/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_Cumsum.pbtxt | 21 If `True`, perform exclusive cumsum. 32 By default, this op performs an inclusive cumsum, which means that the first 36 tf.cumsum([a, b, c]) # => [a, a + b, a + b + c] 39 By setting the `exclusive` kwarg to `True`, an exclusive cumsum is 43 tf.cumsum([a, b, c], exclusive=True) # => [0, a, a + b] 46 By setting the `reverse` kwarg to `True`, the cumsum is performed in the 50 tf.cumsum([a, b, c], reverse=True) # => [a + b + c, b + c, c] 58 tf.cumsum([a, b, c], exclusive=True, reverse=True) # => [b + c, c, 0]
|
/external/eigen/unsupported/test/ |
D | cxx11_tensor_scan.cpp | 23 Tensor<Type, 1, DataLayout> result = tensor.cumsum(0, Exclusive); in test_1d_scan() 60 result = tensor.cumsum(0); in test_4d_scan() 66 result = tensor.cumsum(1); in test_4d_scan() 72 result = tensor.cumsum(2); in test_4d_scan() 78 result = tensor.cumsum(3); in test_4d_scan() 92 Tensor<int, 1, DataLayout> result = tensor_map.cumsum(0); in test_tensor_maps()
|
D | cxx11_tensor_scan_cuda.cu | 54 gpu_t_result.device(gpu_device) = gpu_t_input.cumsum(1); in test_cuda_cumsum() 55 t_result = t_input.cumsum(1); in test_cuda_cumsum()
|
/external/tensorflow/tensorflow/compiler/tests/ |
D | scan_ops_test.py | 57 if func == np.cumsum: 80 np_out = handle_options(np.cumsum, x, axis, exclusive, reverse) 83 tf_out = math_ops.cumsum(p, axis, exclusive, reverse).eval( 106 math_ops.cumsum(p, axis).eval(feed_dict={p: x}) 139 math_ops.cumsum(input_tensor, -3).eval() 143 math_ops.cumsum(input_tensor, 2).eval() 147 math_ops.cumsum(input_tensor, [0]).eval()
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | scan_ops_test.py | 58 if func == np.cumsum: 81 np_out = handle_options(np.cumsum, x, axis, exclusive, reverse) 83 tf_out = math_ops.cumsum(x, axis, exclusive, reverse).eval() 106 tf_out = math_ops.cumsum(x, axis).eval() 150 math_ops.cumsum(input_tensor, -3).eval() 154 math_ops.cumsum(input_tensor, 2).eval() 158 math_ops.cumsum(input_tensor, [0]).eval() 164 result = math_ops.cumsum(t, axis, exclusive, reverse)
|
D | cumulative_logsumexp_test.py | 36 result_naive = math_ops.cumsum(math_ops.exp(x), **kwargs) 75 lambda y: math_ops.cumsum(math_ops.exp(y), **kwargs), [x])
|
D | array_ops_test.py | 1493 cdf = np.cumsum( 1513 cdf = np.cumsum( 1540 cdf = np.cumsum( 1560 cdf = np.cumsum( 1586 cdf = np.cumsum( 1608 cdf = np.cumsum( 1636 cdf = np.cumsum( 1658 cdf = np.cumsum(
|
D | weights_broadcast_test.py | 33 return np.reshape(np.cumsum(np.ones(shape), dtype=np.int32), newshape=shape)
|
/external/tensorflow/tensorflow/core/lib/histogram/ |
D | histogram.cc | 132 double cumsum = cumsum_prev + buckets_[i]; in Percentile() local 135 if (cumsum >= threshold) { in Percentile() 138 if (cumsum == cumsum_prev) { in Percentile() 150 double weight = Remap(threshold, cumsum_prev, cumsum, lhs, rhs); in Percentile() 154 cumsum_prev = cumsum; in Percentile()
|
/external/tensorflow/tensorflow/python/ops/ragged/ |
D | ragged_util.py | 67 return array_ops.concat([[0], math_ops.cumsum(lengths)], axis=-1)
|
D | segment_id_ops.py | 124 splits = array_ops.concat([[0], math_ops.cumsum(row_lengths)], axis=0)
|
D | ragged_math_ops.py | 238 math_ops.cumsum(output_row_lengths)
|
