrfs_free_space_entry {
445 	__le64 offset;
446 	__le64 bytes;
447 	__u8 type;
448 } __attribute__ ((__packed__));
449 
450 struct btrfs_free_space_header {
451 	struct btrfs_disk_key location;
452 	__le64 generation;
453 	__le64 num_entries;
454 	__le64 num_bitmaps;
455 } __attribute__ ((__packed__));
456 
457 #define BTRFS_HEADER_FLAG_WRITTEN	(1ULL << 0)
458 #define BTRFS_HEADER_FLAG_RELOC		(1ULL << 1)
459 
460 /* Super block flags */
461 /* Errors detected */
462 #define BTRFS_SUPER_FLAG_ERROR		(1ULL << 2)
463 
464 #define BTRFS_SUPER_FLAG_SEEDING	(1ULL << 32)
465 #define BTRFS_SUPER_FLAG_METADUMP	(1ULL << 33)
466 #define BTRFS_SUPER_FLAG_METADUMP_V2	(1ULL << 34)
467 #define BTRFS_SUPER_FLAG_CHANGING_FSID	(1ULL << 35)
468 #define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36)
469 
470 
471 /*
472  * items in the extent btree are used to record the objectid of the
473  * owner of the block and the number of references
474  */
475 
476 struct btrfs_extent_item {
477 	__le64 refs;
478 	__le64 generation;
479 	__le64 flags;
480 } __attribute__ ((__packed__));
481 
482 struct btrfs_extent_item_v0 {
483 	__le32 refs;
484 } __attribute__ ((__packed__));
485 
486 
487 #define BTRFS_EXTENT_FLAG_DATA		(1ULL << 0)
488 #define BTRFS_EXTENT_FLAG_TREE_BLOCK	(1ULL << 1)
489 
490 /* following flags only apply to tree blocks */
491 
492 /* use full backrefs for extent pointers in the block */
493 #define BTRFS_BLOCK_FLAG_FULL_BACKREF	(1ULL << 8)
494 
495 /*
496  * this flag is only used internally by scrub and may be changed at any time
497  * it is only declared here to avoid collisions
498  */
499 #define BTRFS_EXTENT_FLAG_SUPER		(1ULL << 48)
500 
501 struct btrfs_tree_block_info {
502 	struct btrfs_disk_key key;
503 	__u8 level;
504 } __attribute__ ((__packed__));
505 
506 struct btrfs_extent_data_ref {
507 	__le64 root;
508 	__le64 objectid;
509 	__le64 offset;
510 	__le32 count;
511 } __attribute__ ((__packed__));
512 
513 struct btrfs_shared_data_ref {
514 	__le32 count;
515 } __attribute__ ((__packed__));
516 
517 struct btrfs_extent_inline_ref {
518 	__u8 type;
519 	__le64 offset;
520 } __attribute__ ((__packed__));
521 
522 /* old style backrefs item */
523 struct btrfs_extent_ref_v0 {
524 	__le64 root;
525 	__le64 generation;
526 	__le64 objectid;
527 	__le32 count;
528 } __attribute__ ((__packed__));
529 
530 
531 /* dev extents record free space on individual devices.  The owner
532  * field points back to the chunk allocation mapping tree that allocated
533  * the extent.  The chunk tree uuid field is a way to double check the owner
534  */
535 struct btrfs_dev_extent {
536 	__le64 chunk_tree;
537 	__le64 chunk_objectid;
538 	__le64 chunk_offset;
539 	__le64 length;
540 	__u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
541 } __attribute__ ((__packed__));
542 
543 struct btrfs_inode_ref {
544 	__le64 index;
545 	__le16 name_len;
546 	/* name goes here */
547 } __attribute__ ((__packed__));
548 
549 struct btrfs_inode_extref {
550 	__le64 parent_objectid;
551 	__le64 index;
552 	__le16 name_len;
553 	__u8   name[0];
554 	/* name goes here */
555 } __attribute__ ((__packed__));
556 
557 struct btrfs_timespec {
558 	__le64 sec;
559 	__le32 nsec;
560 } __attribute__ ((__packed__));
561 
562 struct btrfs_inode_item {
563 	/* nfs style generation number */
564 	__le64 generation;
