/external/tensorflow/tensorflow/lite/kernels/internal/ |
D | kernel_utils.cc | 26 int input_size, int num_units, int batch_size, in RnnBatchStep() argument 33 bias_ptr, input_size, /*aux_input_size=*/0, num_units, in RnnBatchStep() 42 int input_size, int aux_input_size, int num_units, in RnnBatchStep() argument 48 if (output_batch_leading_dim == num_units) { in RnnBatchStep() 50 tensor_utils::VectorBatchVectorAssign(bias_ptr, num_units, batch_size, in RnnBatchStep() 55 input_weights_ptr, num_units, input_size, input_ptr_batch, batch_size, in RnnBatchStep() 61 aux_input_weights_ptr, num_units, aux_input_size, aux_input_ptr_batch, in RnnBatchStep() 67 recurrent_weights_ptr, num_units, num_units, hidden_state_ptr_batch, in RnnBatchStep() 72 output_ptr_batch, num_units * batch_size, activation, output_ptr_batch); in RnnBatchStep() 73 std::copy_n(output_ptr_batch, num_units * batch_size, in RnnBatchStep() [all …]
|
D | kernel_utils.h | 41 int input_size, int num_units, int batch_size, 51 int input_size, int aux_input_size, int num_units, 70 int num_units, int batch_size, int output_batch_leading_dim, 80 const float* bias_ptr, int input_size, int aux_input_size, int num_units,
|
/external/tensorflow/tensorflow/lite/micro/kernels/ |
D | svdf_test.cc | 124 void ValidateSVDFGoldens(const int batch_size, const int num_units, in ValidateSVDFGoldens() argument 192 int golden_idx = i * batch_size * num_units; in ValidateSVDFGoldens() 193 for (int j = golden_idx; j < golden_idx + batch_size * num_units; ++j) { in ValidateSVDFGoldens() 205 void ValidateIntegerSVDFGoldens(const int batch_size, const int num_units, in ValidateIntegerSVDFGoldens() argument 261 int golden_idx = i * batch_size * num_units; in ValidateIntegerSVDFGoldens() 262 for (int j = golden_idx; j < golden_idx + batch_size * num_units; ++j) { in ValidateIntegerSVDFGoldens() 273 void TestSVDF(const int batch_size, const int num_units, const int input_size, in TestSVDF() argument 280 const int num_filters = num_units * rank; in TestSVDF() 301 const int output_dims_args[] = {2, batch_size, num_units}; in TestSVDF() 316 ValidateSVDFGoldens(batch_size, num_units, input_size, rank, tensors, in TestSVDF() [all …]
|
D | svdf.cc | 59 int batch_size, int memory_size, int num_filters, int num_units, int rank, in ApplyTimeWeightsBiasAndActivation() argument 89 float* output_ptr = output_data + i * num_units; in ApplyTimeWeightsBiasAndActivation() 91 for (int j = 0; j < num_units; ++j) { in ApplyTimeWeightsBiasAndActivation() 97 for (int i = 0; i < batch_size * num_units; ++i) { in ApplyTimeWeightsBiasAndActivation() 104 float* output_ptr_batch = GetTensorData<float>(output) + b * num_units; in ApplyTimeWeightsBiasAndActivation() 108 for (int i = 0; i < num_units; ++i) { in ApplyTimeWeightsBiasAndActivation() 117 float* output_ptr_batch = GetTensorData<float>(output) + b * num_units; in ApplyTimeWeightsBiasAndActivation() 118 for (int i = 0; i < num_units; ++i) { in ApplyTimeWeightsBiasAndActivation() 155 const int num_units = num_filters / rank; in EvalFloatSVDF() local 195 batch_size, memory_size, num_filters, num_units, rank, weights_time, bias, in EvalFloatSVDF() [all …]
|
/external/tensorflow/tensorflow/core/ops/ |
D | cudnn_rnn_ops_test.cc | 44 int num_units = 4; in TEST() local 47 std::vector<int> input_shape = {seq_length, batch_size, num_units}; in TEST() 49 num_units}; in TEST() 51 num_units * dir_count}; in TEST() 76 int num_units = 4; in TEST() local 79 std::vector<int> input_shape = {seq_length, batch_size, num_units}; in TEST() 81 num_units}; in TEST() 83 num_units * dir_count}; in TEST() 108 int num_units = 4; in TEST() local 111 std::vector<int> input_shape = {max_seq_length, batch_size, num_units}; in TEST() [all …]
|
