/external/tensorflow/tensorflow/lite/testing/nnapi_tflite_zip_tests/ |
D | not_supported.txt | 9 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[1,1,1,3],is_arg_max=True,output_type=tf… 10 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[1,1,1,3],is_arg_max=True,output_type=tf… 11 arg_min_max/arg_min_max_input_dtype=tf.int32,input_shape=[1,1,1,3],is_arg_max=True,output_type=tf.i… 12 arg_min_max/arg_min_max_input_dtype=tf.int32,input_shape=[1,1,1,3],is_arg_max=True,output_type=tf.i… 13 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[2,3,4,5],is_arg_max=True,output_type=tf… 14 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[2,3,4,5],is_arg_max=True,output_type=tf… 15 arg_min_max/arg_min_max_input_dtype=tf.int32,input_shape=[2,3,4,5],is_arg_max=True,output_type=tf.i… 16 arg_min_max/arg_min_max_input_dtype=tf.int32,input_shape=[2,3,4,5],is_arg_max=True,output_type=tf.i… 17 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[2,3,3],is_arg_max=True,output_type=tf.i… 18 arg_min_max/arg_min_max_input_dtype=tf.float32,input_shape=[2,3,3],is_arg_max=True,output_type=tf.i… [all …]
|
D | test_manifest.txt | 17 avg_pool/avg_pool_data_format='NHWC',input_shape=[1,1,1,1],ksize=[1,1,1,1],padding='SAME',strides=[… 18 avg_pool/avg_pool_data_format='NHWC',input_shape=[1,1,1,1],ksize=[1,1,1,1],padding='SAME',strides=[… 19 avg_pool/avg_pool_data_format='NHWC',input_shape=[1,1,1,1],ksize=[1,1,1,1],padding='SAME',strides=[… 20 avg_pool/avg_pool_data_format='NHWC',input_shape=[1,15,14,1],ksize=[1,1,1,1],padding='SAME',strides… 21 avg_pool/avg_pool_data_format='NHWC',input_shape=[1,15,14,1],ksize=[1,1,1,1],padding='SAME',strides… 22 avg_pool/avg_pool_data_format='NHWC',input_shape=[1,15,14,1],ksize=[1,1,1,1],padding='SAME',strides… 23 avg_pool/avg_pool_data_format='NHWC',input_shape=[3,15,14,3],ksize=[1,1,1,1],padding='SAME',strides… 24 avg_pool/avg_pool_data_format='NHWC',input_shape=[3,15,14,3],ksize=[1,1,1,1],padding='SAME',strides… 25 avg_pool/avg_pool_data_format='NHWC',input_shape=[3,15,14,3],ksize=[1,1,1,1],padding='SAME',strides… 26 avg_pool/avg_pool_data_format='NHWC',input_shape=[1,1,1,1],ksize=[1,1,1,1],padding='VALID',strides=… [all …]
|
/external/tensorflow/tensorflow/python/keras/applications/ |
D | imagenet_utils.py | 245 def obtain_input_shape(input_shape, argument 271 if weights != 'imagenet' and input_shape and len(input_shape) == 3: 273 if input_shape[0] not in {1, 3}: 276 str(input_shape[0]) + ' input channels.') 277 default_shape = (input_shape[0], default_size, default_size) 279 if input_shape[-1] not in {1, 3}: 282 str(input_shape[-1]) + ' input channels.') 283 default_shape = (default_size, default_size, input_shape[-1]) 290 if input_shape is not None: 291 if input_shape != default_shape: [all …]
|
D | efficientnet.py | 156 input_shape=None, argument 222 input_shape = imagenet_utils.obtain_input_shape( 223 input_shape, 231 img_input = layers.Input(shape=input_shape) 234 img_input = layers.Input(tensor=input_tensor, shape=input_shape) 460 input_shape=None, argument 473 input_shape=input_shape, 484 input_shape=None, argument 497 input_shape=input_shape, 508 input_shape=None, argument [all …]
|
/external/tensorflow/tensorflow/python/keras/utils/ |