565 	/* transid that last touched this inode */
566 	__le64 transid;
567 	__le64 size;
568 	__le64 nbytes;
569 	__le64 block_group;
570 	__le32 nlink;
571 	__le32 uid;
572 	__le32 gid;
573 	__le32 mode;
574 	__le64 rdev;
575 	__le64 flags;
576 
577 	/* modification sequence number for NFS */
578 	__le64 sequence;
579 
580 	/*
581 	 * a little future expansion, for more than this we can
582 	 * just grow the inode item and version it
583 	 */
584 	__le64 reserved[4];
585 	struct btrfs_timespec atime;
586 	struct btrfs_timespec ctime;
587 	struct btrfs_timespec mtime;
588 	struct btrfs_timespec otime;
589 } __attribute__ ((__packed__));
590 
591 struct btrfs_dir_log_item {
592 	__le64 end;
593 } __attribute__ ((__packed__));
594 
595 struct btrfs_dir_item {
596 	struct btrfs_disk_key location;
597 	__le64 transid;
598 	__le16 data_len;
599 	__le16 name_len;
600 	__u8 type;
601 } __attribute__ ((__packed__));
602 
603 #define BTRFS_ROOT_SUBVOL_RDONLY	(1ULL << 0)
604 
605 /*
606  * Internal in-memory flag that a subvolume has been marked for deletion but
607  * still visible as a directory
608  */
609 #define BTRFS_ROOT_SUBVOL_DEAD		(1ULL << 48)
610 
611 struct btrfs_root_item {
612 	struct btrfs_inode_item inode;
613 	__le64 generation;
614 	__le64 root_dirid;
615 	__le64 bytenr;
616 	__le64 byte_limit;
617 	__le64 bytes_used;
618 	__le64 last_snapshot;
619 	__le64 flags;
620 	__le32 refs;
621 	struct btrfs_disk_key drop_progress;
622 	__u8 drop_level;
623 	__u8 level;
624 
625 	/*
626 	 * The following fields appear after subvol_uuids+subvol_times
627 	 * were introduced.
628 	 */
629 
630 	/*
631 	 * This generation number is used to test if the new fields are valid
632 	 * and up to date while reading the root item. Every time the root item
633 	 * is written out, the "generation" field is copied into this field. If
634 	 * anyone ever mounted the fs with an older kernel, we will have
635 	 * mismatching generation values here and thus must invalidate the
636 	 * new fields. See btrfs_update_root and btrfs_find_last_root for
637 	 * details.
638 	 * the offset of generation_v2 is also used as the start for the memset
639 	 * when invalidating the fields.
640 	 */
641 	__le64 generation_v2;
642 	__u8 uuid[BTRFS_UUID_SIZE];
643 	__u8 parent_uuid[BTRFS_UUID_SIZE];
644 	__u8 received_uuid[BTRFS_UUID_SIZE];
645 	__le64 ctransid; /* updated when an inode changes */
646 	__le64 otransid; /* trans when created */
647 	__le64 stransid; /* trans when sent. non-zero for received subvol */
648 	__le64 rtransid; /* trans when received. non-zero for received subvol */
649 	struct btrfs_timespec ctime;
650 	struct btrfs_timespec otime;
651 	struct btrfs_timespec stime;
652 	struct btrfs_timespec rtime;
653 	__le64 reserved[8]; /* for future */
654 } __attribute__ ((__packed__));
655 
656 /*
657  * this is used for both forward and backward root refs
658  */
659 struct btrfs_root_ref {
660 	__le64 dirid;
661 	__le64 sequence;
662 	__le16 name_len;
663 } __attribute__ ((__packed__));
664 
665 struct btrfs_disk_balance_args {
666 	/*
667 	 * profiles to operate on, single is denoted by
668 	 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
669 	 */
670 	__le64 profiles;
671 
672 	/*
673 	 * usage filter
674 	 * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
675 	 * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