D | ragged_tensor.py | 422 row_splits = array_ops.concat([[0], math_ops.cumsum(row_lengths)], axis=0) 548 row_limits = math_ops.cumsum(row_lengths) 1723 limits = math_ops.cumsum(lengths)
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | dense_attention.py | 491 row_index = math_ops.cumsum( 493 col_index = math_ops.cumsum(
|
/external/eigen/bench/ |
D | sparse_setter.cpp | 317 for(int i = 0, cumsum = 0; i < n_row; i++){ in coo_tocsr() local 319 Bp[i] = cumsum; in coo_tocsr() 320 cumsum += temp; in coo_tocsr()
|
/external/tensorflow/tensorflow/python/ops/signal/ |
D | window_ops.py | 114 kaiserw_csum = math_ops.cumsum(kaiserw)
|
/external/tensorflow/tensorflow/compiler/xla/service/ |
D | memory_space_assignment.cc | 158 float cumsum = 0.0; in CostAnalysisPrefetchIntervalPicker() local 160 cumsum += elapsed_time; in CostAnalysisPrefetchIntervalPicker() 161 elapsed_time_cumsum_.push_back(cumsum); in CostAnalysisPrefetchIntervalPicker()
|
/external/tensorflow/tensorflow/python/ops/parallel_for/ |
D | array_test.py | 160 sorted_inputs = math_ops.cumsum(random_ops.random_uniform([3, 2, 4]),
|
/external/libaom/libaom/third_party/libyuv/source/ |
D | row_common.cc | 1965 void ComputeCumulativeSumRow_C(const uint8* row, int32* cumsum, in ComputeCumulativeSumRow_C() argument 1974 cumsum[x * 4 + 0] = row_sum[0] + previous_cumsum[x * 4 + 0]; in ComputeCumulativeSumRow_C() 1975 cumsum[x * 4 + 1] = row_sum[1] + previous_cumsum[x * 4 + 1]; in ComputeCumulativeSumRow_C() 1976 cumsum[x * 4 + 2] = row_sum[2] + previous_cumsum[x * 4 + 2]; in ComputeCumulativeSumRow_C() 1977 cumsum[x * 4 + 3] = row_sum[3] + previous_cumsum[x * 4 + 3]; in ComputeCumulativeSumRow_C()
|
/external/tensorflow/tensorflow/python/ops/ |
D | metrics_impl.py | 3070 tp_per_k = math_ops.cumsum(relevant_per_k, axis=-1, name='tp_per_k') 3071 retrieved_per_k = math_ops.cumsum( 3729 indices_at_minval = math_ops.cumsum(indices_at_minval)
|
D | parsing_config.py | 878 math_ops.cumsum(nrows, exclusive=True), partition_t.row_lengths())
|
/external/libyuv/files/source/ |
D | row_gcc.cc | 5601 int32_t* cumsum, in ComputeCumulativeSumRow_SSE2() argument 5669 "+r"(cumsum), // %1 in ComputeCumulativeSumRow_SSE2()
|
D | row_common.cc | 2499 int32_t* cumsum, in ComputeCumulativeSumRow_C() argument 2509 cumsum[x * 4 + 0] = row_sum[0] + previous_cumsum[x * 4 + 0]; in ComputeCumulativeSumRow_C() 2510 cumsum[x * 4 + 1] = row_sum[1] + previous_cumsum[x * 4 + 1]; in ComputeCumulativeSumRow_C() 2511 cumsum[x * 4 + 2] = row_sum[2] + previous_cumsum[x * 4 + 2]; in ComputeCumulativeSumRow_C() 2512 cumsum[x * 4 + 3] = row_sum[3] + previous_cumsum[x * 4 + 3]; in ComputeCumulativeSumRow_C()
|
/external/libvpx/libvpx/third_party/libyuv/source/ |
D | row_gcc.cc | 5601 int32_t* cumsum, in ComputeCumulativeSumRow_SSE2() argument 5669 "+r"(cumsum), // %1 in ComputeCumulativeSumRow_SSE2()
|
D | row_common.cc | 2499 int32_t* cumsum, in ComputeCumulativeSumRow_C() argument 2509 cumsum[x * 4 + 0] = row_sum[0] + previous_cumsum[x * 4 + 0]; in ComputeCumulativeSumRow_C() 2510 cumsum[x * 4 + 1] = row_sum[1] + previous_cumsum[x * 4 + 1]; in ComputeCumulativeSumRow_C() 2511 cumsum[x * 4 + 2] = row_sum[2] + previous_cumsum[x * 4 + 2]; in ComputeCumulativeSumRow_C() 2512 cumsum[x * 4 + 3] = row_sum[3] + previous_cumsum[x * 4 + 3]; in ComputeCumulativeSumRow_C()
|