/external/tensorflow/tensorflow/core/kernels/ |
D | sparse_concat_op.cc | 77 const int input_rank = input_shape.dims(); in Compute() local 79 ? input_rank + concat_dim_attr_ in Compute() 81 OP_REQUIRES(context, concat_dim >= 0 && concat_dim < input_rank, in Compute() 83 -input_rank, ", ", input_rank, in Compute() 88 context, current_shape.dims() == input_rank, in Compute() 90 "Ranks of all input tensors must match: expected ", input_rank, in Compute() 92 for (int j = 0; j < input_rank; ++j) { in Compute() 112 gtl::InlinedVector<int64, 8> std_order(input_rank); in Compute() 116 concat_order.reserve(input_rank); in Compute() 118 for (int j = 0; j < input_rank; ++j) { in Compute()
|
D | linalg_ops_common.cc | 120 int input_rank = -1; in AnalyzeInputs() local 124 input_rank = in.dims(); in AnalyzeInputs() 126 context, input_rank >= 2, in AnalyzeInputs() 128 " must have rank >= 2, got ", input_rank)); in AnalyzeInputs() 132 for (int dim = 0; dim < input_rank - 2; ++dim) { in AnalyzeInputs() 137 OP_REQUIRES(context, input_rank == in.dims(), in AnalyzeInputs() 140 for (int dim = 0; dim < input_rank - 2; ++dim) { in AnalyzeInputs() 148 const int row_dimension = input_rank - 2; in AnalyzeInputs() 149 const int col_dimension = input_rank - 1; in AnalyzeInputs()
|
D | reshape_util.cc | 50 const int64 input_rank = input_shape_in.NumElements(); in Reshape() local 112 gtl::InlinedVector<int64, 8> input_strides(input_rank); in Reshape() 113 if (input_rank > 0) { in Reshape() 114 input_strides[input_rank - 1] = 1; in Reshape() 115 for (int d = input_rank - 2; d >= 0; --d) { in Reshape() 137 for (int j = 0; j < input_rank; ++j) { in Reshape()
|
D | lu_op.cc | 71 int input_rank = input.dims(); in Compute() local 72 OP_REQUIRES(context, input_rank >= 2, in Compute() 74 "Input tensor must have rank >= 2, got ", input_rank)); in Compute() 81 for (int dim = 0; dim < input_rank - 2; ++dim) { in Compute() 84 const int64 num_rows = input.dim_size(input_rank - 2); in Compute() 85 const int64 num_cols = input.dim_size(input_rank - 1); in Compute()
|
D | lu_op_gpu.cu.cc | 87 const int input_rank = input.dims(); in ComputeAsync() local 90 context, input_rank >= 2, in ComputeAsync() 91 errors::InvalidArgument("Input must have rank >= 2, got ", input_rank), in ComputeAsync() 94 const int64 num_rows = input.dim_size(input_rank - 2); in ComputeAsync() 95 const int64 num_cols = input.dim_size(input_rank - 1); in ComputeAsync() 104 for (int dim = 0; dim < input_rank - 2; ++dim) { in ComputeAsync()
|
D | matrix_set_diag_op.cc | 90 const int input_rank = input_shape.dims(); in Compute() local 103 const Eigen::Index num_rows = input_shape.dim_size(input_rank - 2); in Compute() 104 const Eigen::Index num_cols = input_shape.dim_size(input_rank - 1); in Compute() 129 (diag_shape.dim_size(input_rank - 2) == num_diags), in Compute()
|
/external/tensorflow/tensorflow/compiler/tf2xla/kernels/ |
D | matrix_diag_ops.cc | 125 const int input_rank = input_shape.dims(); in SetMatrixDiag() local 127 padding_config = xla::MakeNoPaddingConfig(input_rank - 1); in SetMatrixDiag() 158 std::vector<int64> broadcast_dimensions(input_rank - 1); in SetMatrixDiag() 191 broadcast_dimensions.back() = input_rank - 1; // Column-wise. in SetMatrixDiag() 193 broadcast_dimensions.back() = input_rank - 2; // Row-wise. in SetMatrixDiag() 199 broadcast_dimensions.back() = input_rank - 2; // Row-wise. in SetMatrixDiag() 202 broadcast_dimensions.back() = input_rank - 1; // Column-wise. in SetMatrixDiag() 210 padding_config.mutable_dimensions(input_rank - 2) in SetMatrixDiag() 212 padding_config.mutable_dimensions(input_rank - 2) in SetMatrixDiag() 357 const int input_rank = input_shape.dims(); in Compile() local [all …]
