/external/tensorflow/tensorflow/compiler/xla/service/cpu/ |
D | conv_canonicalization.cc | 46 const int64 num_dims = num_spatial_dims + 2; in Run() local 59 std::vector<int64> new_input_dim_order(num_dims); in Run() 60 std::vector<int64> new_input_dims(num_dims); in Run() 68 new_input_dim_order[num_dims - 1] = input_feature_dim; in Run() 69 new_input_dims[num_dims - 1] = in Run() 80 std::vector<int64> new_kernel_dim_order(num_dims); in Run() 81 std::vector<int64> new_kernel_dims(num_dims); in Run() 87 new_kernel_dim_order[num_dims - 2] = kernel_input_feature_dim; in Run() 88 new_kernel_dims[num_dims - 2] = in Run() 90 new_kernel_dim_order[num_dims - 1] = kernel_output_feature_dim; in Run() [all …]
|
/external/tensorflow/tensorflow/compiler/tf2xla/kernels/ |
D | pooling_ops.cc | 51 OP_REQUIRES(ctx, ksize_int.size() == num_dims(), in PoolingOp() 54 num_dims(), " dimensions")); in PoolingOp() 56 OP_REQUIRES(ctx, stride_int.size() == num_dims(), in PoolingOp() 59 num_dims(), " dimensions")); in PoolingOp() 60 for (int i = 0; i < num_dims(); ++i) { in PoolingOp() 73 int num_dims() const { return num_spatial_dims_ + 2; } in num_dims() function in tensorflow::__anon4f3a63aa0111::PoolingOp 86 if (ksize_shape.num_elements() != num_dims()) { in GetKernelSize() 90 num_dims(), " dimensions"); in GetKernelSize() 110 if (stride_shape.num_elements() != num_dims()) { in GetStride() 114 num_dims(), " dimensions"); in GetStride() [all …]
|
D | extract_image_patches_op.cc | 44 const int num_dims = ksizes_.size(); in Compile() local 47 ctx, num_dims >= 3, in Compile() 49 const int num_spatial_dims = num_dims - 2; in Compile() 51 OP_REQUIRES(ctx, strides_.size() == num_dims, in Compile() 54 num_dims, " dimensions")); in Compile() 55 OP_REQUIRES(ctx, dilations_.size() == num_dims, in Compile() 58 num_dims, " dimensions")); in Compile() 60 int batch_dim = GetTensorBatchDimIndex(num_dims, data_format); in Compile() 61 int feature_dim = GetTensorFeatureDimIndex(num_dims, data_format); in Compile() 77 int input_dim = GetTensorSpatialDimIndex(num_dims, data_format, i); in Compile() [all …]
|
D | conv_op_helpers.cc | 69 int num_dims = filter_shape.dimensions_size(); in TransposeFilterForGroupConvolutionBackpropInput() local 70 CHECK_GE(num_dims, 2); // Crash OK in TransposeFilterForGroupConvolutionBackpropInput() 72 new_shape.set_dimensions(num_dims - 1, num_groups); in TransposeFilterForGroupConvolutionBackpropInput() 73 new_shape.add_dimensions(filter_shape.dimensions(num_dims - 1) / num_groups); in TransposeFilterForGroupConvolutionBackpropInput() 77 std::vector<int64> transpose_dims(num_dims + 1); in TransposeFilterForGroupConvolutionBackpropInput() 93 int num_dims = input_shape.dimensions_size(); in TransposeInputForGroupConvolutionBackpropFilter() local 100 std::vector<int64> transpose_dims(num_dims + 1); in TransposeInputForGroupConvolutionBackpropFilter() 126 const int num_dims = attrs.num_spatial_dims + 2; in CheckConvAttrs() local 127 if (attrs.strides.size() != num_dims) { in CheckConvAttrs() 129 num_dims, " dimensions"); in CheckConvAttrs() [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | reduce_join_op_test.py | 34 def _input_array(num_dims): argument 43 formatter = "{:0%db}" % num_dims 44 strings = [formatter.format(i) for i in xrange(2**num_dims)] 45 return np.array(strings, dtype="S%d" % num_dims).reshape([2] * num_dims) 48 def _joined_array(num_dims, reduce_dim): argument 58 formatter = "{:0%db}" % (num_dims - 1) 59 result = np.zeros(shape=[2] * (num_dims - 1), dtype="S%d" % (2 * num_dims)) 61 for i in xrange(2**(num_dims - 1)): 80 num_dims = 3 81 truth = ["{:03b}".format(i) for i in xrange(2**num_dims)] [all …]
