/external/tensorflow/tensorflow/python/keras/tests/ |
D | model_subclassing_compiled_test.py | 44 input_dim = 50 55 x = np.ones((num_samples, input_dim)) 64 input_dim = 50 75 x1 = np.ones((num_samples, input_dim)) 76 x2 = np.ones((num_samples, input_dim)) 86 input_dim = 50 97 x = np.ones((num_samples, input_dim), dtype=np.float32) 111 input_dim = 50 116 x1 = np.ones((num_samples, input_dim)) 117 x2 = np.ones((num_samples, input_dim)) [all …]
|
D | model_subclassing_test.py | 136 input_dim = 50 146 model.build(input_shape=tensor_shape.Dimension(input_dim)) 212 input_dim = 50 221 model.build(input_shape=(batch_size, input_dim)) 225 model(array_ops.ones((32, input_dim))) 229 input_dim = tensor_shape.Dimension(50) 238 model.build(input_shape=(batch_size, input_dim)) 242 model(array_ops.ones((32, input_dim))) 315 input_dim = 50 320 batch_input_shape = tensor_shape.TensorShape((batch_size, input_dim)) [all …]
|
D | model_subclassing_test_util.py | 94 def get_functional_graph_model(input_dim, num_classes): argument 96 inputs = keras.Input(shape=(input_dim,)) 109 def get_nested_model_3(input_dim, num_classes): argument 113 inputs = keras.Input(shape=(input_dim,))
|
/external/tensorflow/tensorflow/compiler/tf2xla/kernels/ |
D | extract_image_patches_op.cc | 77 int input_dim = GetTensorSpatialDimIndex(num_dims, data_format, i); in Compile() local 79 ctx, ksizes_[input_dim] >= 0, in Compile() 82 dilations_[input_dim])); in Compile() 83 OP_REQUIRES(ctx, strides_[input_dim] >= 1, in Compile() 86 dilations_[input_dim])); in Compile() 87 OP_REQUIRES(ctx, dilations_[input_dim] >= 1, in Compile() 90 dilations_[input_dim])); in Compile() 110 int input_dim = GetTensorSpatialDimIndex(num_dims, data_format, i); in Compile() local 111 kernel_shape[i] = ksizes_[input_dim]; in Compile() 112 kernel_size *= ksizes_[input_dim]; in Compile()
|
/external/tensorflow/tensorflow/compiler/xla/service/ |
D | dynamic_padder.cc | 247 HloInstruction* reshape, int64 input_dim, in RewriteDynamicReshapeSplitInput() argument 296 HloInstruction::CreateIota(mask_input_shape, input_dim)); in RewriteDynamicReshapeSplitInput() 325 input_dim, {input_shape_binary_mask, iota_mask}, compare_binary_iota, in RewriteDynamicReshapeSplitInput() 360 LiteralUtil::CreateR0<int32>(operand_shape.dimensions(input_dim)))); in RewriteDynamicReshapeSplitInput() 365 input_dim)); in RewriteDynamicReshapeSplitInput() 370 input_dim, {sorted_iota_mask, operand_static}, compare_iota_value, in RewriteDynamicReshapeSplitInput() 405 HloInstruction* reshape, int64 input_dim, int64 output_dim, in RewriteDynamicReshapeCombineInput() argument 424 PadWithScalar(broadcasted_zero, input_dim, dynamic_size, one); in RewriteDynamicReshapeCombineInput() 494 HloInstruction* reshape, int64 input_dim, HloInstruction* dynamic_size, in RewriteDynamicReshapeSingleDim() argument 497 << " input dim: " << input_dim; in RewriteDynamicReshapeSingleDim() [all …]
|
/external/tensorflow/tensorflow/python/keras/saving/ |
D | saving_utils_test.py | 67 input_dim = 5 if testing_utils.get_model_type() == 'functional' else None 68 model = testing_utils.get_small_mlp(10, 3, input_dim) 71 if input_dim is None: 86 input_dim = 5 if testing_utils.get_model_type() == 'functional' else None 87 model = testing_utils.get_small_mlp(10, 3, input_dim) 107 input_dim = 5 110 input_a = keras.layers.Input(shape=(input_dim,), name='input_a') 111 input_b = keras.layers.Input(shape=(input_dim,), name='input_b') 121 input_a_np = np.random.random((10, input_dim)).astype(np.float32) 122 input_b_np = np.random.random((10, input_dim)).astype(np.float32) [all …]
|
