1 /**
2 * f2fs.h
3 *
4 * Copyright (c) 2013 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _F2FS_H_
12 #define _F2FS_H_
13
14 #include <stdlib.h>
15 #include <unistd.h>
16 #include <stdio.h>
17 #include <stdbool.h>
18 #include <errno.h>
19 #include <fcntl.h>
20 #include <string.h>
21 #include <errno.h>
22 #ifdef HAVE_MNTENT_H
23 #include <mntent.h>
24 #endif
25 #ifdef HAVE_MACH_TIME_H
26 #include <mach/mach_time.h>
27 #endif
28 #include <sys/stat.h>
29 #include <sys/ioctl.h>
30 #include <sys/mount.h>
31 #include <assert.h>
32
33 #include "f2fs_fs.h"
34
35 #define EXIT_ERR_CODE (-1)
36 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
37 typecheck(unsigned long long, b) && \
38 ((long long)((a) - (b)) > 0))
39
40 #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
41 #define container_of(ptr, type, member) ({ \
42 const typeof(((type *)0)->member) * __mptr = (ptr); \
43 (type *)((char *)__mptr - offsetof(type, member)); })
44
45 struct list_head {
46 struct list_head *next, *prev;
47 };
48
__list_add(struct list_head * new,struct list_head * prev,struct list_head * next)49 static inline void __list_add(struct list_head *new,
50 struct list_head *prev,
51 struct list_head *next)
52 {
53 next->prev = new;
54 new->next = next;
55 new->prev = prev;
56 prev->next = new;
57 }
58
__list_del(struct list_head * prev,struct list_head * next)59 static inline void __list_del(struct list_head * prev, struct list_head * next)
60 {
61 next->prev = prev;
62 prev->next = next;
63 }
64
list_del(struct list_head * entry)65 static inline void list_del(struct list_head *entry)
66 {
67 __list_del(entry->prev, entry->next);
68 }
69
list_add_tail(struct list_head * new,struct list_head * head)70 static inline void list_add_tail(struct list_head *new, struct list_head *head)
71 {
72 __list_add(new, head->prev, head);
73 }
74
75 #define LIST_HEAD_INIT(name) { &(name), &(name) }
76
77 #define list_entry(ptr, type, member) \
78 container_of(ptr, type, member)
79
80 #define list_first_entry(ptr, type, member) \
81 list_entry((ptr)->next, type, member)
82
83 #define list_next_entry(pos, member) \
84 list_entry((pos)->member.next, typeof(*(pos)), member)
85
86 #define list_for_each_entry(pos, head, member) \
87 for (pos = list_first_entry(head, typeof(*pos), member); \
88 &pos->member != (head); \
89 pos = list_next_entry(pos, member))
90
91 #define list_for_each_entry_safe(pos, n, head, member) \
92 for (pos = list_first_entry(head, typeof(*pos), member), \
93 n = list_next_entry(pos, member); \
94 &pos->member != (head); \
95 pos = n, n = list_next_entry(n, member))
96
97 /*
98 * indicate meta/data type
99 */
100 enum {
101 META_CP,
102 META_NAT,
103 META_SIT,
104 META_SSA,
105 META_MAX,
106 META_POR,
107 };
108
109 #define MAX_RA_BLOCKS 64
110
111 enum {
112 NAT_BITMAP,
113 SIT_BITMAP
114 };
115
116 struct node_info {
117 nid_t nid;
118 nid_t ino;
119 u32 blk_addr;
120 unsigned char version;
121 };
122
123 struct f2fs_nm_info {
124 block_t nat_blkaddr;
125 block_t nat_blocks;
126 nid_t max_nid;
127 nid_t init_scan_nid;
128 nid_t next_scan_nid;
129
130 unsigned int nat_cnt;
131 unsigned int fcnt;
132
133 char *nat_bitmap;
134 int bitmap_size;
135 char *nid_bitmap;
136 };
137
138 struct seg_entry {
139 unsigned short valid_blocks; /* # of valid blocks */
140 unsigned short ckpt_valid_blocks; /* # of valid blocks last cp, for recovered data/node */
141 unsigned char *cur_valid_map; /* validity bitmap of blocks */
142 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp, for recovered data/node */
143 unsigned char type; /* segment type like CURSEG_XXX_TYPE */
144 unsigned char orig_type; /* segment type like CURSEG_XXX_TYPE */