|
/external/tensorflow/tensorflow/core/util/ |
D | tensor_format.h | 115 inline int GetTensorSpatialDims(int num_dims, TensorFormat format) { in GetTensorSpatialDims() argument 121 return num_dims - 2; // Exclude N,C. in GetTensorSpatialDims() 126 return num_dims - 3; // Exclude N,C,VectDim. in GetTensorSpatialDims() 133 inline int GetFilterTensorSpatialDims(int num_dims, FilterTensorFormat format) { in GetFilterTensorSpatialDims() argument 135 return num_dims - 3; // Exclude O,I,InnerI. in GetFilterTensorSpatialDims() 137 return num_dims - 2; // Exclude O,I. in GetFilterTensorSpatialDims() 172 inline int GetTensorBatchDimIndex(int num_dims, TensorFormat format) { in GetTensorBatchDimIndex() argument 180 return num_dims - 2; in GetTensorBatchDimIndex() 182 return num_dims - 1; in GetTensorBatchDimIndex() 192 inline int GetTensorFeatureDimIndex(int num_dims, TensorFormat format) { in GetTensorFeatureDimIndex() argument [all …]
|
D | tensor_format_test.cc | 175 int num_dims = GetTensorDimsFromSpatialDims(num_spatial_dims, format); in RunDimensionIndexesTest() local 177 << ", num_dims=" << num_dims; in RunDimensionIndexesTest() 178 EXPECT_EQ(GetTensorBatchDimIndex(num_dims, format), tdm.n()); in RunDimensionIndexesTest() 180 EXPECT_EQ(GetTensorFeatureDimIndex(num_dims, format), tdm.c()); in RunDimensionIndexesTest() 183 EXPECT_EQ(GetTensorSpatialDimIndex(num_dims, format, i), tdm.spatial(i)); in RunDimensionIndexesTest() 191 int num_dims = GetFilterTensorDimsFromSpatialDims(num_spatial_dims, format); in RunDimensionIndexesTest() local 193 << ", num_dims=" << num_dims; in RunDimensionIndexesTest() 194 EXPECT_EQ(GetFilterTensorOutputChannelsDimIndex(num_dims, format), fdm.o()); in RunDimensionIndexesTest() 196 EXPECT_EQ(GetFilterTensorInputChannelsDimIndex(num_dims, format), fdm.i()); in RunDimensionIndexesTest() 199 EXPECT_EQ(GetFilterTensorSpatialDimIndex(num_dims, format, i), in RunDimensionIndexesTest()
|
D | padding.cc | 46 int num_dims, TensorFormat data_format) { in CheckValidPadding() argument 48 if (explicit_paddings.size() != 2 * num_dims) { in CheckValidPadding() 50 "explicit_paddings attribute must contain ", 2 * num_dims, in CheckValidPadding() 59 const int32 batch_index = GetTensorBatchDimIndex(num_dims, data_format); in CheckValidPadding() 60 const int32 depth_index = GetTensorFeatureDimIndex(num_dims, data_format); in CheckValidPadding()
|
/external/tensorflow/tensorflow/core/kernels/ |
D | conv_grad_shape_utils.cc | 100 const int num_dims = num_spatial_dims + 2; in ConvBackpropComputeDimensionsV2() local 101 if (input_shape.dims() != num_dims) { in ConvBackpropComputeDimensionsV2() 102 return errors::InvalidArgument(label, ": input must be ", num_dims, in ConvBackpropComputeDimensionsV2() 105 if (filter_shape.dims() != num_dims) { in ConvBackpropComputeDimensionsV2() 106 return errors::InvalidArgument(label, ": filter must be ", num_dims, in ConvBackpropComputeDimensionsV2() 109 if (out_backprop_shape.dims() != num_dims) { in ConvBackpropComputeDimensionsV2() 110 return errors::InvalidArgument(label, ": out_backprop must be ", num_dims, in ConvBackpropComputeDimensionsV2() 113 int batch_dim = GetTensorBatchDimIndex(num_dims, data_format); in ConvBackpropComputeDimensionsV2() 123 int feature_dim = GetTensorFeatureDimIndex(num_dims, data_format); in ConvBackpropComputeDimensionsV2() 128 << filter_shape.dim_size(num_dims - 2); in ConvBackpropComputeDimensionsV2() [all …]
