/external/eigen/unsupported/test/ |
D | levenberg_marquardt.cpp | 106 info = lm.minimize(x); in testLmder() 210 info = lm.minimize(x); in testLmdif() 295 info = lm.minimize(x); in testNistChwirut2() 316 info = lm.minimize(x); in testNistChwirut2() 375 info = lm.minimize(x); in testNistMisra1a() 392 info = lm.minimize(x); in testNistMisra1a() 466 info = lm.minimize(x); in testNistHahn1() 488 info = lm.minimize(x); in testNistHahn1() 552 info = lm.minimize(x); in testNistMisra1d() 569 info = lm.minimize(x); in testNistMisra1d() [all …]
|
D | NonLinearOptimization.cpp | 208 info = lm.minimize(x); in testLmder() 600 info = lm.minimize(x); in testLmdif() 685 info = lm.minimize(x); in testNistChwirut2() 706 info = lm.minimize(x); in testNistChwirut2() 765 info = lm.minimize(x); in testNistMisra1a() 782 info = lm.minimize(x); in testNistMisra1a() 855 info = lm.minimize(x); in testNistHahn1() 877 info = lm.minimize(x); in testNistHahn1() 941 info = lm.minimize(x); in testNistMisra1d() 958 info = lm.minimize(x); in testNistMisra1d() [all …]
|
/external/tensorflow/tensorflow/python/distribute/ |
D | single_loss_example.py | 72 return optimizer.minimize(loss_fn, lambda: layer.trainable_variables) 74 return optimizer.minimize(loss_fn) 76 return optimizer.minimize(loss_fn()) 115 return optimizer.minimize(loss_fn, lambda: layer.trainable_variables) 118 return optimizer.minimize(loss_fn)
|
D | minimize_loss_test.py | 353 return optimizer.minimize(loss_fn, [w]) 356 return optimizer.minimize(loss_fn) 358 return optimizer.minimize(loss_fn()) 441 train_op = optimizer.minimize( 444 train_op = optimizer.minimize(loss_fn) 543 opt.minimize(lambda: constant_op.constant(1.), [])
|
/external/tensorflow/tensorflow/python/training/tracking/ |
D | util_with_v1_optimizers_test.py | 89 optimizer.minimize( 92 optimizer.minimize( 96 train_op = optimizer.minimize( 98 optimizer.minimize( 193 optimizer.minimize( 196 train_op = optimizer.minimize(model(input_value)) 249 on_create_optimizer.minimize(loss=dummy_var.read_value) 273 optimizer.minimize( 287 optimizer.minimize( 317 return optimizer.minimize( [all …]
|
/external/tensorflow/tensorflow/python/training/ |
D | optimizer_test.py | 59 opt_op = sgd_op.minimize(loss, global_step, [var0, var1]) 75 opt_op = sgd_op.minimize( 102 opt_op = sgd_op.minimize( 130 sgd_op.minimize(loss) 148 sgd_op.minimize(loss, var_list=[var1]) 164 sgd_op.minimize(loss, var_list=[var0, var1]) 244 opt_op = sgd_op.minimize(cost, global_step, [var0, var1]) 260 opt_op = sgd_op.minimize(cost, global_step, [var0, var1])
|
D | momentum_test.py | 145 optimizer.minimize(loss) 157 optimizer.minimize(loss) 178 opt_op = mom_op.minimize(cost, global_step, [var0, var1]) 255 sgd_op = opt.minimize(loss) 280 sgd_op = opt.minimize(loss)
|
D | adagrad_test.py | 108 sgd_op = adagrad.AdagradOptimizer(1.0).minimize(loss) 223 2.0).minimize(loss_repeated) 225 2.0).minimize(loss_aggregated)
|
/external/tensorflow/tensorflow/python/keras/optimizer_v2/ |
D | optimizer_v2_test.py | 83 opt_op = sgd.minimize(loss, var_list=[var0, var1]) 109 opt_op = sgd.minimize(loss, [var0, var1]) 120 sgd.minimize(loss, [var0, var1]) 132 sgd.minimize(loss, [var0, var1]) 154 opt_op = sgd.minimize(loss, var_list=[var0, var1], grad_loss=grad_loss) 176 sgd_op.minimize(loss, var_list=[var1]) 192 sgd_op.minimize(loss, var_list=[var0, var1]) 285 opt_op = sgd.minimize(loss, var_list=[var0, var1]) 313 opt.minimize(loss, [var0]) 342 opt.minimize(loss, [var0]) [all …]
|
D | rmsprop_test.py | 336 centered=False).minimize( 363 centered=True).minimize( 525 opt.minimize(lambda: v1 + v2, var_list=[v1, v2]) 532 opt.minimize(lambda: v1 + v2, var_list=[v1, v2]) 539 opt.minimize(lambda: v1 + v2, var_list=[v1, v2]) 580 opt_op = opt.minimize(loss, [var0, var1])
|
D | gradient_descent_test.py | 143 sgd_op = sgd.minimize(loss, [var0, var1]) 164 sgd_op = gradient_descent.SGD(1.0).minimize(loss, [var0, var1]) 378 opt_op = mom_op.minimize(loss, [var0, var1]) 445 sgd_op = opt.minimize(loss, [var0]) 460 sgd_op = opt.minimize(loss, [var0]) 675 opt.minimize(loss, [var0])