145 unsigned char ckpt_type; /* segment type like CURSEG_XXX_TYPE , for recovered data/node */
146 unsigned long long mtime; /* modification time of the segment */
147 int dirty;
148 };
149
150 struct sec_entry {
151 unsigned int valid_blocks; /* # of valid blocks in a section */
152 };
153
154 struct sit_info {
155
156 block_t sit_base_addr; /* start block address of SIT area */
157 block_t sit_blocks; /* # of blocks used by SIT area */
158 block_t written_valid_blocks; /* # of valid blocks in main area */
159 unsigned char *bitmap; /* all bitmaps pointer */
160 char *sit_bitmap; /* SIT bitmap pointer */
161 unsigned int bitmap_size; /* SIT bitmap size */
162
163 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
164 unsigned int dirty_sentries; /* # of dirty sentries */
165 unsigned int sents_per_block; /* # of SIT entries per block */
166 struct seg_entry *sentries; /* SIT segment-level cache */
167 struct sec_entry *sec_entries; /* SIT section-level cache */
168
169 unsigned long long elapsed_time; /* elapsed time after mount */
170 unsigned long long mounted_time; /* mount time */
171 unsigned long long min_mtime; /* min. modification time */
172 unsigned long long max_mtime; /* max. modification time */
173 };
174
175 struct curseg_info {
176 struct f2fs_summary_block *sum_blk; /* cached summary block */
177 unsigned char alloc_type; /* current allocation type */
178 unsigned int segno; /* current segment number */
179 unsigned short next_blkoff; /* next block offset to write */
180 unsigned int zone; /* current zone number */
181 unsigned int next_segno; /* preallocated segment */
182 };
183
184 struct f2fs_sm_info {
185 struct sit_info *sit_info;
186 struct curseg_info *curseg_array;
187
188 block_t seg0_blkaddr;
189 block_t main_blkaddr;
190 block_t ssa_blkaddr;
191
192 unsigned int segment_count;
193 unsigned int main_segments;
194 unsigned int reserved_segments;
195 unsigned int ovp_segments;
196 };
197
198 struct f2fs_dentry_ptr {
199 struct inode *inode;
200 u8 *bitmap;
201 struct f2fs_dir_entry *dentry;
202 __u8 (*filename)[F2FS_SLOT_LEN];
203 int max;
204 int nr_bitmap;
205 };
206
207 struct dentry {
208 char *path;
209 char *full_path;
210 const u8 *name;
211 int len;
212 char *link;
213 unsigned long size;
214 u8 file_type;
215 u16 mode;
216 u16 uid;
217 u16 gid;
218 u32 *inode;
219 u32 mtime;
220 char *secon;
221 uint64_t capabilities;
222 nid_t ino;
223 nid_t pino;
224 };
225
226 /* different from dnode_of_data in kernel */
227 struct dnode_of_data {
228 struct f2fs_node *inode_blk; /* inode page */
229 struct f2fs_node *node_blk; /* cached direct node page */
230 nid_t nid;
231 unsigned int ofs_in_node;
232 block_t data_blkaddr;
233 block_t node_blkaddr;
234 int idirty, ndirty;
235 };
236
237 struct f2fs_sb_info {
238 struct f2fs_fsck *fsck;
239
240 struct f2fs_super_block *raw_super;
241 struct f2fs_nm_info *nm_info;
242 struct f2fs_sm_info *sm_info;
243 struct f2fs_checkpoint *ckpt;
244 int cur_cp;
245
246 struct list_head orphan_inode_list;
247 unsigned int n_orphans;
248
249 /* basic file system units */
250 unsigned int log_sectors_per_block; /* log2 sectors per block */
251 unsigned int log_blocksize; /* log2 block size */
252 unsigned int blocksize; /* block size */
253 unsigned int root_ino_num; /* root inode number*/
254 unsigned int node_ino_num; /* node inode number*/
255 unsigned int meta_ino_num; /* meta inode number*/
256 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
257 unsigned int blocks_per_seg; /* blocks per segment */
258 unsigned int segs_per_sec; /* segments per section */
259 unsigned int secs_per_zone; /* sections per zone */
260 unsigned int total_sections; /* total section count */
261 unsigned int total_node_count; /* total node block count */