D | cudnn_rnn_ops.cc | 88 auto num_units = c->Dim(input_h_shape, 2); in __anon4fa58c430302() local 95 TF_RETURN_IF_ERROR(c->Multiply(num_units, dir_count, &output_size)); in __anon4fa58c430302() 131 auto num_units = c->Dim(input_h_shape, 2); in __anon4fa58c430402() local 138 TF_RETURN_IF_ERROR(c->Multiply(num_units, dir_count, &output_size)); in __anon4fa58c430402() 179 auto num_units = c->Dim(input_h_shape, 2); in __anon4fa58c430502() local 186 TF_RETURN_IF_ERROR(c->Multiply(num_units, dir_count, &output_size)); in __anon4fa58c430502()
|
/external/tensorflow/tensorflow/lite/kernels/ |
D | unidirectional_sequence_rnn.cc | 70 const int num_units = input_weights->dims->data[0]; in Prepare() local 82 TF_LITE_ENSURE_EQ(context, hidden_state->dims->data[1], num_units); in Prepare() 90 output_size_array->data[2] = num_units; in Prepare() 153 const int num_units = input_weights->dims->data[0]; in EvalFloat() local 169 GetTensorData<float>(output) + s * num_units * batch_size; in EvalFloat() 173 input_size, num_units, batch_size, num_units, params->activation, in EvalFloat() 181 GetTensorData<float>(hidden_state) + b * num_units; in EvalFloat() 188 b * num_units * max_time + s * num_units; in EvalFloat() 192 input_size, num_units, /*batch_size=*/1, num_units, in EvalFloat() 211 const int num_units = input_weights->dims->data[0]; in EvalHybrid() local [all …]
|
D | unidirectional_sequence_rnn_test.cc | 229 int num_units() { return units_; } in num_units() function in tflite::__anon46a7a5720111::UnidirectionalRNNOpModel 292 float* golden_end = golden_start + rnn.num_units() * rnn.sequence_len(); in TEST() 317 float* golden_end = golden_start + rnn.num_units() * rnn.sequence_len(); in TEST() 343 float* golden_end = golden_start + rnn.num_units() * rnn.sequence_len(); in TEST() 372 float* golden_batch_start = rnn_golden_output + i * rnn.num_units(); in TEST() 373 float* golden_batch_end = golden_batch_start + rnn.num_units(); in TEST() 401 float* golden_batch_start = rnn_golden_output + i * rnn.num_units(); in TEST() 402 float* golden_batch_end = golden_batch_start + rnn.num_units(); in TEST() 431 float* golden_batch_start = rnn_golden_output + i * rnn.num_units(); in TEST() 432 float* golden_batch_end = golden_batch_start + rnn.num_units(); in TEST()
|
D | basic_rnn_test.cc | 217 int num_units() { return units_; } in num_units() function in tflite::__anon76108c220111::RNNOpModel 275 float* golden_start = rnn_golden_output + i * rnn.num_units(); in TEST() 276 float* golden_end = golden_start + rnn.num_units(); in TEST() 302 float* golden_start = rnn_golden_output + i * rnn.num_units(); in TEST() 303 float* golden_end = golden_start + rnn.num_units(); in TEST() 330 float* golden_start = rnn_golden_output + i * rnn.num_units(); in TEST() 331 float* golden_end = golden_start + rnn.num_units(); in TEST()
|
D | fully_connected.cc | 162 const int num_units = filter->dims->data[0]; in PrepareImpl() local 219 int accum_scratch_dims[2] = {num_units, batch_size}; in PrepareImpl() 223 accum_size->data[0] = num_units; in PrepareImpl() 240 output_size_array->data[output_size_array->size - 1] = num_units; in PrepareImpl() 245 output_size_array->data[1] = num_units; in PrepareImpl() 287 const int num_units = filter->dims->data[0]; in EvalPie() local 291 tensor_utils::VectorBatchVectorAssign(GetTensorData<float>(bias), num_units, in EvalPie() 295 std::fill_n(GetTensorData<float>(output), batch_size * num_units, 0.0f); in EvalPie() 300 GetTensorData<float>(filter), num_units, input_size, in EvalPie() 306 GetTensorData<float>(output), batch_size * num_units, params->activation, in EvalPie() [all …]
|
