/external/tensorflow/tensorflow/lite/toco/graph_transformations/ |
D | resolve_tensorflow_matmul.cc | 92 int dimensions_count = lhs_array.shape().dimensions_count(); in Run() local 93 if (dimensions_count < 2) { in Run() 96 dimensions_count); in Run() 102 perm.reserve(dimensions_count); in Run() 103 for (int i = 0; i < dimensions_count; ++i) { in Run() 106 std::swap(perm[dimensions_count - 1], perm[dimensions_count - 2]); in Run()
|
D | propagate_fixed_sizes.cc | 91 int rank_x = input_shape_x.dimensions_count(); in ComputeBinaryOperatorOutputSize() 92 int rank_y = input_shape_y.dimensions_count(); in ComputeBinaryOperatorOutputSize() 132 CHECK(input_shape.dimensions_count() == 4) in ProcessConvOperator() 134 << "\" is " << input_shape.dimensions_count() << "D."; in ProcessConvOperator() 142 CHECK_EQ(weights_shape.dimensions_count(), 4); in ProcessConvOperator() 153 CHECK_EQ(output_array.shape().dimensions_count(), 4); in ProcessConvOperator() 188 CHECK(specified_output_shape_array.shape().dimensions_count() == 1 && in ProcessTransposeConvOperator() 204 CHECK_EQ(weights_shape.dimensions_count(), 4) in ProcessTransposeConvOperator() 231 CHECK_EQ(input_shape.dimensions_count(), 4) in ProcessTransposeConvOperator() 261 CHECK_EQ(input_shape.dimensions_count(), 4); in ProcessDepthwiseConvOperator() [all …]
|
D | fuse_binary_into_preceding_affine.cc | 52 const int depth = bias_shape.dims(bias_shape.dimensions_count() - 1); in FuseAddOrSubParamsIntoPrecedingAffine() 54 if (operand_shape.dimensions_count() >= 1 && in FuseAddOrSubParamsIntoPrecedingAffine() 55 operand_shape.dims(operand_shape.dimensions_count() - 1) == in FuseAddOrSubParamsIntoPrecedingAffine() 56 bias_shape.dims(bias_shape.dimensions_count() - 1)) { in FuseAddOrSubParamsIntoPrecedingAffine() 58 } else if (operand_shape.dimensions_count() == 0 || in FuseAddOrSubParamsIntoPrecedingAffine() 59 operand_shape.dims(operand_shape.dimensions_count() - 1) == 1) { in FuseAddOrSubParamsIntoPrecedingAffine() 125 if (operand_shape.dimensions_count() >= 1 && in FuseMulOrDivParamsIntoPrecedingAffine() 126 operand_shape.dims(operand_shape.dimensions_count() - 1) == in FuseMulOrDivParamsIntoPrecedingAffine() 127 bias_shape.dims(bias_shape.dimensions_count() - 1)) { in FuseMulOrDivParamsIntoPrecedingAffine() 129 } else if (operand_shape.dimensions_count() == 0 || in FuseMulOrDivParamsIntoPrecedingAffine() [all …]
|
D | resolve_constant_unary.cc | 56 std::vector<int> reduction_mask(input_shape.dimensions_count(), 1); in ReduceGeneric() 59 CHECK_LT(axis, input_shape.dimensions_count()); in ReduceGeneric() 64 std::vector<int> output_indices(input_shape.dimensions_count()); in ReduceGeneric() 69 for (int i = 0; i < input_shape.dimensions_count(); ++i) { in ReduceGeneric() 86 for (int i = 0; i < output_shape.dimensions_count(); ++i) { in ReduceGeneric() 211 const int output_dims_count = output_shape.dimensions_count(); in Run()
|
D | unroll_batch_matmul.cc | 41 int rank = input_array.shape().dimensions_count(); in SliceInput() 93 const int32 dims = input_array.shape().dimensions_count(); in GetTransposePerm() 105 const int32 dims = input_shape.dimensions_count(); in GetTransposeShape() 168 const int dims_a = input_array_a.shape().dimensions_count(); in Run() 169 const int dims_b = input_array_b.shape().dimensions_count(); in Run()
|
D | convert_squeeze_to_reshape.cc | 50 if (input_array.shape().dimensions_count() == 0) { in Run() 64 if (output_shape.dimensions_count() == 0) { in Run()
|
D | convert_trivial_pack_to_reshape.cc | 48 if (input_array.shape().dimensions_count() == 0) { in Run() 65 const int shape_array_dims = 1 + input_array.shape().dimensions_count(); in Run()
|
D | identify_nearest_upsample.cc | 122 if (const_array.shape().dimensions_count() != in Run() 123 nonconst_array.shape().dimensions_count()) { in Run() 160 for (; i < current_const_shape.dimensions_count() - 1; in Run() 174 for (; i < current_nonconst_shape.dimensions_count(); ++i) { in Run()
|
D | resolve_constant_binary.cc | 95 const int dims_count = output_shape.dimensions_count(); in EvaluateBinaryOperatorOnConstantInputs() 107 CHECK_EQ(input0_shape.dimensions_count(), input1_shape.dimensions_count()); in EvaluateBinaryOperatorOnConstantInputs() 108 CHECK_EQ(input0_shape.dimensions_count(), dims_count); in EvaluateBinaryOperatorOnConstantInputs()
|
D | resolve_constant_transpose.cc | 40 CHECK(input_shape.dimensions_count() == output_shape.dimensions_count()); in Transpose() 41 const int dim = input_shape.dimensions_count(); in Transpose()
|
D | remove_trivial_binary.cc | 92 if (input_array_0.shape().dimensions_count() == in Run() 93 input_array_1.shape().dimensions_count() && in Run()
|
