/external/tensorflow/tensorflow/python/training/ |
D | learning_rate_decay.py | 31 def exponential_decay(learning_rate, argument 98 learning_rate, decay_steps, decay_rate, staircase=staircase, name=name) 183 def polynomial_decay(learning_rate, argument 269 learning_rate, 284 def natural_exp_decay(learning_rate, argument 358 learning_rate, 372 def inverse_time_decay(learning_rate, argument 445 learning_rate, decay_steps, decay_rate, staircase=staircase, name=name) 455 def cosine_decay(learning_rate, global_step, decay_steps, alpha=0.0, name=None): argument 508 learning_rate, decay_steps, alpha=alpha, name=name) [all …]
|
D | momentum.py | 46 def __init__(self, learning_rate, momentum, argument 81 self._learning_rate = learning_rate 90 learning_rate = self._learning_rate 91 if callable(learning_rate): 92 learning_rate = learning_rate() 93 self._learning_rate_tensor = ops.convert_to_tensor(learning_rate,
|
D | gradient_descent.py | 34 def __init__(self, learning_rate, use_locking=False, name="GradientDescent"): argument 52 self._learning_rate = learning_rate 80 learning_rate = self._call_if_callable(self._learning_rate) 82 learning_rate, name="learning_rate")
|
D | rmsprop_test.py | 95 for (dtype, learning_rate, decay, momentum, 113 learning_rate=learning_rate, 151 var0_np, grads0_np, mg0_np, rms0_np, mom0_np, learning_rate, 154 var1_np, grads1_np, mg1_np, rms1_np, mom1_np, learning_rate, 177 learning_rate=1.0, 201 learning_rate=1.0, 219 for (dtype, learning_rate, decay, 239 learning_rate=learning_rate, 277 learning_rate, decay, momentum, epsilon, centered) 280 learning_rate, decay, momentum, epsilon, centered) [all …]
|
D | adagrad.py | 41 def __init__(self, learning_rate, initial_accumulator_value=0.1, argument 67 self._learning_rate = learning_rate 93 learning_rate = self._call_if_callable(self._learning_rate) 95 learning_rate, name="learning_rate")
|
D | momentum_test.py | 59 learning_rate = lambda: 2.0 function 62 learning_rate = learning_rate() 65 learning_rate=learning_rate, momentum=momentum) 177 learning_rate=2.0, momentum=0.9, use_nesterov=True) 214 learning_rate=2.0, momentum=0.9, use_nesterov=True) 254 opt = momentum_lib.MomentumOptimizer(learning_rate=1.0, momentum=0.0) 279 opt = momentum_lib.MomentumOptimizer(learning_rate=1.0, momentum=0.0) 294 learning_rate=constant_op.constant(2.0), 453 mom_opt = momentum_lib.MomentumOptimizer(learning_rate=0.1, momentum=0.1) 477 learning_rate=2.0, momentum=0.9) [all …]
|
D | adagrad_test.py | 53 learning_rate = lambda: 3.0 function 55 learning_rate = learning_rate() 58 learning_rate, initial_accumulator_value=0.1, use_locking=use_locking) 326 learning_rate = lambda: 3.0 function 329 learning_rate, initial_accumulator_value=0.1, use_locking=True)
|
/external/tensorflow/tensorflow/python/keras/optimizer_v2/ |