D | conv_utils_test.py | 30 def _get_const_output_shape(input_shape, dim): argument 31 return tuple([min(d, dim) for d in input_shape]) 166 def test_conv_kernel_mask_fc(self, *input_shape): argument 168 kernel_shape = input_shape 169 ndims = len(input_shape) 171 output_shape = _get_const_output_shape(input_shape, dim=1) 172 mask = np.ones(input_shape + output_shape, np.bool) 176 input_shape, 183 def test_conv_kernel_mask_diag(self, *input_shape): argument 184 ndims = len(input_shape) [all …]
|
/external/tensorflow/tensorflow/lite/kernels/internal/ |
D | transpose_utils_test.cc | 24 RuntimeShape input_shape({9}); in TEST() local 31 transpose_utils::RemoveOneSizeDimensions(&input_shape, &output_shape, in TEST() 34 EXPECT_EQ(input_shape, RuntimeShape({9})); in TEST() 42 RuntimeShape input_shape({9, 3}); in TEST() local 50 transpose_utils::RemoveOneSizeDimensions(&input_shape, &output_shape, in TEST() 53 EXPECT_EQ(input_shape, RuntimeShape({9, 3})); in TEST() 62 RuntimeShape input_shape({9, 1}); in TEST() local 70 transpose_utils::RemoveOneSizeDimensions(&input_shape, &output_shape, in TEST() 73 EXPECT_EQ(input_shape, RuntimeShape({9})); in TEST() 81 RuntimeShape input_shape({4, 3, 8}); in TEST() local [all …]
|
D | transpose_utils.cc | 21 const RuntimeShape& input_shape, int* dim0, in IsTranspose2DApplicable() argument 23 const int dims_cnt = input_shape.DimensionsCount(); in IsTranspose2DApplicable() 26 *dim0 = input_shape.Dims(0); in IsTranspose2DApplicable() 27 *dim1 = input_shape.Dims(1); in IsTranspose2DApplicable() 45 *dim0 *= input_shape.Dims(i); in IsTranspose2DApplicable() 47 *dim1 *= input_shape.Dims(i); in IsTranspose2DApplicable() 53 void RemoveOneSizeDimensions(RuntimeShape* input_shape, in RemoveOneSizeDimensions() argument 56 const int dims_cnt = input_shape->DimensionsCount(); in RemoveOneSizeDimensions() 61 if (input_shape->Dims(i) == 1) { in RemoveOneSizeDimensions() 71 if (input_shape->FlatSize() == 1) { in RemoveOneSizeDimensions() [all …]
|
D | resize_nearest_neighbor_test.cc | 30 const RuntimeShape& input_shape, const std::vector<T>& input_data, in TestReferenceResizeNearestNeighbor() argument 39 op_params, input_shape, input_data.data(), output_size_shape, in TestReferenceResizeNearestNeighbor() 48 RuntimeShape input_shape = {1, 2, 2, 1}; in TEST() local 54 TestReferenceResizeNearestNeighbor(input_shape, input_data, output_size_data, in TEST() 59 RuntimeShape input_shape = {1, 2, 2, 1}; in TEST() local 65 TestReferenceResizeNearestNeighbor(input_shape, input_data, output_size_data, in TEST() 70 RuntimeShape input_shape = {1, 3, 3, 1}; in TEST() local 76 TestReferenceResizeNearestNeighbor(input_shape, input_data, output_size_data, in TEST() 81 RuntimeShape input_shape = {1, 2, 2, 1}; in TEST() local 87 TestReferenceResizeNearestNeighbor(input_shape, input_data, output_size_data, in TEST() [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | pool_test.py | 148 def _test(self, input_shape, **kwargs): argument 152 np.prod(input_shape), dtype=np.float32).reshape(input_shape) - 1 162 input_shape=[1, 1, 10, 1], 173 for input_shape in [[2, 9, 2], [2, 10, 2]]: 178 input_shape=input_shape, 188 input_shape=input_shape, 199 for input_shape in [[2, 9, 10, 2], [2, 10, 9, 2]]: 204 input_shape=input_shape, 214 input_shape=input_shape, 227 for input_shape in [[2, 9, 10, 11, 2], [2, 10, 9, 11, 2]]: [all …]
|
/external/tensorflow/tensorflow/compiler/tf2xla/kernels/ |