D | shuffle_fc_weights.cc | 60 for (int i = 1; i < input_shape.dimensions_count() - 1; i++) { in Run() 92 if (weights_shape.dimensions_count() != 2) { in Run()
|
D | move_binary_operator_before_reshape.cc | 29 int shape_end = shape.dimensions_count() - 1; in IsTailOfShape() 30 int tail_end = tail.dimensions_count() - 1; in IsTailOfShape()
|
D | resolve_constant_concatenation.cc | 83 for (int i = 0; i < concatenated_array->shape().dimensions_count(); i++) { in ConcatenateTensorBuffers() 93 for (int i = concatenation_axis; i < array_shape.dimensions_count(); i++) { in ConcatenateTensorBuffers()
|
D | remove_trivial_concatenation_input.cc | 49 input_array.has_shape() && input_array.shape().dimensions_count() == 0; in Run()
|
D | unpartition_embedding_lookup.cc | 199 partition_array.shape().dimensions_count(); in Run() 218 merged_gather_op->input_rank = partition_array.shape().dimensions_count(); in Run()
|
D | resolve_constant_shape_or_rank.cc | 59 output_buffer.data[0] = input_array.shape().dimensions_count(); in Run()
|
D | fuse_binary_into_following_affine.cc | 81 CHECK_EQ(output_depth, bias_shape.dims(bias_shape.dimensions_count() - 1)); in FuseAddOrSubParamsIntoFollowingAffine() 96 weights_shape.dims(weights_shape.dimensions_count() - 1); in FuseAddOrSubParamsIntoFollowingAffine()
|
D | resolve_strided_slice_attributes.cc | 82 int num_input_axes = input_array.shape().dimensions_count(); in Run()
|
D | convert_reorder_axes.cc | 39 CHECK_EQ(input_shape.dimensions_count(), 4); in CreateReshapeFromReorderAxes()
|
/external/tensorflow/tensorflow/lite/kernels/internal/ |
D | types.h | 139 explicit RuntimeShape(int dimensions_count) : size_(dimensions_count) { in RuntimeShape() argument 140 if (dimensions_count > kMaxSmallSize) { in RuntimeShape() 144 dims_pointer_ = new int32[dimensions_count]; in RuntimeShape() 156 RuntimeShape(int dimensions_count, const int32* dims_data) : size_(0) { in RuntimeShape() argument 157 ReplaceWith(dimensions_count, dims_data); in RuntimeShape() 213 inline void Resize(int dimensions_count) { in Resize() argument 221 size_ = dimensions_count; in Resize() 222 if (dimensions_count > kMaxSmallSize) { in Resize() 226 dims_pointer_ = new int32[dimensions_count]; in Resize() 231 inline void ReplaceWith(int dimensions_count, const int32* dims_data) { in ReplaceWith() argument [all …]
|
/external/tensorflow/tensorflow/lite/toco/ |
D | tooling_util.cc | 523 if (array_shape.dimensions_count() == 0) { in LogArray() 636 CHECK_GE(new_shape_size, shape->dimensions_count()); in ExtendShape() 637 const int size_increase = new_shape_size - shape->dimensions_count(); in ExtendShape() 644 CHECK_LE(new_shape_size, shape->dimensions_count()); in UnextendShape() 645 const int size_reduction = shape->dimensions_count() - new_shape_size; in UnextendShape() 673 for (int i = 0; i < shape.dimensions_count(); ++i) { in IsNonEmpty() 680 for (int i = 0; i < shape.dimensions_count(); ++i) { in CheckNonEmptyShapeDimensions() 692 if (shape1.dimensions_count() > shape0.dimensions_count()) { in ShapesAgreeUpToBroadcasting() 699 int longer_index = longer->dimensions_count() - 1; in ShapesAgreeUpToBroadcasting() 700 int shorter_index = shorter->dimensions_count() - 1; in ShapesAgreeUpToBroadcasting() [all …]
|
D | tooling_util.h | 143 return ::tflite::RuntimeShape(shape.dimensions_count(), shape.dims().data()); 221 DCHECK_EQ(shape.dimensions_count(), indices.size()); 222 const int dims_count = shape.dimensions_count(); 236 const int dims_count = shape.dimensions_count();
|
D | dump_graphviz.cc | 281 for (int dim = 0; dim < array_shape.dimensions_count(); dim++) { in GetArrayLabel() 283 if (dim + 1 < array_shape.dimensions_count()) { in GetArrayLabel() 297 if (array.shape().dimensions_count() > 0) { in GetArrayLabel() 306 if (array.shape().dimensions_count() > 0) { in GetArrayLabel()
|
D | export_tensorflow.cc | 108 const int kDims = input_shape.dimensions_count(); in ExportFloatArray() 126 CHECK_EQ(input_shape.dimensions_count(), AxesCount(input_axes_order)); in ExportFloatArray() 236 for (int i = 0; i < array_shape.dimensions_count(); i++) { in ConvertBoolTensorConst() 260 for (int i = 0; i < array_shape.dimensions_count(); i++) { in ConvertIntTensorConst() 309 for (int i = 0; i < array_shape.dimensions_count(); i++) { in ConvertComplex64TensorConst() 476 CHECK_EQ(src_weights_shape.dimensions_count(), 4); in ConvertDepthwiseConvOperator() 605 CHECK_EQ(fc_weights_shape.dimensions_count(), 2); in ConvertFullyConnectedOperator() 831 for (int i = 0; i < input_shape.dimensions_count() - 1; ++i) { in ConvertSoftmaxOperator() 835 flattened_size, input_shape.dims(input_shape.dimensions_count() - 1)}; in ConvertSoftmaxOperator() 872 for (int i = 0; i < input_shape.dimensions_count() - 1; ++i) { in ConvertLogSoftmaxOperator() [all …]
|