D | basic_rnn.cc | 64 const int num_units = input_weights->dims->data[0]; in Prepare() local 76 TF_LITE_ENSURE_EQ(context, hidden_state->dims->data[1], num_units); in Prepare() 83 output_size_array->data[1] = num_units; in Prepare() 139 const int num_units = input_weights->dims->data[0]; in EvalFloat() local 156 input_size, num_units, batch_size, output_batch_leading_dim, in EvalFloat() 170 const int num_units = input_weights->dims->data[0]; in EvalHybrid() local 197 num_units, batch_size, output_batch_leading_dim, params->activation, in EvalHybrid()
|
/external/mesa3d/src/gallium/drivers/lima/ir/gp/ |
D | disasm.c | 37 num_units enumerator 40 static const gpir_codegen_store_src gp_unit_to_store_src[num_units] = { 170 printf("^%d", cur_dest_index - 1 * num_units + unit_acc_0); in print_src() 174 printf("^%d", cur_dest_index - 1 * num_units + unit_acc_1); in print_src() 178 printf("^%d", cur_dest_index - 1 * num_units + unit_mul_0); in print_src() 182 printf("^%d", cur_dest_index - 1 * num_units + unit_mul_1); in print_src() 186 printf("^%d", cur_dest_index - 1 * num_units + unit_pass); in print_src() 212 printf("^%d", cur_dest_index - 1 * num_units + unit_complex); in print_src() 216 printf("^%d", cur_dest_index - 2 * num_units + unit_pass); in print_src() 220 printf("^%d", cur_dest_index - 2 * num_units + unit_acc_0); in print_src() [all …]
|
/external/tensorflow/tensorflow/lite/kernels/internal/reference/ |
D | svdf.h | 35 int batch_size, int memory_size, int num_filters, int num_units, int rank, in ApplyTimeWeightsBiasAndActivation() argument 55 tensor_utils::VectorBatchVectorAssign(GetTensorData<float>(bias), num_units, in ApplyTimeWeightsBiasAndActivation() 59 std::fill_n(GetTensorData<float>(output), batch_size * num_units, 0.0f); in ApplyTimeWeightsBiasAndActivation() 64 float* output_ptr_batch = GetTensorData<float>(output) + b * num_units; in ApplyTimeWeightsBiasAndActivation() 67 num_units, rank); in ApplyTimeWeightsBiasAndActivation() 72 float* output_ptr_batch = GetTensorData<float>(output) + b * num_units; in ApplyTimeWeightsBiasAndActivation() 73 tensor_utils::ApplyActivationToVector(output_ptr_batch, num_units, in ApplyTimeWeightsBiasAndActivation() 212 const int num_units = num_filters / rank; in EvalFloatSVDF() local 237 num_units, rank, weights_time, bias, in EvalFloatSVDF() 251 const int num_units = num_filters / rank; in EvalHybridSVDF() local [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | rnn_test.py | 723 num_units=input_size, 745 num_units=input_size, 766 num_units = 512 772 np.random.randn(batch_size, num_units).astype(np.float32) 812 def static_vs_dynamic_rnn_benchmark(batch_size, max_time, num_units, use_gpu): argument 820 np.random.randn(batch_size, num_units).astype(np.float32) 846 (batch_size, max_time, num_units, use_gpu, delta_static, delta_dynamic, 856 num_units=input_size, 874 def half_seq_len_vs_unroll_half_rnn_benchmark(batch_size, max_time, num_units, argument 883 np.random.randn(batch_size, num_units).astype(np.float32) [all …]
|
D | rnn_cell_test.py | 383 num_units = 3 391 num_units, initializer=initializer, state_is_tuple=False) 398 self.assertEqual(out.get_shape().as_list(), [batch_size, num_units]) 406 num_units = 3 414 num_units, 425 self.assertEqual(out.get_shape().as_list(), [batch_size, num_units]) 433 self.assertAllEqual(value, np.zeros((batch_size, num_units))) 437 num_units = 3 444 state_saver = TestStateSaver(batch_size, 2 * num_units) 446 num_units, [all …]
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_CudnnRNNV3.pbtxt | 12 when input_size == num_units; 'auto_select' implies 'skip_input' when 13 input_size == num_units; otherwise, it implies 'linear_input'. 23 [num_layer * dir, batch_size, num_units]. If time_major is false, the shape 24 is [batch_size, num_layer * dir, num_units]. 26 [num_layer * dir, batch, num_units]. For other models, it is ignored. 33 [seq_length, batch_size, dir * num_units]. If time_major is false, the 34 shape is [batch_size, seq_length, dir * num_units].