676 	 */
677 	union {
678 		__le64 usage;
679 		struct {
680 			__le32 usage_min;
681 			__le32 usage_max;
682 		};
683 	};
684 
685 	/* devid filter */
686 	__le64 devid;
687 
688 	/* devid subset filter [pstart..pend) */
689 	__le64 pstart;
690 	__le64 pend;
691 
692 	/* btrfs virtual address space subset filter [vstart..vend) */
693 	__le64 vstart;
694 	__le64 vend;
695 
696 	/*
697 	 * profile to convert to, single is denoted by
698 	 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
699 	 */
700 	__le64 target;
701 
702 	/* BTRFS_BALANCE_ARGS_* */
703 	__le64 flags;
704 
705 	/*
706 	 * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
707 	 * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
708 	 * and maximum
709 	 */
710 	union {
711 		__le64 limit;
712 		struct {
713 			__le32 limit_min;
714 			__le32 limit_max;
715 		};
716 	};
717 
718 	/*
719 	 * Process chunks that cross stripes_min..stripes_max devices,
720 	 * BTRFS_BALANCE_ARGS_STRIPES_RANGE
721 	 */
722 	__le32 stripes_min;
723 	__le32 stripes_max;
724 
725 	__le64 unused[6];
726 } __attribute__ ((__packed__));
727 
728 /*
729  * store balance parameters to disk so that balance can be properly
730  * resumed after crash or unmount
731  */
732 struct btrfs_balance_item {
733 	/* BTRFS_BALANCE_* */
734 	__le64 flags;
735 
736 	struct btrfs_disk_balance_args data;
737 	struct btrfs_disk_balance_args meta;
738 	struct btrfs_disk_balance_args sys;
739 
740 	__le64 unused[4];
741 } __attribute__ ((__packed__));
742 
743 enum {
744 	BTRFS_FILE_EXTENT_INLINE   = 0,
745 	BTRFS_FILE_EXTENT_REG      = 1,
746 	BTRFS_FILE_EXTENT_PREALLOC = 2,
747 	BTRFS_NR_FILE_EXTENT_TYPES = 3,
748 };
749 
750 struct btrfs_file_extent_item {
751 	/*
752 	 * transaction id that created this extent
753 	 */
754 	__le64 generation;
755 	/*
756 	 * max number of bytes to hold this extent in ram
757 	 * when we split a compressed extent we can't know how big
758 	 * each of the resulting pieces will be.  So, this is
759 	 * an upper limit on the size of the extent in ram instead of
760 	 * an exact limit.
761 	 */
762 	__le64 ram_bytes;
763 
764 	/*
765 	 * 32 bits for the various ways we might encode the data,
766 	 * including compression and encryption.  If any of these
767 	 * are set to something a given disk format doesn't understand
768 	 * it is treated like an incompat flag for reading and writing,
769 	 * but not for stat.
770 	 */
771 	__u8 compression;
772 	__u8 encryption;
773 	__le16 other_encoding; /* spare for later use */
774 
775 	/* are we inline data or a real extent? */
776 	__u8 type;
777 
778 	/*
779 	 * disk space consumed by the extent, checksum blocks are included
780 	 * in these numbers
781 	 *
782 	 * At this offset in the structure, the inline extent data start.
783 	 */
784 	__le64 disk_bytenr;
785 	__le64 disk_num_bytes;
786 	/*
787 	 * the logical offset in file blocks (no csums)
788 	 * this extent record is for.  This allows a file extent to point
789 	 * into the middle of an existing extent on disk, sharing it
790 	 * between two snapshots (useful if some bytes in the middle of the
791 	 * extent have changed
792 	 */
793 	__le64 offset;
794 	/*
795 	 * the logical number of file blocks (no csums included).  This
796 	 * always reflects the size uncompressed and without encoding.