D | hdf5_format_test.py | 88 input_dim = 3 104 [np.random.random((output_dim, input_dim, size, 1))], 105 (None, 4, input_dim), 110 [np.random.random((output_dim, input_dim, size, size))], 111 (None, input_dim, 4, 4), 117 [np.random.random((output_dim, input_dim, size, size))], 118 (None, input_dim, 4, 4), 124 [np.random.random((size, size, input_dim, output_dim))], 125 (None, 4, 4, input_dim), 130 [np.random.random((output_dim, input_dim, size, size, size))], [all …]
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | embeddings.py | 92 input_dim, argument 114 self.input_dim = input_dim 136 shape=(self.input_dim, self.output_dim), 143 shape=(self.input_dim, self.output_dim), 189 'input_dim': self.input_dim,
|
D | kernelized.py | 170 input_dim = input_shape.dims[1].value 173 self.kernel_initializer, shape=(input_dim, self.output_dim)) 177 shape=(input_dim, self.output_dim), 191 self.scale = _get_default_scale(self.kernel_initializer, input_dim) 254 def _get_default_scale(initializer, input_dim): argument 257 return np.sqrt(input_dim / 2.0)
|
D | local.py | 176 input_dim, input_length = input_shape[1], input_shape[2] 178 input_dim, input_length = input_shape[2], input_shape[1] 180 if input_dim is None: 187 self.kernel_shape = (self.output_length, self.kernel_size[0] * input_dim, 199 self.kernel_shape = (input_dim, input_length, 202 self.kernel_shape = (input_length, input_dim, 221 input_length * input_dim) 229 filters_in=input_dim, 256 self.input_spec = InputSpec(ndim=3, axes={1: input_dim}) 258 self.input_spec = InputSpec(ndim=3, axes={-1: input_dim})
|
D | embeddings_test.py | 80 layer = keras.layers.Embedding(output_dim=2, input_dim=2) 91 l = keras.layers.Embedding(output_dim=2, input_dim=2) 104 input_dim=3,
|
D | local_test.py | 91 input_dim = 5 114 input_shape=(num_samples, num_steps, input_dim)) 121 input_dim = 5 140 layer.build((num_samples, num_steps, input_dim)) 144 np.ones((num_samples, num_steps, input_dim)))) 157 layer.build((num_samples, num_steps, input_dim))
|
D | recurrent_test.py | 68 def __init__(self, units, input_dim): argument 72 np.random.random((input_dim, units))) 110 def __init__(self, units, input_dim): argument 114 np.random.random((input_dim, units))) 1435 input_dim = 8 1438 x = keras.Input(batch_shape=(batch, None, input_dim)) 1449 np.zeros((batch, timesteps, input_dim)), 1451 model.predict(np.ones((batch, timesteps, input_dim))) 1454 model.predict(np.ones((batch, timesteps, input_dim))) 1459 model.predict(np.ones((batch, timesteps, input_dim))) [all …]
|
/external/tensorflow/tensorflow/python/keras/engine/ |
D | sequential_test.py | 43 model.add(keras.layers.Dense(1, input_dim=2)) 71 input_dim = 3 76 num_hidden, num_classes, input_dim) 82 x = np.random.random((batch_size, input_dim)) 98 model.add(keras.layers.Dense(num_hidden, input_dim=input_dim)) 111 input_dim = 3 128 x = np.random.random((batch_size, input_dim)) 138 input_dim = 3 156 x = array_ops.ones((num_samples, input_dim)) 177 model = testing_utils.get_small_sequential_mlp(10, 4, input_dim=3) [all …]
|
D | training_generator_test.py | 99 num_hidden=3, num_classes=4, input_dim=2) 137 num_hidden=3, num_classes=4, input_dim=2) 166 num_hidden=3, num_classes=4, input_dim=2) 202 num_hidden=3, num_classes=4, input_dim=2) 241 num_hidden=3, num_classes=4, input_dim=2) 286 num_hidden=10, num_classes=1, input_dim=10) 303 num_hidden=3, num_classes=4, input_dim=2) 342 num_hidden=10, num_classes=1, input_dim=10) 404 keras.layers.Embedding(input_dim=len(vocab) + 1, output_dim=4), 428 num_hidden=3, num_classes=4, input_dim=2) [all …]
|
D | training_test.py | 94 num_hidden=10, num_classes=2, input_dim=3) 107 num_hidden=10, num_classes=2, input_dim=3) 184 num_hidden=10, num_classes=2, input_dim=3) 195 num_hidden=10, num_classes=2, input_dim=3) 209 num_hidden=10, num_classes=2, input_dim=3) 222 num_hidden=10, num_classes=2, input_dim=3) 237 num_hidden=10, num_classes=2, input_dim=3) 252 num_hidden=10, num_classes=2, input_dim=3) 1091 input_dim = 5 1112 num_hidden=10, num_classes=num_classes, input_dim=input_dim) [all …]
