/external/python/cpython2/Lib/test/ |
D | test_binop.py | 6 def gcd(a, b): function 44 g = gcd(den, num) 217 self.assertEqual(gcd(10, 12), 2) 218 self.assertEqual(gcd(10, 15), 5) 219 self.assertEqual(gcd(10, 11), 1) 220 self.assertEqual(gcd(100, 15), 5) 221 self.assertEqual(gcd(-10, 2), -2) 222 self.assertEqual(gcd(10, -2), 2) 223 self.assertEqual(gcd(-10, -2), -2) 226 self.assertTrue(gcd(i, j) > 0) [all …]
|
D | test_fractions.py | 14 gcd = fractions.gcd variable 60 g = gcd(num, den) 98 self.assertEqual(0, gcd(0, 0)) 99 self.assertEqual(1, gcd(1, 0)) 100 self.assertEqual(-1, gcd(-1, 0)) 101 self.assertEqual(1, gcd(0, 1)) 102 self.assertEqual(-1, gcd(0, -1)) 103 self.assertEqual(1, gcd(7, 1)) 104 self.assertEqual(-1, gcd(7, -1)) 105 self.assertEqual(1, gcd(-23, 15)) [all …]
|
/external/mp4parser/isoparser/src/main/java/com/googlecode/mp4parser/util/ |
D | Math.java | 4 public static long gcd(long a, long b) { in gcd() method in Math 13 public static int gcd(int a, int b) { in gcd() method in Math 23 return a * (b / gcd(a, b)); in lcm() 27 return a * (b / gcd(a, b)); in lcm()
|
/external/bouncycastle/bcprov/src/main/java/org/bouncycastle/crypto/generators/ |
D | RSAKeyPairGenerator.java | 59 BigInteger p, q, n, d, e, pSub1, qSub1, gcd, lcm; in generateKeyPair() local 111 gcd = p; in generateKeyPair() 113 q = gcd; in generateKeyPair() 118 gcd = pSub1.gcd(qSub1); in generateKeyPair() 119 lcm = pSub1.divide(gcd).multiply(qSub1); in generateKeyPair() 180 if (!e.gcd(p.subtract(ONE)).equals(ONE)) in chooseRandomPrime()
|
/external/bouncycastle/repackaged/bcprov/src/main/java/com/android/org/bouncycastle/crypto/generators/ |
D | RSAKeyPairGenerator.java | 61 BigInteger p, q, n, d, e, pSub1, qSub1, gcd, lcm; in generateKeyPair() local 113 gcd = p; in generateKeyPair() 115 q = gcd; in generateKeyPair() 120 gcd = pSub1.gcd(qSub1); in generateKeyPair() 121 lcm = pSub1.divide(gcd).multiply(qSub1); in generateKeyPair() 182 if (!e.gcd(p.subtract(ONE)).equals(ONE)) in chooseRandomPrime()
|
/external/python/cpython3/Lib/test/ |
D | test_binop.py | 7 def gcd(a, b): function 45 g = gcd(den, num) 201 self.assertEqual(gcd(10, 12), 2) 202 self.assertEqual(gcd(10, 15), 5) 203 self.assertEqual(gcd(10, 11), 1) 204 self.assertEqual(gcd(100, 15), 5) 205 self.assertEqual(gcd(-10, 2), -2) 206 self.assertEqual(gcd(10, -2), 2) 207 self.assertEqual(gcd(-10, -2), -2) 210 self.assertTrue(gcd(i, j) > 0) [all …]
|
D | test_fractions.py | 15 gcd = fractions.gcd variable 53 g = math.gcd(num, den) 89 gcd(1, 1) 93 self.assertEqual(0, gcd(0, 0)) 94 self.assertEqual(1, gcd(1, 0)) 95 self.assertEqual(-1, gcd(-1, 0)) 96 self.assertEqual(1, gcd(0, 1)) 97 self.assertEqual(-1, gcd(0, -1)) 98 self.assertEqual(1, gcd(7, 1)) 99 self.assertEqual(-1, gcd(7, -1)) [all …]
|
D | test_math.py | 697 gcd = math.gcd 698 self.assertEqual(gcd(0, 0), 0) 699 self.assertEqual(gcd(1, 0), 1) 700 self.assertEqual(gcd(-1, 0), 1) 701 self.assertEqual(gcd(0, 1), 1) 702 self.assertEqual(gcd(0, -1), 1) 703 self.assertEqual(gcd(7, 1), 1) 704 self.assertEqual(gcd(7, -1), 1) 705 self.assertEqual(gcd(-23, 15), 1) 706 self.assertEqual(gcd(120, 84), 12) [all …]
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/fraction/ |