D | adagrad_test.py | 84 learning_rate = lambda: 3.0 function 86 learning_rate = learning_rate() 88 ada_opt = adagrad.Adagrad(learning_rate) 135 learning_rate = 3.0 138 ada_opt = adagrad.Adagrad(learning_rate, decay=decay) 159 lr_np = learning_rate / (1 + decay * t) 177 learning_rate = 3.0 179 ada_opt = adagrad.Adagrad(learning_rate, epsilon=1.0) 217 learning_rate = 3.0 220 learning_rate, decay_steps=1.0, decay_rate=decay) [all …]
|
D | rmsprop_test.py | 106 for (dtype, learning_rate, rho, momentum, epsilon, centered) in _TESTPARAMS: 119 learning_rate=learning_rate, 163 var0_np, grads0_np, mg0_np, rms0_np, mom0_np, learning_rate, rho, 166 var1_np, grads1_np, mg1_np, rms1_np, mom1_np, learning_rate, rho, 192 learning_rate = 0.01 199 learning_rate=learning_rate, 235 lr = learning_rate / (1 + decay * t) 263 learning_rate = 0.01 270 learning_rate, decay_steps=1.0, decay_rate=decay) 272 learning_rate=lr_schedule, [all …]
|
D | gradient_descent_test.py | 94 learning_rate = 3.0 96 sgd = gradient_descent.SGD(learning_rate=learning_rate, decay=decay) 102 learning_rate = learning_rate_schedule.InverseTimeDecay( 104 sgd = gradient_descent.SGD(learning_rate=learning_rate) 110 learning_rate = learning_rate_schedule.InverseTimeDecay( 112 sgd = gradient_descent.SGD(learning_rate=learning_rate) 279 opt_2 = gradient_descent.SGD(learning_rate=0.1, lr=1.0) 280 opt_3 = gradient_descent.SGD(learning_rate=0.1) 309 learning_rate = 2.0 312 learning_rate=learning_rate, momentum=momentum) [all …]
|
D | optimizer_v2_test.py | 118 sgd.learning_rate = 0.5 129 sgd.learning_rate = learning_rate_schedule.InverseTimeDecay( 302 opt = gradient_descent.SGD(learning_rate=1.0) 355 opt = gradient_descent.SGD(learning_rate=1.0, clipvalue=1.0) 366 opt = gradient_descent.SGD(learning_rate=1.0, clipnorm=1.0) 375 gradient_descent.SGD(learning_rate=1.0, clipnorm=-1.0) 380 gradient_descent.SGD(learning_rate=1.0, invalidkwargs=1.0) 385 opt1 = adam.Adam(learning_rate=1.0) 435 opt = adam.Adam(learning_rate=1.0) 469 isinstance(opt.learning_rate, resource_variable_ops.ResourceVariable)) [all …]
|
D | adam_test.py | 220 learning_rate = lambda: 0.001 function 225 learning_rate = learning_rate() 230 opt = adam.Adam(learning_rate=learning_rate) 374 learning_rate = 0.001 381 learning_rate=learning_rate, 392 lr_np = learning_rate / (1 + decay * t) 421 learning_rate = 0.001 424 learning_rate, decay_steps=1.0, decay_rate=decay) 430 learning_rate=lr_schedule, 441 lr_np = learning_rate / (1 + decay * t) [all …]
|
D | nadam.py | 65 learning_rate=0.001, argument 91 learning_rate = kwargs.get('lr', learning_rate) 92 if isinstance(learning_rate, learning_rate_schedule.LearningRateSchedule): 98 self._set_hyper('learning_rate', kwargs.get('lr', learning_rate))
|
D | adadelta_test.py | 68 learning_rate=lambda: lr, # pylint: disable=cell-var-from-loop 73 learning_rate=lr, rho=rho, epsilon=epsilon) 176 opt_2 = adadelta.Adadelta(learning_rate=0.1, rho=0.9, epsilon=1., lr=1.0) 177 opt_3 = adadelta.Adadelta(learning_rate=0.1, rho=0.9, epsilon=1.)