|
D | roll_op.cc | 63 const int num_dims = input.dims(); in Compute() local 67 gtl::InlinedVector<int32, 4> shift_mod_sum(num_dims, 0); in Compute() 71 axis += num_dims; in Compute() 73 OP_REQUIRES(context, FastBoundsCheck(axis, num_dims), in Compute() 81 gtl::InlinedVector<int32, 4> dim_size(num_dims); in Compute() 83 gtl::InlinedVector<int32, 4> threshold(num_dims); in Compute() 87 gtl::InlinedVector<int64, 4> dim_range(num_dims); in Compute() 91 for (int i = num_dims - 1; i >= 0; i--) { in Compute() 106 functor::Roll<Device, T>()(context, num_elements, num_dims, dim_size, in Compute() 122 const int num_dims, const gtl::ArraySlice<int32>& dim_size, in DoRoll() argument [all …]
|
D | clustering_ops_test.cc | 50 Graph* SetUpKmeansPlusPlusInitialization(int num_dims, int num_points, in SetUpKmeansPlusPlusInitialization() argument 54 Tensor points(DT_FLOAT, TensorShape({num_points, num_dims})); in SetUpKmeansPlusPlusInitialization() 73 template <int num_points, int num_to_sample, int num_dims, 77 testing::ItemsProcessed(static_cast<int64>(iters) * num_points * num_dims * in BM_KmeansPlusPlusInitialization() 81 num_dims, num_points, num_to_sample, retries_per_sample); in BM_KmeansPlusPlusInitialization() 134 template <int num_points, int num_to_sample, int num_dims> 137 testing::ItemsProcessed(static_cast<int64>(iters) * num_points * num_dims * in BM_KMC2Initialization() 175 Graph* SetUpNearestNeighbors(int num_dims, int num_points, int num_centers, in SetUpNearestNeighbors() argument 178 Tensor points(DT_FLOAT, TensorShape({num_points, num_dims})); in SetUpNearestNeighbors() 179 Tensor centers(DT_FLOAT, TensorShape({num_centers, num_dims})); in SetUpNearestNeighbors() [all …]
|
D | nth_element_op.cc | 52 const int num_dims = input_in.dims(); in Compute() local 53 OP_REQUIRES(context, num_dims >= 1, in Compute() 58 context, input_in.dim_size(num_dims - 1) > n, in Compute() 63 n = input_in.dim_size(num_dims - 1) - n - 1; in Compute() 68 for (int i = 0; i < num_dims - 1; ++i) { in Compute()
|
D | diag_op.cc | 49 const int num_dims = diagonal.dims(); in Compute() local 51 context, 0 != num_dims, in Compute() 54 for (int i = 0; i < num_dims; ++i) { in Compute() 57 for (int i = 0; i < num_dims; ++i) { in Compute() 79 const int num_dims = tensor.dims(); in Compute() local 80 const int out_dims = num_dims / 2; in Compute() 81 OP_REQUIRES(context, 0 == num_dims % 2, in Compute()
|
D | roll_op_gpu.cu.cc | 33 __global__ void RollKernel(const int32 nthreads, const int32 num_dims, in RollKernel() argument 40 for (int i = 0; i < num_dims; i++) { in RollKernel() 57 const int num_dims, const gtl::ArraySlice<int32> dim_size, in operator ()() 81 cfg.virtual_thread_count, num_dims, input, in operator ()()
|
D | sparse_slice_grad_op.cc | 72 const int num_dims = input_indices->dim_size(1); in Compute() local 73 OP_REQUIRES(ctx, num_dims == input_start->NumElements(), in Compute() 75 "Expected input_start to be a vector of length ", num_dims, in Compute() 96 for (int d = 0; d < num_dims; ++d) { in Compute()