D | split_op.cc | 39 const TensorShape input_shape = ctx->InputShape(1); in Compile() local 48 int32 split_dim = split_dim_orig < 0 ? split_dim_orig + input_shape.dims() in Compile() 50 OP_REQUIRES(ctx, 0 <= split_dim && split_dim < input_shape.dims(), in Compile() 51 errors::InvalidArgument("-input rank(-", input_shape.dims(), in Compile() 53 input_shape.dims(), "), but got ", in Compile() 62 ctx, input_shape.dim_size(split_dim) % num_split == 0, in Compile() 66 split_dim_orig, " (size = ", input_shape.dim_size(split_dim), ") ", in Compile() 71 const int32 slice_size = input_shape.dim_size(split_dim) / num_split; in Compile() 75 std::vector<int64> begin(input_shape.dims(), 0); in Compile() 76 std::vector<int64> limits(input_shape.dims()); in Compile() [all …]
|
D | unpack_op.cc | 47 const TensorShape input_shape = ctx->InputShape(0); in Compile() local 50 if (axis < 0) axis += input_shape.dims(); in Compile() 52 OP_REQUIRES(ctx, 0 <= axis && axis < input_shape.dims(), in Compile() 54 -input_shape.dims(), ", ", in Compile() 55 input_shape.dims(), ")")); in Compile() 58 ctx, input_shape.dims() > 0 && input_shape.dim_size(axis) == num, in Compile() 60 ", got shape ", input_shape.DebugString())); in Compile() 62 auto output_shape = input_shape; in Compile() 67 std::vector<int64> start_indices(input_shape.dims(), 0); in Compile() 68 std::vector<int64> limit_indices(input_shape.dims()); in Compile() [all …]
|
D | shape_op.cc | 42 const TensorShape input_shape = ctx->InputShape(0); in Compile() local 44 const int rank = input_shape.dims(); in Compile() 56 Tensor shape_constant(out_dtype_, TensorShape({input_shape.dims()})); in Compile() 57 OP_REQUIRES_OK(ctx, TensorShapeToConstant(input_shape, &shape_constant)); in Compile() 76 const TensorShape input_shape = ctx->InputShape(i); in Compile() local 79 const int rank = input_shape.dims(); in Compile() 93 Tensor shape_constant(out_dtype_, TensorShape({input_shape.dims()})); in Compile() 95 TensorShapeToConstant(input_shape, &shape_constant)); in Compile() 113 const TensorShape input_shape = ctx->InputShape(0); in Compile() local 114 const int rank = input_shape.dims(); in Compile() [all …]
|
D | spacetodepth_op.cc | 60 absl::Span<const int64> input_shape = in Compile() local 62 int input_rank = input_shape.size(); in Compile() 81 OP_REQUIRES(ctx, input_shape[1 + i] % block_size_ == 0, in Compile() 83 "input shape[", 1 + i, "]=", input_shape[1 + i], in Compile() 88 reshaped_shape.push_back(input_shape[0]); in Compile() 90 reshaped_shape.push_back(input_shape[1 + i] / block_size_); in Compile() 93 reshaped_shape.push_back(input_shape[feature_dim]); in Compile() 104 output_shape.push_back(input_shape[0]); in Compile() 106 output_shape.push_back(input_shape[1 + i] / block_size_); in Compile() 108 output_shape.push_back(input_shape[feature_dim] * block_elems); in Compile() [all …]
|
D | depthtospace_op.cc | 60 absl::Span<const int64> input_shape = in Compile() local 62 int input_rank = input_shape.size(); in Compile() 79 reshaped_shape.push_back(input_shape[0]); in Compile() 81 reshaped_shape.push_back(input_shape[1 + i]); in Compile() 88 reshaped_shape.push_back(input_shape[feature_dim] / block_elems); in Compile() 97 output_shape.push_back(input_shape[0]); in Compile() 99 output_shape.push_back(input_shape[1 + i] * block_size_); in Compile() 101 output_shape.push_back(input_shape[feature_dim] / block_elems); in Compile() 104 reshaped_shape.push_back(input_shape[0]); in Compile() 110 reshaped_shape.push_back(input_shape[feature_dim] / block_elems); in Compile() [all …]