D | Fraction.java | 270 final int d = MathUtils.gcd(num, den); in Fraction() 489 int d1 = MathUtils.gcd(denominator, fraction.denominator); in addSub() 510 int d2 = (tmodd1==0)?d1:MathUtils.gcd(tmodd1, d1); in addSub() 542 int d1 = MathUtils.gcd(numerator, fraction.denominator); in multiply() 543 int d2 = MathUtils.gcd(fraction.numerator, denominator); in multiply() 622 int gcd = MathUtils.gcd(numerator, denominator); in getReducedFraction() local 623 numerator /= gcd; in getReducedFraction() 624 denominator /= gcd; in getReducedFraction()
|
D | BigFraction.java | 131 final BigInteger gcd = num.gcd(den); in BigFraction() local 132 if (BigInteger.ONE.compareTo(gcd) < 0) { in BigFraction() 133 num = num.divide(gcd); in BigFraction() 134 den = den.divide(gcd); in BigFraction() 1021 final BigInteger gcd = numerator.gcd(denominator); in reduce() local 1022 return new BigFraction(numerator.divide(gcd), denominator.divide(gcd)); in reduce()
|
/external/boringssl/src/crypto/fipsmodule/bn/ |
D | gcd_extra.c | 133 BIGNUM *gcd = BN_CTX_get(ctx); in bn_is_relatively_prime() local 134 if (gcd == NULL || in bn_is_relatively_prime() 135 !bn_gcd_consttime(gcd, &shift, x, y, ctx)) { in bn_is_relatively_prime() 140 if (gcd->width == 0) { in bn_is_relatively_prime() 143 BN_ULONG mask = shift | (gcd->d[0] ^ 1); in bn_is_relatively_prime() 144 for (int i = 1; i < gcd->width; i++) { in bn_is_relatively_prime() 145 mask |= gcd->d[i]; in bn_is_relatively_prime() 159 BIGNUM *gcd = BN_CTX_get(ctx); in bn_lcm_consttime() local 160 int ret = gcd != NULL && in bn_lcm_consttime() 162 bn_gcd_consttime(gcd, &shift, a, b, ctx) && in bn_lcm_consttime() [all …]
|
/external/mp4parser/isoparser/src/main/java/com/googlecode/mp4parser/authoring/ |
D | Movie.java | 79 timescale = gcd(track.getTrackMetaData().getTimescale(), timescale); 84 public static long gcd(long a, long b) { 88 return gcd(b, a % b);
|
/external/tensorflow/tensorflow/python/ops/signal/ |
D | util_ops.py | 32 def gcd(a, b, name=None): function 65 math_gcd = fractions.gcd 67 math_gcd = math.gcd
|
/external/libvpx/libvpx/vpx_util/ |
D | vpx_timestamp.h | 24 static INLINE int gcd(int64_t a, int b) { in gcd() function 36 const int denom = gcd(ratio->num, ratio->den); in reduce_ratio()
|
/external/tensorflow/tensorflow/core/lib/math/ |
D | math_util_test.cc | 206 unsigned int gcd; member 221 EXPECT_EQ(tc.gcd, MathUtil::GCD<uint32>(tc.x, tc.y)); in TEST() 222 EXPECT_EQ(tc.gcd, MathUtil::GCD<uint32>(tc.y, tc.x)); in TEST() 223 EXPECT_EQ(tc.gcd, MathUtil::GCD<uint64>(tc.x, tc.y)); in TEST() 224 EXPECT_EQ(tc.gcd, MathUtil::GCD<uint64>(tc.y, tc.x)); in TEST()
|
/external/libcxx/test/std/numerics/numeric.ops/numeric.ops.gcd/ |
D | gcd.pass.cpp | 45 static_assert(std::is_same_v<Output, decltype(std::gcd(value1, value2))>, ""); in test0() 46 static_assert(std::is_same_v<Output, decltype(std::gcd(value2, value1))>, ""); in test0() 47 assert(static_cast<Output>(out) == std::gcd(value1, value2)); in test0() 141 auto res = std::gcd(static_cast<std::int64_t>(1234), INT32_MIN); in main()
|
/external/guava/android/guava-tests/test/com/google/common/math/ |