|
/external/XNNPACK/src/ |
D | runtime.c | 71 runtime->ops[i].shape1.num_dims = values[node->inputs.raw[0]].shape.num_dims; in xnn_create_runtime_v2() 72 runtime->ops[i].shape2.num_dims = values[node->inputs.raw[1]].shape.num_dims; in xnn_create_runtime_v2() 73 …alues[node->inputs.raw[0]].shape.dim, values[node->inputs.raw[0]].shape.num_dims * sizeof(size_t)); in xnn_create_runtime_v2() 74 …alues[node->inputs.raw[1]].shape.dim, values[node->inputs.raw[1]].shape.num_dims * sizeof(size_t)); in xnn_create_runtime_v2() 113 …values[node->inputs.raw[0]].shape.dim[values[node->inputs.raw[0]].shape.num_dims - 1] /* channels … in xnn_create_runtime_v2() 114 …values[node->inputs.raw[0]].shape.dim[values[node->inputs.raw[0]].shape.num_dims - 1] /* input str… in xnn_create_runtime_v2() 115 …values[node->inputs.raw[0]].shape.dim[values[node->inputs.raw[0]].shape.num_dims - 1] /* output st… in xnn_create_runtime_v2() 124 for (size_t i = 0; i + 1 < values[node->inputs.raw[0]].shape.num_dims; i++) { in xnn_create_runtime_v2() 164 …values[node->inputs.raw[0]].shape.dim[values[node->inputs.raw[0]].shape.num_dims - 1] /* channels … in xnn_create_runtime_v2() 165 …values[node->inputs.raw[0]].shape.dim[values[node->inputs.raw[0]].shape.num_dims - 1] /* input str… in xnn_create_runtime_v2() [all …]
|
D | tensor.c | 21 size_t num_dims, in xnn_define_tensor_value() argument 41 if (num_dims > XNN_MAX_TENSOR_DIMS) { in xnn_define_tensor_value() 65 value->shape.num_dims = num_dims; in xnn_define_tensor_value() 66 memcpy(value->shape.dim, dims, num_dims * sizeof(size_t)); in xnn_define_tensor_value() 96 for (size_t i = 0; i < value->shape.num_dims; i++) { in xnn_tensor_get_size()
|
/external/tensorflow/tensorflow/java/src/main/native/ |
D | tensor_jni.cc | 331 int num_dims = static_cast<int>(env->GetArrayLength(shape)); in Java_org_tensorflow_Tensor_allocate() local 333 if (num_dims > 0) { in Java_org_tensorflow_Tensor_allocate() 347 int64_t* dims_copy = new int64_t[num_dims]; in Java_org_tensorflow_Tensor_allocate() 348 for (int i = 0; i < num_dims; ++i) { in Java_org_tensorflow_Tensor_allocate() 352 num_dims, static_cast<size_t>(sizeInBytes)); in Java_org_tensorflow_Tensor_allocate() 391 size_t nonScalarTF_STRINGTensorSize(JNIEnv* env, jarray value, int num_dims) { in nonScalarTF_STRINGTensorSize() argument 392 if (num_dims == 0) { in nonScalarTF_STRINGTensorSize() 408 ret += nonScalarTF_STRINGTensorSize(env, elem, num_dims - 1); in nonScalarTF_STRINGTensorSize() 414 void fillNonScalarTF_STRINGTensorData(JNIEnv* env, jarray value, int num_dims, in fillNonScalarTF_STRINGTensorData() argument 417 if (num_dims == 0) { in fillNonScalarTF_STRINGTensorData() [all …]
|
D | graph_operation_jni.cc | 100 jsize num_dims = TF_GraphGetTensorNumDims(graph, output, status); in Java_org_tensorflow_GraphOperation_shape() local 105 if (num_dims < 0) return nullptr; in Java_org_tensorflow_GraphOperation_shape() 114 std::unique_ptr<int64_t[]> cdims(new int64_t[num_dims]); in Java_org_tensorflow_GraphOperation_shape() 115 TF_GraphGetTensorShape(graph, output, cdims.get(), static_cast<int>(num_dims), in Java_org_tensorflow_GraphOperation_shape() 123 jlongArray ret = env->NewLongArray(num_dims); in Java_org_tensorflow_GraphOperation_shape() 125 for (int i = 0; i < num_dims; ++i) { in Java_org_tensorflow_GraphOperation_shape()