|
D | slice_op.cc | 40 const TensorShape input_shape = ctx->InputShape(0); in Compile() local 48 begin_tensor_shape.num_elements() == input_shape.dims() && in Compile() 49 size_tensor_shape.num_elements() == input_shape.dims(), in Compile() 52 input_shape.dims(), ", but got shapes ", in Compile() 56 const int input_dims = input_shape.dims(); in Compile() 66 size[i] = input_shape.dim_size(i) - begin[i]; in Compile() 73 if (input_shape.dim_size(i) == 0) { in Compile() 80 OP_REQUIRES(ctx, 0 <= b && b <= input_shape.dim_size(i), in Compile() 82 input_shape.dim_size(i), in Compile() 84 OP_REQUIRES(ctx, 0 <= s && b + s <= input_shape.dim_size(i), in Compile() [all …]
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | pooling.py | 83 def compute_output_shape(self, input_shape): argument 84 input_shape = tensor_shape.TensorShape(input_shape).as_list() 86 steps = input_shape[2] 87 features = input_shape[1] 89 steps = input_shape[1] 90 features = input_shape[2] 96 return tensor_shape.TensorShape([input_shape[0], features, length]) 98 return tensor_shape.TensorShape([input_shape[0], length, features]) 299 def compute_output_shape(self, input_shape): argument 300 input_shape = tensor_shape.TensorShape(input_shape).as_list() [all …]
|
D | convolutional.py | 149 def build(self, input_shape): argument 150 input_shape = tensor_shape.TensorShape(input_shape) 151 input_channel = self._get_input_channel(input_shape) 177 self._build_conv_op_input_shape = input_shape 183 input_shape, 222 def compute_output_shape(self, input_shape): argument 223 input_shape = tensor_shape.TensorShape(input_shape).as_list() 225 space = input_shape[1:-1] 235 return tensor_shape.TensorShape([input_shape[0]] + new_space + 238 space = input_shape[2:] [all …]
|
D | core.py | 117 def compute_output_shape(self, input_shape): argument 118 return input_shape 186 def compute_output_shape(self, input_shape): argument 187 return input_shape 236 input_shape = array_ops.shape(inputs) 237 noise_shape = (input_shape[0], 1, input_shape[2]) 293 input_shape = array_ops.shape(inputs) 295 return (input_shape[0], input_shape[1], 1, 1) 297 return (input_shape[0], 1, 1, input_shape[3]) 351 input_shape = array_ops.shape(inputs) [all …]
|
D | pooling_test.py | 37 input_shape=(3, 4, 5)) 40 input_shape=(3, 4, 5)) 42 keras.layers.pooling.GlobalAveragePooling1D, input_shape=(3, 4, 5)) 45 input_shape=(3, 4, 5)) 50 model.add(keras.layers.Masking(mask_value=0., input_shape=(None, 4))) 72 masking = keras.layers.Masking(mask_value=0., input_shape=(3, 2))(inputs) 118 input_shape=(3, 4, 5, 6)) 122 input_shape=(3, 5, 6, 4)) 126 input_shape=(3, 4, 5, 6)) 130 input_shape=(3, 5, 6, 4)) [all …]
|
D | merge.py | 90 def build(self, input_shape): argument 92 if not isinstance(input_shape, list): 94 if len(input_shape) < 2: 97 'Got ' + str(len(input_shape)) + ' inputs.') 98 batch_sizes = {s[0] for s in input_shape if s is not None} - {None} 102 'batch sizes. Got tensors with shapes : ' + str(input_shape)) 103 if input_shape[0] is None: 106 output_shape = input_shape[0][1:] 107 for i in range(1, len(input_shape)): 108 if input_shape[i] is None: [all …]
|