797 	 */
798 	__le64 num_bytes;
799 
800 } __attribute__ ((__packed__));
801 
802 struct btrfs_csum_item {
803 	__u8 csum;
804 } __attribute__ ((__packed__));
805 
806 struct btrfs_dev_stats_item {
807 	/*
808 	 * grow this item struct at the end for future enhancements and keep
809 	 * the existing values unchanged
810 	 */
811 	__le64 values[BTRFS_DEV_STAT_VALUES_MAX];
812 } __attribute__ ((__packed__));
813 
814 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS	0
815 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID	1
816 
817 struct btrfs_dev_replace_item {
818 	/*
819 	 * grow this item struct at the end for future enhancements and keep
820 	 * the existing values unchanged
821 	 */
822 	__le64 src_devid;
823 	__le64 cursor_left;
824 	__le64 cursor_right;
825 	__le64 cont_reading_from_srcdev_mode;
826 
827 	__le64 replace_state;
828 	__le64 time_started;
829 	__le64 time_stopped;
830 	__le64 num_write_errors;
831 	__le64 num_uncorrectable_read_errors;
832 } __attribute__ ((__packed__));
833 
834 /* different types of block groups (and chunks) */
835 #define BTRFS_BLOCK_GROUP_DATA		(1ULL << 0)
836 #define BTRFS_BLOCK_GROUP_SYSTEM	(1ULL << 1)
837 #define BTRFS_BLOCK_GROUP_METADATA	(1ULL << 2)
838 #define BTRFS_BLOCK_GROUP_RAID0		(1ULL << 3)
839 #define BTRFS_BLOCK_GROUP_RAID1		(1ULL << 4)
840 #define BTRFS_BLOCK_GROUP_DUP		(1ULL << 5)
841 #define BTRFS_BLOCK_GROUP_RAID10	(1ULL << 6)
842 #define BTRFS_BLOCK_GROUP_RAID5         (1ULL << 7)
843 #define BTRFS_BLOCK_GROUP_RAID6         (1ULL << 8)
844 #define BTRFS_BLOCK_GROUP_RAID1C3       (1ULL << 9)
845 #define BTRFS_BLOCK_GROUP_RAID1C4       (1ULL << 10)
846 #define BTRFS_BLOCK_GROUP_RESERVED	(BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
847 					 BTRFS_SPACE_INFO_GLOBAL_RSV)
848 
849 enum btrfs_raid_types {
850 	BTRFS_RAID_RAID10,
851 	BTRFS_RAID_RAID1,
852 	BTRFS_RAID_DUP,
853 	BTRFS_RAID_RAID0,
854 	BTRFS_RAID_SINGLE,
855 	BTRFS_RAID_RAID5,
856 	BTRFS_RAID_RAID6,
857 	BTRFS_RAID_RAID1C3,
858 	BTRFS_RAID_RAID1C4,
859 	BTRFS_NR_RAID_TYPES
860 };
861 
862 #define BTRFS_BLOCK_GROUP_TYPE_MASK	(BTRFS_BLOCK_GROUP_DATA |    \
863 					 BTRFS_BLOCK_GROUP_SYSTEM |  \
864 					 BTRFS_BLOCK_GROUP_METADATA)
865 
866 #define BTRFS_BLOCK_GROUP_PROFILE_MASK	(BTRFS_BLOCK_GROUP_RAID0 |   \
867 					 BTRFS_BLOCK_GROUP_RAID1 |   \
868 					 BTRFS_BLOCK_GROUP_RAID1C3 | \
869 					 BTRFS_BLOCK_GROUP_RAID1C4 | \
870 					 BTRFS_BLOCK_GROUP_RAID5 |   \
871 					 BTRFS_BLOCK_GROUP_RAID6 |   \
872 					 BTRFS_BLOCK_GROUP_DUP |     \
873 					 BTRFS_BLOCK_GROUP_RAID10)
874 #define BTRFS_BLOCK_GROUP_RAID56_MASK	(BTRFS_BLOCK_GROUP_RAID5 |   \
875 					 BTRFS_BLOCK_GROUP_RAID6)
876 
877 #define BTRFS_BLOCK_GROUP_RAID1_MASK	(BTRFS_BLOCK_GROUP_RAID1 |   \
878 					 BTRFS_BLOCK_GROUP_RAID1C3 | \
879 					 BTRFS_BLOCK_GROUP_RAID1C4)
880 
881 /*
882  * We need a bit for restriper to be able to tell when chunks of type
883  * SINGLE are available.  This "extended" profile format is used in
884  * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
885  * (on-disk).  The corresponding on-disk bit in chunk.type is reserved
886  * to avoid remappings between two formats in future.