|
/external/webrtc/webrtc/base/ |
D | rollingaccumulator.h | 126 double ComputeWeightedMean(double learning_rate) const { in ComputeWeightedMean() argument 127 if (count_ < 1 || learning_rate <= 0.0 || learning_rate >= 1.0) { in ComputeWeightedMean() 135 current_weight *= learning_rate; in ComputeWeightedMean()
|
/external/tensorflow/tensorflow/python/tpu/ |
D | tpu_embedding.py | 64 learning_rate=None, argument 121 if learning_rate is not None and learning_rate_fn is not None: 124 .format(learning_rate, learning_rate_fn)) 128 hot_id_replication, learning_rate, learning_rate_fn) 260 def __init__(self, learning_rate, use_gradient_accumulation, argument 262 self.learning_rate = learning_rate 289 learning_rate, argument 307 self).__init__(learning_rate, use_gradient_accumulation, 335 learning_rate, argument 365 self).__init__(learning_rate, use_gradient_accumulation, [all …]
|
/external/tensorflow/tensorflow/core/kernels/boosted_trees/ |
D | training_ops.cc | 79 const auto learning_rate = learning_rate_t->scalar<float>()(); in Compute() local 84 FindBestSplitsPerNode(context, learning_rate, node_ids_list, gains_list, in Compute() 170 OpKernelContext* const context, const float learning_rate, in FindBestSplitsPerNode() argument 200 learning_rate * left_node_contribs(candidate_idx, 0)); in FindBestSplitsPerNode() 202 learning_rate * right_node_contribs(candidate_idx, 0)); in FindBestSplitsPerNode() 281 const auto learning_rate = learning_rate_t->scalar<float>()(); in Compute() local 289 FindBestSplitsPerNode(context, learning_rate, node_ids_list, gains_list, in Compute() 390 OpKernelContext* const context, const float learning_rate, in FindBestSplitsPerNode() argument 427 learning_rate * left_node_contribs(candidate_idx, i)); in FindBestSplitsPerNode() 429 learning_rate * right_node_contribs(candidate_idx, i)); in FindBestSplitsPerNode()
|
/external/tensorflow/tensorflow/python/keras/mixed_precision/experimental/ |
D | loss_scale_optimizer.py | 305 def learning_rate(self): member in LossScaleOptimizer 306 return self._optimizer.learning_rate 308 @learning_rate.setter 309 def learning_rate(self, lr): member in LossScaleOptimizer 310 self._optimizer.learning_rate = lr
|
D | loss_scale_optimizer_test.py | 146 learning_rate = 2. 148 learning_rate / strategy.num_replicas_in_sync) 151 opt = gradient_descent.SGD(learning_rate) 169 2 * learning_rate / strategy.num_replicas_in_sync)) 211 learning_rate = 2. 214 opt = gradient_descent.SGD(learning_rate) 323 opt = adam.Adam(learning_rate=1.0) 346 opt = adam.Adam(learning_rate=1.0) 380 opt = MyOptimizer(learning_rate=1.0)
|
/external/tensorflow/tensorflow/compiler/tests/ |
D | rmsprop_test.py | 75 learning_rate = 3.0 76 rms_opt = rmsprop.RMSPropOptimizer(learning_rate, centered=centered) 108 learning_rate, 116 learning_rate,
|
/external/tensorflow/tensorflow/python/kernel_tests/boosted_trees/ |
D | training_ops_test.py | 72 learning_rate=0.1, 179 learning_rate=0.1, 288 learning_rate=0.1, 401 learning_rate=0.1, 615 learning_rate=0.1, 813 learning_rate=0.1, 1016 learning_rate=0.1, 1231 learning_rate=0.1, 1459 learning_rate=0.1, 1611 learning_rate=0.1, [all …]
|
/external/tensorflow/tensorflow/python/keras/distribute/ |
D | keras_premade_models_test.py | 66 opt = gradient_descent.SGD(learning_rate=0.1) 81 linear_opt = gradient_descent.SGD(learning_rate=0.05) 82 dnn_opt = adagrad.Adagrad(learning_rate=0.1)
|
/external/tensorflow/tensorflow/python/distribute/model_collection/ |
D | simple_models.py | 54 optimizer = gradient_descent.SGD(learning_rate=0.001) 83 optimizer = gradient_descent.SGD(learning_rate=0.001) 117 optimizer = gradient_descent.SGD(learning_rate=0.001)
|
/external/tensorflow/tensorflow/python/keras/engine/ |
D | training_eager_test.py | 86 optimizer = rmsprop.RMSprop(learning_rate=0.001) 159 optimizer = rmsprop.RMSprop(learning_rate=0.001) 184 model.compile(optimizer=rmsprop.RMSprop(learning_rate=0.001), 211 optimizer = rmsprop.RMSprop(learning_rate=0.001) 250 optimizer=rmsprop.RMSprop(learning_rate=0.001), 271 optimizer=rmsprop.RMSprop(learning_rate=0.001),
|
/external/tensorflow/tensorflow/core/ops/compat/ops_history_v1/ |
D | BoostedTreesUpdateEnsembleV2.pbtxt | 51 name: "learning_rate" 115 name: "learning_rate" 187 name: "learning_rate"
|