D | kernelized.py | 156 def build(self, input_shape): argument 157 input_shape = tensor_shape.TensorShape(input_shape) 160 if input_shape.rank != 2: 163 input_shape.ndims)) 164 if input_shape.dims[1].value is None: 169 ndim=2, axes={1: input_shape.dims[1].value}) 170 input_dim = input_shape.dims[1].value 200 super(RandomFourierFeatures, self).build(input_shape) 209 def compute_output_shape(self, input_shape): argument 210 input_shape = tensor_shape.TensorShape(input_shape) [all …]
|
/external/tensorflow/tensorflow/lite/kernels/internal/reference/ |
D | pooling.h | 27 const RuntimeShape& input_shape, in AveragePool() argument 30 TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4); in AveragePool() 32 const int batches = MatchingDim(input_shape, 0, output_shape, 0); in AveragePool() 33 const int depth = MatchingDim(input_shape, 3, output_shape, 3); in AveragePool() 34 const int input_height = input_shape.Dims(1); in AveragePool() 35 const int input_width = input_shape.Dims(2); in AveragePool() 65 input_data[Offset(input_shape, batch, in_y, in_x, channel)]; in AveragePool() 80 const RuntimeShape& input_shape, in AveragePool() argument 85 TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4); in AveragePool() 87 const int batches = MatchingDim(input_shape, 0, output_shape, 0); in AveragePool() [all …]
|
/external/tensorflow/tensorflow/python/ops/ |
D | concat_benchmark.py | 35 def build_graph(device, input_shape, variable, num_inputs, axis, grad): argument 51 inputs = [array_ops.zeros(input_shape) for _ in range(num_inputs)] 56 input_shape[0], 57 random.randint(max(1, input_shape[1] - 5), input_shape[1] + 5) 63 random.randint(max(1, input_shape[0] - 5), input_shape[0] + 5), 64 input_shape[1] 81 def _run_graph(self, device, input_shape, variable, num_inputs, axis, grad, argument 99 outputs = build_graph(device, input_shape, variable, num_inputs, axis, 112 "GB/sec" % (device, input_shape[0], input_shape[1], variable, 114 num_inputs * input_shape[0] * input_shape[1] * 4 * 2 * [all …]
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_BatchToSpaceND.pbtxt | 6 N-D with shape `input_shape = [batch] + spatial_shape + remaining_shape`, 23 `crop_start[i] + crop_end[i] <= block_shape[i] * input_shape[i + 1]`. 30 input_shape[1], ..., input_shape[N-1]] 35 input_shape[1], block_shape[0], 37 input_shape[M], block_shape[M-1], 39 input_shape[M+1], ..., input_shape[N-1]] 44 input_shape[1] * block_shape[0], 46 input_shape[M] * block_shape[M-1], 48 input_shape[M+1], 50 input_shape[N-1]] [all …]
|
/external/tensorflow/tensorflow/lite/kernels/internal/optimized/ |
D | im2col_utils.h | 25 inline void ExtractPatchIntoBufferColumn(const RuntimeShape& input_shape, int w, in ExtractPatchIntoBufferColumn() argument 34 TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4); in ExtractPatchIntoBufferColumn() 56 int in_offset = Offset(input_shape, b, ih_start, iw_start, 0); in ExtractPatchIntoBufferColumn() 116 const RuntimeShape& input_shape, const T* input_data, in DilatedIm2col() argument 125 TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4); in DilatedIm2col() 135 const int batches = MatchingDim(input_shape, 0, output_shape, 0); in DilatedIm2col() 136 const int input_height = input_shape.Dims(1); in DilatedIm2col() 137 const int input_width = input_shape.Dims(2); in DilatedIm2col() 138 const int input_depth = MatchingDim(input_shape, 3, filter_shape, 3); in DilatedIm2col() 177 input_data + Offset(input_shape, batch, in_y, in_x, 0); in DilatedIm2col() [all …]
|