|
D | depthtospace_op.cc | 62 int input_rank = input_shape.size(); in Compile() local 65 OP_REQUIRES(ctx, kRequiredDims == input_rank, in Compile() 67 "; got: ", input_rank)); in Compile() 69 int feature_dim = GetTensorFeatureDimIndex(input_rank, data_format); in Compile() 70 int num_spatial_dims = GetTensorSpatialDims(input_rank, data_format); in Compile() 75 reshaped_shape.reserve(input_rank); in Compile() 76 transpose_order.reserve(input_rank); in Compile() 77 output_shape.reserve(input_rank); in Compile()
|
D | spacetodepth_op.cc | 62 int input_rank = input_shape.size(); in Compile() local 65 OP_REQUIRES(ctx, kRequiredDims == input_rank, in Compile() 67 "; got ", input_rank)); in Compile() 69 int feature_dim = GetTensorFeatureDimIndex(input_rank, data_format); in Compile() 70 int num_spatial_dims = GetTensorSpatialDims(input_rank, data_format); in Compile() 75 reshaped_shape.reserve(input_rank); in Compile() 76 transpose_order.reserve(input_rank); in Compile() 77 output_shape.reserve(input_rank); in Compile()
|
D | batchtospace_op.cc | 28 const int input_rank = input_tensor_shape.dims(); in BatchToSpace() local 34 ctx, input_rank >= 1 + block_rank, in BatchToSpace() 36 " instead of ", input_rank)); in BatchToSpace() 70 std::vector<int64> reshaped_shape(input_rank + block_rank); in BatchToSpace() 105 std::vector<int64> reshaped_permuted_shape(input_rank); in BatchToSpace() 125 std::vector<int64> start_indices(input_rank, 0); in BatchToSpace() 127 std::vector<int64> strides(input_rank, 1); in BatchToSpace()
|
D | spacetobatch_op.cc | 28 const int input_rank = input_tensor_shape.dims(); in SpaceToBatch() local 34 ctx, input_rank >= 1 + block_rank, in SpaceToBatch() 36 " instead of ", input_rank)); in SpaceToBatch() 89 std::vector<int64> reshaped_padded_shape(input_rank + block_rank); in SpaceToBatch() 136 std::vector<int64> output_shape(input_rank); in SpaceToBatch()
|
D | data_format_ops.cc | 104 int input_rank = input_tensor_shape.dims(); in Compile() local 105 OP_REQUIRES(ctx, input_rank == 1 || input_rank == 2, in Compile() 114 if (input_rank == 2) { in Compile()
|
D | quantize_and_dequantize_op.cc | 81 int64 input_rank = input_shape.dims(); in Compile() local 82 OP_REQUIRES(ctx, input_rank >= 1, in Compile() 86 ctx, axis_ >= 0 && axis_ < input_rank, in Compile() 88 dimensions_to_reduce.reserve(input_rank - 1); in Compile() 89 for (int64 i = 0; i < input_rank; ++i) { in Compile()
|
/external/tensorflow/tensorflow/core/common_runtime/ |
D | eval_const_tensor.cc | 56 int input_rank = c->Rank(c->input(0)); in TryToInferTensorOutputFromInputShapes() local 57 Tensor t(node->output_type(0), TensorShape({input_rank})); in TryToInferTensorOutputFromInputShapes() 60 for (int i = 0; i < input_rank; i++) { in TryToInferTensorOutputFromInputShapes() 71 for (int i = 0; i < input_rank; i++) { in TryToInferTensorOutputFromInputShapes() 84 int32 input_rank = c->Rank(c->input(0)); in TryToInferTensorOutputFromInputShapes() local 86 t.flat<int32>()(0) = input_rank; in TryToInferTensorOutputFromInputShapes()
|
/external/tensorflow/tensorflow/core/framework/ |