887  */
888 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE	(1ULL << 48)
889 
890 /*
891  * A fake block group type that is used to communicate global block reserve
892  * size to userspace via the SPACE_INFO ioctl.
893  */
894 #define BTRFS_SPACE_INFO_GLOBAL_RSV	(1ULL << 49)
895 
896 #define BTRFS_EXTENDED_PROFILE_MASK	(BTRFS_BLOCK_GROUP_PROFILE_MASK | \
897 					 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
898 
chunk_to_extended(__u64 flags)899 static inline __u64 chunk_to_extended(__u64 flags)
900 {
901 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
902 		flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
903 
904 	return flags;
905 }
extended_to_chunk(__u64 flags)906 static inline __u64 extended_to_chunk(__u64 flags)
907 {
908 	return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
909 }
910 
911 struct btrfs_block_group_item {
912 	__le64 used;
913 	__le64 chunk_objectid;
914 	__le64 flags;
915 } __attribute__ ((__packed__));
916 
917 struct btrfs_free_space_info {
918 	__le32 extent_count;
919 	__le32 flags;
920 } __attribute__ ((__packed__));
921 
922 #define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
923 
924 #define BTRFS_QGROUP_LEVEL_SHIFT		48
btrfs_qgroup_level(__u64 qgroupid)925 static inline __u64 btrfs_qgroup_level(__u64 qgroupid)
926 {
927 	return qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT;
928 }
929 
930 /*
931  * is subvolume quota turned on?
932  */
933 #define BTRFS_QGROUP_STATUS_FLAG_ON		(1ULL << 0)
934 /*
935  * RESCAN is set during the initialization phase
936  */
937 #define BTRFS_QGROUP_STATUS_FLAG_RESCAN		(1ULL << 1)
938 /*
939  * Some qgroup entries are known to be out of date,
940  * either because the configuration has changed in a way that
941  * makes a rescan necessary, or because the fs has been mounted
942  * with a non-qgroup-aware version.
943  * Turning qouta off and on again makes it inconsistent, too.
944  */
945 #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT	(1ULL << 2)
946 
947 #define BTRFS_QGROUP_STATUS_VERSION        1
948 
949 struct btrfs_qgroup_status_item {
950 	__le64 version;
951 	/*
952 	 * the generation is updated during every commit. As older
953 	 * versions of btrfs are not aware of qgroups, it will be
954 	 * possible to detect inconsistencies by checking the
955 	 * generation on mount time
956 	 */
957 	__le64 generation;
958 
959 	/* flag definitions see above */
960 	__le64 flags;
961 
962 	/*
963 	 * only used during scanning to record the progress
964 	 * of the scan. It contains a logical address
965 	 */
966 	__le64 rescan;
967 } __attribute__ ((__packed__));
968 
969 struct btrfs_qgroup_info_item {
970 	__le64 generation;
971 	__le64 rfer;
972 	__le64 rfer_cmpr;
973 	__le64 excl;
974 	__le64 excl_cmpr;
975 } __attribute__ ((__packed__));
976 
977 struct btrfs_qgroup_limit_item {
978 	/*
979 	 * only updated when any of the other values change
980 	 */
981 	__le64 flags;
982 	__le64 max_rfer;
983 	__le64 max_excl;
984 	__le64 rsv_rfer;
985 	__le64 rsv_excl;
986 } __attribute__ ((__packed__));
987 
988 #endif /* _BTRFS_CTREE_H_ */
989