|
D | api_def_CudnnRNNBackpropV3.pbtxt | 12 when input_size == num_units; 'auto_select' implies 'skip_input' when 13 input_size == num_units; otherwise, it implies 'linear_input'. 23 [num_layer * dir, batch_size, num_units]. If time_major is false, the shape 24 is [batch_size, num_layer * dir, num_units]. 26 [num_layer * dir, batch, num_units]. For other models, it is ignored. 33 [seq_length, batch_size, dir * num_units]. If time_major is false, the 34 shape is [batch_size, seq_length, dir * num_units].
|
D | api_def_CudnnRNN.pbtxt | 11 when input_size == num_units; 'auto_select' implies 'skip_input' when 12 input_size == num_units; otherwise, it implies 'linear_input'. 20 num_units]. 22 [num_layer * dir, batch, num_units]. For other models, it is ignored. 28 dir * num_units].
|
D | api_def_CudnnRNNV2.pbtxt | 12 when input_size == num_units; 'auto_select' implies 'skip_input' when 13 input_size == num_units; otherwise, it implies 'linear_input'. 21 num_units]. 23 [num_layer * dir, batch, num_units]. For other models, it is ignored. 29 dir * num_units].
|
D | api_def_CudnnRNNBackprop.pbtxt | 10 when input_size == num_units; 'auto_select' implies 'skip_input' when 11 input_size == num_units; otherwise, it implies 'linear_input'. 19 num_units]. 21 [num_layer * dir, batch, num_units]. For other models, it is ignored. 27 dir * num_units].
|
D | api_def_CudnnRNNBackpropV2.pbtxt | 13 when input_size == num_units; 'auto_select' implies 'skip_input' when 14 input_size == num_units; otherwise, it implies 'linear_input'. 22 num_units]. 24 [num_layer * dir, batch, num_units]. For other models, it is ignored. 30 dir * num_units].
|
D | api_def_CudnnRNNParamsSize.pbtxt | 9 num_units: Specifies the size of the hidden state. 14 when input_size == num_units; 'auto_select' implies 'skip_input' when 15 input_size == num_units; otherwise, it implies 'linear_input'.
|
/external/tensorflow/tensorflow/lite/experimental/examples/lstm/ |
D | unidirectional_sequence_lstm_test.py | 58 self.num_units = 16 63 self.num_units, use_peepholes=True, forget_bias=1.0, name="rnn1"), 65 self.num_units, num_proj=8, forget_bias=1.0, name="rnn2"), 67 self.num_units // 2, 73 self.num_units, forget_bias=1.0, name="rnn4") 92 tf.random.normal([self.num_units, self.n_classes]))
|
D | bidirectional_sequence_lstm_test.py | 58 self.num_units = 16 63 self.num_units, use_peepholes=True, forget_bias=0, name="rnn1"), 65 self.num_units, num_proj=8, forget_bias=0, name="rnn2"), 67 self.num_units // 2, 73 self.num_units, forget_bias=0, name="rnn4") 95 tf.random.normal([self.num_units * 2, self.n_classes]))
|
/external/tensorflow/tensorflow/core/kernels/ |
D | cudnn_rnn_ops.cc | 150 CudnnRnnParameters(int num_layers, int input_size, int num_units, in CudnnRnnParameters() argument 156 num_units_(num_units), in CudnnRnnParameters() 166 HashList({num_layers, input_size, num_units, max_seq_length, batch_size, in CudnnRnnParameters() 271 Status ToRNNInputMode(TFRNNInputMode tf_input_mode, int num_units, in ToRNNInputMode() argument 281 *input_mode = (input_size == num_units) ? RnnInputMode::kRnnSkipInput in ToRNNInputMode() 498 int num_units; member 510 num_units == rhs.num_units && dir_count == rhs.dir_count && in IsCompatibleWith() 517 num_layers, input_size, num_units, dir_count, max_seq_length, in DebugString() 532 HashList({shapes.num_layers, shapes.input_size, shapes.num_units, in operator ()() 601 model_shapes->num_units = (*input_h)->dim_size(2); in ExtractForwardInput() [all …]
|