262 unsigned int total_valid_node_count; /* valid node block count */
263 unsigned int total_valid_inode_count; /* valid inode count */
264 int active_logs; /* # of active logs */
265
266 block_t user_block_count; /* # of user blocks */
267 block_t total_valid_block_count; /* # of valid blocks */
268 block_t alloc_valid_block_count; /* # of allocated blocks */
269 block_t last_valid_block_count; /* for recovery */
270 u32 s_next_generation; /* for NFS support */
271
272 unsigned int cur_victim_sec; /* current victim section num */
273 u32 free_segments;
274
275 int cp_backuped; /* backup valid checkpoint */
276
277 /* true if late_build_segment_manger() is called */
278 bool seg_manager_done;
279 };
280
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)281 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
282 {
283 return (struct f2fs_super_block *)(sbi->raw_super);
284 }
285
F2FS_CKPT(struct f2fs_sb_info * sbi)286 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
287 {
288 return (struct f2fs_checkpoint *)(sbi->ckpt);
289 }
290
F2FS_FSCK(struct f2fs_sb_info * sbi)291 static inline struct f2fs_fsck *F2FS_FSCK(struct f2fs_sb_info *sbi)
292 {
293 return (struct f2fs_fsck *)(sbi->fsck);
294 }
295
NM_I(struct f2fs_sb_info * sbi)296 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
297 {
298 return (struct f2fs_nm_info *)(sbi->nm_info);
299 }
300
SM_I(struct f2fs_sb_info * sbi)301 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
302 {
303 return (struct f2fs_sm_info *)(sbi->sm_info);
304 }
305
SIT_I(struct f2fs_sb_info * sbi)306 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
307 {
308 return (struct sit_info *)(SM_I(sbi)->sit_info);
309 }
310
inline_data_addr(struct f2fs_node * node_blk)311 static inline void *inline_data_addr(struct f2fs_node *node_blk)
312 {
313 int ofs = get_extra_isize(node_blk) + DEF_INLINE_RESERVED_SIZE;
314
315 return (void *)&(node_blk->i.i_addr[ofs]);
316 }
317
ofs_of_node(struct f2fs_node * node_blk)318 static inline unsigned int ofs_of_node(struct f2fs_node *node_blk)
319 {
320 unsigned flag = le32_to_cpu(node_blk->footer.flag);
321 return flag >> OFFSET_BIT_SHIFT;
322 }
323
cur_cp_version(struct f2fs_checkpoint * cp)324 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
325 {
326 return le64_to_cpu(cp->checkpoint_ver);
327 }
328
cur_cp_crc(struct f2fs_checkpoint * cp)329 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
330 {
331 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
332 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
333 }
334
is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)335 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
336 {
337 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
338 return ckpt_flags & f ? 1 : 0;
339 }
340
__bitmap_size(struct f2fs_sb_info * sbi,int flag)341 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
342 {
343 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
344
345 /* return NAT or SIT bitmap */
346 if (flag == NAT_BITMAP)
347 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
348 else if (flag == SIT_BITMAP)
349 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
350
351 return 0;
352 }
353
__cp_payload(struct f2fs_sb_info * sbi)354 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
355 {
356 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
357 }
358
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)359 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
360 {
361 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
362 int offset;
363
364 if (is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG)) {
365 unsigned int chksum_size = 0;
366
367 offset = (flag == SIT_BITMAP) ?