D | IntMathTest.java | 444 assertEquals(valueOf(a).gcd(valueOf(b)), valueOf(IntMath.gcd(a, b))); in testGCD() 451 assertEquals(a, IntMath.gcd(a, 0)); in testGCDZero() 452 assertEquals(a, IntMath.gcd(0, a)); in testGCDZero() 454 assertEquals(0, IntMath.gcd(0, 0)); in testGCDZero() 460 IntMath.gcd(a, 3); in testGCDNegativePositiveThrows() 465 IntMath.gcd(3, a); in testGCDNegativePositiveThrows() 475 IntMath.gcd(a, 0); in testGCDNegativeZeroThrows() 480 IntMath.gcd(0, a); in testGCDNegativeZeroThrows()
|
D | LongMathTest.java | 521 assertEquals(valueOf(a).gcd(valueOf(b)), valueOf(LongMath.gcd(a, b))); in testGCDExhaustive() 529 assertEquals(a, LongMath.gcd(a, 0)); in testGCDZero() 530 assertEquals(a, LongMath.gcd(0, a)); in testGCDZero() 532 assertEquals(0, LongMath.gcd(0, 0)); in testGCDZero() 539 LongMath.gcd(a, 3); in testGCDNegativePositiveThrows() 544 LongMath.gcd(3, a); in testGCDNegativePositiveThrows() 555 LongMath.gcd(a, 0); in testGCDNegativeZeroThrows() 560 LongMath.gcd(0, a); in testGCDNegativeZeroThrows()
|
/external/guava/guava-tests/test/com/google/common/math/ |
D | IntMathTest.java | 444 assertEquals(valueOf(a).gcd(valueOf(b)), valueOf(IntMath.gcd(a, b))); in testGCD() 451 assertEquals(a, IntMath.gcd(a, 0)); in testGCDZero() 452 assertEquals(a, IntMath.gcd(0, a)); in testGCDZero() 454 assertEquals(0, IntMath.gcd(0, 0)); in testGCDZero() 460 IntMath.gcd(a, 3); in testGCDNegativePositiveThrows() 465 IntMath.gcd(3, a); in testGCDNegativePositiveThrows() 475 IntMath.gcd(a, 0); in testGCDNegativeZeroThrows() 480 IntMath.gcd(0, a); in testGCDNegativeZeroThrows()
|
D | LongMathTest.java | 521 assertEquals(valueOf(a).gcd(valueOf(b)), valueOf(LongMath.gcd(a, b))); in testGCDExhaustive() 529 assertEquals(a, LongMath.gcd(a, 0)); in testGCDZero() 530 assertEquals(a, LongMath.gcd(0, a)); in testGCDZero() 532 assertEquals(0, LongMath.gcd(0, 0)); in testGCDZero() 539 LongMath.gcd(a, 3); in testGCDNegativePositiveThrows() 544 LongMath.gcd(3, a); in testGCDNegativePositiveThrows() 555 LongMath.gcd(a, 0); in testGCDNegativeZeroThrows() 560 LongMath.gcd(0, a); in testGCDNegativeZeroThrows()
|
/external/python/rsa/rsa/ |
D | prime.py | 30 def gcd(p, q): function 185 d = gcd(a, b)
|
/external/python/cpython3/Doc/library/ |
D | fractions.rst | 175 .. function:: gcd(a, b) 178 *a* or *b* is nonzero, then the absolute value of ``gcd(a, b)`` is the 179 largest integer that divides both *a* and *b*. ``gcd(a,b)`` has the same 180 sign as *b* if *b* is nonzero; otherwise it takes the sign of *a*. ``gcd(0, 184 Use :func:`math.gcd` instead.
|
/external/compiler-rt/test/tsan/Darwin/ |
D | gcd-io-barrier-race.mm | 22 …irectory() stringByAppendingPathComponent:[NSString stringWithFormat:@"temp-gcd-io.%d", getpid()]]; 54 // CHECK: Location is global 'my_global' {{(of size 8 )?}}at [[ADDR]] (gcd-io-barrier-race.mm.tmp+0…
|
D | gcd-io-race.mm | 24 …irectory() stringByAppendingPathComponent:[NSString stringWithFormat:@"temp-gcd-io.%d", getpid()]]; 55 // CHECK: Location is global 'my_global' {{(of size 8 )?}}at [[ADDR]] (gcd-io-race.mm.tmp+0x{{[0-9,…
|
/external/python/cpython2/Doc/library/ |
D | fractions.rst | 129 .. function:: gcd(a, b) 132 *a* or *b* is nonzero, then the absolute value of ``gcd(a, b)`` is the 133 largest integer that divides both *a* and *b*. ``gcd(a,b)`` has the same 134 sign as *b* if *b* is nonzero; otherwise it takes the sign of *a*. ``gcd(0,
|