D | common_shape_fns.cc | 1237 const int32 input_rank = c->Rank(input_shape); in MatrixDiagPartV2Shape() local 1238 const int32 num_rows = c->Value(c->Dim(input_shape, input_rank - 2)); in MatrixDiagPartV2Shape() 1239 const int32 num_cols = c->Value(c->Dim(input_shape, input_rank - 1)); in MatrixDiagPartV2Shape() 1256 dims.reserve(input_rank - 2); in MatrixDiagPartV2Shape() 1257 for (int i = 0; i < input_rank - 2; ++i) { in MatrixDiagPartV2Shape() 1295 const int32 input_rank = c->Rank(input_shape); in MatrixDiagV2Shape() local 1297 const int32 num_diags = c->Value(c->Dim(input_shape, input_rank - 2)); in MatrixDiagV2Shape() 1298 const int32 other_dim = c->Value(c->Dim(input_shape, input_rank - 1)); in MatrixDiagV2Shape() 1305 ", d_upper = ", upper_diag_index, " ", input_rank, " ", other_dim); in MatrixDiagV2Shape() 1324 const int32 max_diag_len = c->Value(c->Dim(input_shape, input_rank - 1)); in MatrixDiagV2Shape() [all …]
|
D | shape_inference.cc | 924 int idx, int input_rank, DimensionHandle* out) { in MakeDimForScalarInputWithNegativeIndexing() argument 933 if (input_rank < 0) { in MakeDimForScalarInputWithNegativeIndexing() 936 } else if (val + input_rank < 0) { in MakeDimForScalarInputWithNegativeIndexing() 938 val, " must be in range [-", input_rank, in MakeDimForScalarInputWithNegativeIndexing() 939 ", ", input_rank, ")"); in MakeDimForScalarInputWithNegativeIndexing() 941 val += input_rank; in MakeDimForScalarInputWithNegativeIndexing() 943 } else if (input_rank >= 0 && val >= input_rank) { in MakeDimForScalarInputWithNegativeIndexing() 945 val, " must be in range [-", input_rank, in MakeDimForScalarInputWithNegativeIndexing() 946 ", ", input_rank, ")"); in MakeDimForScalarInputWithNegativeIndexing()
|
/external/tensorflow/tensorflow/compiler/mlir/xla/transforms/ |
D | legalize_tf.cc | 577 int64_t input_rank = input_ty.getRank(); in CanBeTranslatedToDynamicSlice() local 581 for (int64_t i = 0; i < input_rank; ++i) { in CanBeTranslatedToDynamicSlice() 591 for (int64_t i = 0; i < input_rank; ++i) { in CanBeTranslatedToDynamicSlice() 624 int64_t input_rank = input_ty.getRank(); in TFSliceSizes2HLOSliceSizes() local 628 for (int64_t i = 0; i < input_rank; ++i) { in TFSliceSizes2HLOSliceSizes() 1588 int64_t input_rank = input_type.getRank(); in matchAndRewrite() local 1590 if (dim_index < 0) dim_index += input_rank; in matchAndRewrite() 1608 SmallVector<int64_t, 4> begin_indices(input_rank, 0); in matchAndRewrite() 1610 SmallVector<int64_t, 4> strides(input_rank, 1); in matchAndRewrite() 1704 int64_t input_rank = input_type.getRank(); in matchAndRewrite() local [all …]
|
/external/tensorflow/tensorflow/core/ops/ |
D | array_ops.cc | 1579 const int32 input_rank = c->Rank(input); in __anonf6523ebd2302() local 1580 if (batch_dim >= input_rank) { in __anonf6523ebd2302() 1582 "batch_dim must be < input rank: ", batch_dim, " vs. ", input_rank); in __anonf6523ebd2302() 1584 if (seq_dim >= input_rank) { in __anonf6523ebd2302() 1586 "seq_dim must be < input rank: ", seq_dim, " vs. ", input_rank); in __anonf6523ebd2302() 1913 const Tensor* paddings_t, int64 input_rank) { in MirrorPadKnown() argument 1915 std::vector<DimensionHandle> dims(input_rank); in MirrorPadKnown() 1916 for (int64 i = 0; i < input_rank; ++i) { in MirrorPadKnown() 1949 int64 input_rank = c->Value(pad_0); in __anonf6523ebd2b02() local 1951 TF_RETURN_IF_ERROR(c->WithRank(c->input(0), input_rank, &input)); in __anonf6523ebd2b02() [all …]