368 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
369
370 if (le32_to_cpu(ckpt->checksum_offset) ==
371 CP_MIN_CHKSUM_OFFSET)
372 chksum_size = sizeof(__le32);
373
374 return &ckpt->sit_nat_version_bitmap + offset + chksum_size;
375 }
376
377 if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload) > 0) {
378 if (flag == NAT_BITMAP)
379 return &ckpt->sit_nat_version_bitmap;
380 else
381 return ((char *)ckpt + F2FS_BLKSIZE);
382 } else {
383 offset = (flag == NAT_BITMAP) ?
384 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
385 return &ckpt->sit_nat_version_bitmap + offset;
386 }
387 }
388
__start_cp_addr(struct f2fs_sb_info * sbi)389 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
390 {
391 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
392
393 if (sbi->cur_cp == 2)
394 start_addr += sbi->blocks_per_seg;
395 return start_addr;
396 }
397
__start_sum_addr(struct f2fs_sb_info * sbi)398 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
399 {
400 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
401 }
402
__end_block_addr(struct f2fs_sb_info * sbi)403 static inline block_t __end_block_addr(struct f2fs_sb_info *sbi)
404 {
405 block_t end = SM_I(sbi)->main_blkaddr;
406 return end + le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count);
407 }
408
409 #define GET_ZONENO_FROM_SEGNO(sbi, segno) \
410 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
411
412 #define IS_DATASEG(t) \
413 ((t == CURSEG_HOT_DATA) || (t == CURSEG_COLD_DATA) || \
414 (t == CURSEG_WARM_DATA))
415
416 #define IS_NODESEG(t) \
417 ((t == CURSEG_HOT_NODE) || (t == CURSEG_COLD_NODE) || \
418 (t == CURSEG_WARM_NODE))
419
420 #define MAIN_BLKADDR(sbi) \
421 (SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \
422 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
423 #define SEG0_BLKADDR(sbi) \
424 (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \
425 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
426
427 #define GET_SUM_BLKADDR(sbi, segno) \
428 ((sbi->sm_info->ssa_blkaddr) + segno)
429
430 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) \
431 ((blk_addr) - SM_I(sbi)->seg0_blkaddr)
432
433 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
434 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
435
436 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
437 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
438
439 #define GET_SEC_FROM_SEG(sbi, segno) \
440 ((segno) / (sbi)->segs_per_sec)
441 #define GET_SEG_FROM_SEC(sbi, secno) \
442 ((secno) * (sbi)->segs_per_sec)
443
444 #define FREE_I_START_SEGNO(sbi) \
445 GET_SEGNO_FROM_SEG0(sbi, SM_I(sbi)->main_blkaddr)
446 #define GET_R2L_SEGNO(sbi, segno) (segno + FREE_I_START_SEGNO(sbi))
447
448 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
449 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
450 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
451
452 #define START_BLOCK(sbi, segno) (SM_I(sbi)->main_blkaddr + \
453 ((segno) << sbi->log_blocks_per_seg))
454
455 #define NEXT_FREE_BLKADDR(sbi, curseg) \
456 (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
457
458 #define SIT_BLK_CNT(sbi) \
459 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
460
CURSEG_I(struct f2fs_sb_info * sbi,int type)461 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
462 {
463 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
464 }
465
start_sum_block(struct f2fs_sb_info * sbi)466 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
467 {
468 return __start_cp_addr(sbi) + le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
469 }
470
sum_blk_addr(struct f2fs_sb_info * sbi,int base,int type)471 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