|
D | training_dataset_test.py | 58 model = testing_utils.get_small_mlp(1, 4, input_dim=3) 84 model = testing_utils.get_small_mlp(1, 4, input_dim=3) 220 model = testing_utils.get_small_mlp(1, 4, input_dim=3) 270 model = testing_utils.get_small_mlp(1, 4, input_dim=3) 340 model = testing_utils.get_small_functional_mlp(1, 4, input_dim=3) 369 model = testing_utils.get_small_mlp(1, 4, input_dim=3) 393 model = testing_utils.get_small_mlp(1, 4, input_dim=3) 433 model = testing_utils.get_small_mlp(1, 4, input_dim=3) 478 model = testing_utils.get_small_mlp(1, 4, input_dim=3) 577 keras.layers.Dense(8, activation='relu', input_dim=4,
|
/external/tensorflow/tensorflow/python/keras/optimizer_v2/ |
D | optimizer_v2_test.py | 574 input_dim = 1 579 input_shape=(input_dim,), 653 input_dim = 3 658 input_shape=(input_dim,), 664 num_hidden=num_hidden, num_classes=num_classes, input_dim=input_dim) 674 num_hidden=num_hidden, num_classes=num_classes, input_dim=input_dim) 741 input_dim = 3 746 input_shape=(input_dim,), 752 num_hidden=num_hidden, num_classes=num_classes, input_dim=input_dim) 754 num_hidden=num_hidden, num_classes=num_classes, input_dim=input_dim) [all …]
|
/external/tensorflow/tensorflow/python/keras/utils/ |
D | multi_gpu_utils_test.py | 57 input_dim = 10 69 input_shape=(input_dim,))) 72 x = np.random.random((num_samples, input_dim)) 156 input_dim = 10 157 shape = (input_dim,) 185 input_shape=(input_dim,)))
|
/external/tensorflow/tensorflow/lite/kernels/internal/ |
D | batch_to_space_nd_test.cc | 25 int input_dim, int output_dim) { in GetIndexRange() argument 28 optimized_ops::GetIndexRange(spatial_index_dim, block_shape_dim, input_dim, in GetIndexRange()
|
/external/tensorflow/tensorflow/python/keras/premade/ |
D | wide_deep_test.py | 45 dnn_model = sequential.Sequential([core.Dense(units=1, input_dim=3)]) 89 dnn_model = sequential.Sequential([core.Dense(units=1, input_dim=3)]) 128 dnn_model = sequential.Sequential([core.Dense(units=1, input_dim=3)]) 169 dnn_model = sequential.Sequential([core.Dense(units=1, input_dim=3)]) 172 sequential.Sequential([core.Dense(units=1, input_dim=3)])) 266 dnn_model = sequential.Sequential([core.Dense(units=1, input_dim=3)]) 281 dnn_model = sequential.Sequential([core.Dense(units=1, input_dim=3)])
|
/external/tensorflow/tensorflow/python/keras/ |
D | testing_utils.py | 399 def get_small_sequential_mlp(num_hidden, num_classes, input_dim=None): argument 401 if input_dim: 403 input_dim=input_dim)) 411 def get_small_functional_mlp(num_hidden, num_classes, input_dim): argument 412 inputs = keras.Input(shape=(input_dim,)) 472 def get_small_mlp(num_hidden, num_classes, input_dim): argument 480 return get_small_sequential_mlp(num_hidden, num_classes, input_dim) 482 return get_small_functional_mlp(num_hidden, num_classes, input_dim)
|
D | callbacks_v1_test.py | 83 NUM_HIDDEN, input_dim=INPUT_DIM, activation='relu')) 279 NUM_HIDDEN, input_dim=INPUT_DIM, activation='relu')) 322 num_hidden=10, num_classes=10, input_dim=100) 372 num_hidden=NUM_HIDDEN, num_classes=NUM_CLASSES, input_dim=INPUT_DIM) 483 num_hidden=NUM_HIDDEN, num_classes=NUM_CLASSES, input_dim=INPUT_DIM)
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | broadcast_to_ops_test.py | 61 for input_dim in range(1, 6): 62 for output_dim in range(input_dim, 6): 64 input_shape = [2] * input_dim
|
/external/tensorflow/tensorflow/python/keras/distribute/ |
D | keras_embedding_model_correctness_test.py | 42 word_embed = keras.layers.Embedding(input_dim=20, output_dim=10)(word_ids) 103 input_dim=20,
|