|
/external/tensorflow/tensorflow/compiler/xla/client/lib/ |
D | svd.cc | 113 const int64 num_dims = a_shape.rank(); in HouseRow() local 118 const int64 num_batch_dims = num_dims - 2; in HouseRow() 126 num_dims - 1); in HouseRow() 135 {num_dims - 1})); in HouseRow() 137 std::vector<int64> broadcast_dims(num_dims - 1); in HouseRow() 178 const int64 num_dims = a_shape.rank(); in HouseCol() local 183 const int64 num_batch_dims = num_dims - 2; in HouseCol() 191 num_dims - 2); in HouseCol() 200 {num_dims - 2})); in HouseCol() 202 std::vector<int64> broadcast_dims(num_dims - 1); in HouseCol() [all …]
|
D | self_adjoint_eig.cc | 122 const int64 num_dims = w_shape.rank(); in Update() local 167 broadcast_dims.push_back(num_dims - 1); in Update() 177 {num_dims - 2})), in Update() 184 {num_dims - 2})), in Update() 198 const int64 num_dims = shape.rank(); in ComputeFrobeniusNorms() local 202 {num_dims - 2, num_dims - 1})); in ComputeFrobeniusNorms() 207 {num_dims - 2}); in ComputeFrobeniusNorms() 343 const int64 num_dims = shape.rank(); in SortByEigenvalues() local 346 std::vector<int64> broadcast_dims(num_dims - 1); in SortByEigenvalues() 348 broadcast_dims[num_dims - 2] = num_dims - 1; in SortByEigenvalues() [all …]
|
D | pooling.cc | 159 const int num_dims = kernel_size.size(); in AvgPool() local 160 const int num_spatial_dims = num_dims - 2; in AvgPool() 200 const int num_dims = kernel_size.size(); in AvgPoolGrad() local 202 if (gradients_size.size() != num_dims) { in AvgPoolGrad() 203 return tensorflow::errors::InvalidArgument("gradients must be ", num_dims, in AvgPoolGrad() 209 if (out_backprop_xla_shape.dimensions().size() != num_dims) { in AvgPoolGrad() 211 num_dims, "-dimensional"); in AvgPoolGrad() 239 PaddingConfig padding_config = MakeNoPaddingConfig(num_dims); in AvgPoolGrad() 245 const int num_spatial_dims = num_dims - 2; in AvgPoolGrad() 271 std::vector<int64> ones(num_dims, 1LL); in AvgPoolGrad()
|
D | qr.cc | 157 const int num_dims = a_shape.rank(); in QRBlock() local 158 if (num_dims < 2) { in QRBlock() 167 const int64 num_batch_dims = num_dims - 2; in QRBlock() 185 TF_RETURN_IF_ERROR(House(Collapse(x, {num_dims - 2, num_dims - 1}), j, in QRBlock() 208 /*broadcast_dimensions=*/{num_dims - 2, num_dims - 1}) + in QRBlock() 211 std::vector<int64> dim_ids(num_dims); in QRBlock() 356 const int num_dims = a_shape.rank(); in QRDecomposition() local 357 if (num_dims < 2) { in QRDecomposition() 372 const int64 num_batch_dims = num_dims - 2; in QRDecomposition()
|
/external/tensorflow/tensorflow/compiler/tests/ |
D | tridiagonal_solve_ops_test.py | 54 num_dims = 11 57 num_dims)).astype(np.float32) 58 rhs_np = np.random.normal(size=(batch_size, num_dims, 1)).astype(np.float32) 62 shape=(batch_size, 3, num_dims), dtype=dtypes.float32) 64 shape=(batch_size, num_dims, 1), dtype=dtypes.float32) 76 y = np.zeros((batch_size, num_dims), dtype=np.float32) 78 for i in range(num_dims): 82 elif i == num_dims - 1: 96 num_dims = 11 100 num_dims)).astype(np.float32) [all …]
|
/external/tensorflow/tensorflow/core/common_runtime/eager/ |
D | tensor_handle_test.cc | 49 int num_dims = -1; in TEST() local 50 EXPECT_TRUE(async_th->NumDims(&num_dims).ok()); in TEST() 51 EXPECT_EQ(num_dims, 2); in TEST()
|