|
D | math_ops.cc | 1037 const int32 input_rank = c->Rank(input_shape); in ArgOpShape() local 1038 if (input_rank <= 1) { in ArgOpShape() 1048 std::vector<DimensionHandle> dims(input_rank - 1); in ArgOpShape() 1064 int64 axis = dimension_val < 0 ? dimension_val + input_rank : dimension_val; in ArgOpShape() 1065 if (axis < 0 || axis >= input_rank) { in ArgOpShape() 1067 "Dimension (", dimension_val, ") must be in the range [", -input_rank, in ArgOpShape() 1068 ", ", input_rank, "), where ", input_rank, in ArgOpShape() 1074 for (int i = 0; i < input_rank; ++i) { in ArgOpShape()
|
/external/tensorflow/tensorflow/lite/toco/graph_transformations/ |
D | unpartition_embedding_lookup.cc | 198 gather_params_permute_op->input_rank = in Run() 218 merged_gather_op->input_rank = partition_array.shape().dimensions_count(); in Run()
|
D | propagate_fixed_sizes.cc | 573 int input_rank = input_shape.dimensions_count(); in ProcessTensorFlowReductionOperator() local 579 if (reduction_index < -input_rank || reduction_index >= input_rank) { in ProcessTensorFlowReductionOperator() 581 << " for input with " << input_rank << " dimensions"; in ProcessTensorFlowReductionOperator() 585 wrapped_index += input_rank; in ProcessTensorFlowReductionOperator() 592 for (int i = 0; i < input_rank; ++i) { in ProcessTensorFlowReductionOperator() 1409 op->input_rank = input_shape.dimensions_count(); in ProcessGatherOperator() 1410 QCHECK_LT(axis, op->input_rank); in ProcessGatherOperator()
|
/external/tensorflow/tensorflow/compiler/xla/ |
D | shape_util.cc | 1329 int64 input_rank = input_shape.rank(); in AlignLayouts() local 1351 std::vector<int64> dimension_to_alignment_index(input_rank); in AlignLayouts() 1353 for (int64 i = 0, j = 0; i < input_rank || j < output_rank;) { in AlignLayouts() 1362 if (i == input_rank) { in AlignLayouts() 1379 alignment.push_back({input_rank, output_rank}); in AlignLayouts() 1388 for (int64 i = 0; i < input_rank;) { in AlignLayouts() 1405 if (i == input_rank) { in AlignLayouts()
|
/external/tensorflow/tensorflow/compiler/mlir/tensorflow/ir/ |
D | tf_ops.cc | 1012 int64_t input_rank = input_ty.getRank(); in InferExpandDimsOpType() local 1014 if (dim_val < -input_rank - 1 || dim_val > input_rank + 1) return unranked_ty; in InferExpandDimsOpType() 1015 if (dim_val < 0) dim_val += input_rank + 1; in InferExpandDimsOpType() 2057 int64_t input_rank = input_type.getRank(); in VerifySplitInputAndSplitDim() local 2058 if (input_rank == 0) in VerifySplitInputAndSplitDim() 2066 if (index + input_rank < 0 || index >= input_rank) { in VerifySplitInputAndSplitDim() 2068 << input_rank << ", " << input_rank << ")"; in VerifySplitInputAndSplitDim() 2071 if (index < 0) index += input_rank; in VerifySplitInputAndSplitDim()
|
/external/tensorflow/tensorflow/python/ops/signal/ |
D | fft_ops.py | 96 input_rank = _array_ops.rank(input_tensor) 98 outer_dims = _math_ops.maximum(0, input_rank - fft_rank)
|
/external/tensorflow/tensorflow/python/ops/ |
D | nn_ops.py | 3009 input_rank = array_ops.rank(logits) 3011 logits = _swap_axis(logits, dim_axis, math_ops.subtract(input_rank, 1)) 3017 output, dim_axis, math_ops.subtract(input_rank, 1), name=name) 3292 input_rank = array_ops.rank(precise_logits) 3307 precise_logits = _move_dim_to_end(precise_logits, axis, input_rank) 3308 labels = _move_dim_to_end(labels, axis, input_rank) 3324 [math_ops.subtract(input_rank, 1)])
|