|
/external/tensorflow/tensorflow/python/keras/mixed_precision/experimental/ |
D | loss_scale_optimizer_test.py | 81 return lambda: opt.minimize(loss, var_list=[var]) 188 run_fn = lambda: opt.minimize(loss, var_list=[var]) 199 run_fn = lambda: opt.minimize(loss, var_list=[var]) 221 run_fn = lambda: opt.minimize(loss, var_list=[var]) 247 run_fn = lambda: opt.minimize(loss, var_list=[var]) 287 run_op = opt.minimize(lambda: var * 2, [var]) 325 run_fn = lambda: opt.minimize(loss, [var]) 383 run_fn = lambda: opt.minimize(loss, [var]) 403 run_fn = lambda: opt.minimize(lambda: var + 1., var_list=[var])
|
/external/tensorflow/tensorflow/python/training/experimental/ |
D | loss_scale_optimizer_test.py | 81 return lambda: opt.minimize(loss, var_list=[var]) 168 run_fn = lambda: opt.minimize(loss, var_list=[var]) 179 run_fn = lambda: opt.minimize(loss, var_list=[var]) 202 run_fn = lambda: opt.minimize(loss, var_list=[var]) 240 run_fn = lambda: opt.minimize(lambda: var + 1., var_list=[var])
|
/external/tensorflow/tensorflow/python/debug/lib/ |
D | debug_gradients_test.py | 138 gradient_descent.GradientDescentOptimizer(0.1).minimize(z1) 140 gradient_descent.GradientDescentOptimizer(0.1).minimize(z2) 188 gradient_descent.GradientDescentOptimizer(0.1).minimize(y) 297 gradient_descent.GradientDescentOptimizer(0.1).minimize(z) 316 gradient_descent.GradientDescentOptimizer(0.1).minimize(z1) 320 gradient_descent.GradientDescentOptimizer(0.1).minimize(z2) 341 train_op = gradient_descent.GradientDescentOptimizer(0.1).minimize(z)
|
/external/eigen/unsupported/Eigen/src/LevenbergMarquardt/ |
D | LevenbergMarquardt.h | 130 LevenbergMarquardtSpace::Status minimize(FVectorType &x); 277 LevenbergMarquardt<FunctorType>::minimize(FVectorType &x) in minimize() function 361 return minimize(x); in lmder1() 388 LevenbergMarquardtSpace::Status info = LevenbergMarquardtSpace::Status(lm.minimize(x)); in lmdif1()
|
/external/flatbuffers/tests/fuzzer/ |
D | readme.md | 44 ## Merge (minimize) corpus 45 The **libFuzzer** allow to filter (minimize) corpus with help of `-merge` flag: 48 Defaults to 0. This flag can be used to minimize a corpus.
|
/external/walt/pywalt/pywalt/ |
D | minimization.py | 77 def minimize(fname_evtest, fname_laser): function 142 minimize(fname_evtest, fname_laser)
|
/external/cldr/tools/java/org/unicode/cldr/tool/ |
D | LikelySubtags.java | 115 …public static String minimize(String input, Map<String, String> toMaximized, boolean favorRegion) { in minimize() method in LikelySubtags 116 return new LikelySubtags(toMaximized).setFavorRegion(favorRegion).minimize(input); in minimize() 228 public synchronized String minimize(String input) { in minimize() method in LikelySubtags
|
/external/swiftshader/third_party/llvm-7.0/llvm/test/tools/dsymutil/X86/ |
D | minimize.test | 2 RUN: dsymutil --minimize -f -o - -oso-prepend-path=%p/.. %p/../Inputs/basic.macho.x86_64 | llvm-rea…
|
/external/swiftshader/third_party/llvm-7.0/llvm/utils/unittest/googlemock/ |
D | README.LLVM | 5 all elements removed except for the actual source code, to minimize the
|
/external/oss-fuzz/projects/minizinc/ |
D | minizinc_fuzzer.dict | 25 reserved_keyword_24="minimize"
|
/external/swiftshader/third_party/llvm-7.0/llvm/test/tools/dsymutil/ |
D | cmdline.test | 12 HELP: -minimize
|
/external/swiftshader/third_party/llvm-7.0/llvm/utils/unittest/googletest/ |
D | README.LLVM | 5 the actual source code, to minimize the addition to the LLVM distribution.
|
/external/llvm/utils/unittest/googletest/ |
D | README.LLVM | 5 the actual source code, to minimize the addition to the LLVM distribution.
|
/external/eigen/unsupported/Eigen/src/NonLinearOptimization/ |
D | LevenbergMarquardt.h | 84 LevenbergMarquardtSpace::Status minimize(FVectorType &x); 152 return minimize(x); in lmder1() 158 LevenbergMarquardt<FunctorType,Scalar>::minimize(FVectorType &x) in minimize() function 647 LevenbergMarquardtSpace::Status info = LevenbergMarquardtSpace::Status(lm.minimize(x)); in lmdif1()
|