472 {
473 return __start_cp_addr(sbi) + le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
474 - (base + 1) + type;
475 }
476
477 /* for the list of fsync inodes, used only during recovery */
478 struct fsync_inode_entry {
479 struct list_head list; /* list head */
480 nid_t ino; /* inode number */
481 block_t blkaddr; /* block address locating the last fsync */
482 block_t last_dentry; /* block address locating the last dentry */
483 };
484
485 #define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats))
486 #define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits))
487
488 #define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne)
489 #define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid)
490 #define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se)
491 #define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno)
492
493 #define SIT_ENTRY_OFFSET(sit_i, segno) \
494 ((segno) % sit_i->sents_per_block)
495 #define SIT_BLOCK_OFFSET(sit_i, segno) \
496 ((segno) / SIT_ENTRY_PER_BLOCK)
497 #define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments)
498
IS_VALID_NID(struct f2fs_sb_info * sbi,u32 nid)499 static inline bool IS_VALID_NID(struct f2fs_sb_info *sbi, u32 nid)
500 {
501 return (nid < (NAT_ENTRY_PER_BLOCK *
502 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count_nat)
503 << (sbi->log_blocks_per_seg - 1)));
504 }
505
IS_VALID_BLK_ADDR(struct f2fs_sb_info * sbi,u32 addr)506 static inline bool IS_VALID_BLK_ADDR(struct f2fs_sb_info *sbi, u32 addr)
507 {
508 if (addr == NULL_ADDR || addr == NEW_ADDR)
509 return 1;
510
511 if (addr >= le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count) ||
512 addr < SM_I(sbi)->main_blkaddr) {
513 DBG(1, "block addr [0x%x]\n", addr);
514 return 0;
515 }
516 /* next block offset will be checked at the end of fsck. */
517 return 1;
518 }
519
IS_CUR_SEGNO(struct f2fs_sb_info * sbi,u32 segno)520 static inline int IS_CUR_SEGNO(struct f2fs_sb_info *sbi, u32 segno)
521 {
522 int i;
523
524 for (i = 0; i < NO_CHECK_TYPE; i++) {
525 struct curseg_info *curseg = CURSEG_I(sbi, i);
526
527 if (segno == curseg->segno)
528 return 1;
529 }
530 return 0;
531 }
532
BLKOFF_FROM_MAIN(struct f2fs_sb_info * sbi,u64 blk_addr)533 static inline u64 BLKOFF_FROM_MAIN(struct f2fs_sb_info *sbi, u64 blk_addr)
534 {
535 ASSERT(blk_addr >= SM_I(sbi)->main_blkaddr);
536 return blk_addr - SM_I(sbi)->main_blkaddr;
537 }
538
GET_SEGNO(struct f2fs_sb_info * sbi,u64 blk_addr)539 static inline u32 GET_SEGNO(struct f2fs_sb_info *sbi, u64 blk_addr)
540 {
541 return (u32)(BLKOFF_FROM_MAIN(sbi, blk_addr)
542 >> sbi->log_blocks_per_seg);
543 }
544
OFFSET_IN_SEG(struct f2fs_sb_info * sbi,u64 blk_addr)545 static inline u32 OFFSET_IN_SEG(struct f2fs_sb_info *sbi, u64 blk_addr)
546 {
547 return (u32)(BLKOFF_FROM_MAIN(sbi, blk_addr)
548 % (1 << sbi->log_blocks_per_seg));
549 }
550
node_info_from_raw_nat(struct node_info * ni,struct f2fs_nat_entry * raw_nat)551 static inline void node_info_from_raw_nat(struct node_info *ni,
552 struct f2fs_nat_entry *raw_nat)
553 {
554 ni->ino = le32_to_cpu(raw_nat->ino);
555 ni->blk_addr = le32_to_cpu(raw_nat->block_addr);
556 ni->version = raw_nat->version;
557 }
558
set_summary(struct f2fs_summary * sum,nid_t nid,unsigned int ofs_in_node,unsigned char version)559 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
560 unsigned int ofs_in_node, unsigned char version)
561 {
562 sum->nid = cpu_to_le32(nid);
563 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
564 sum->version = version;
565 }
566
567 #define S_SHIFT 12
568 static unsigned char f2fs_type_by_mode[S_IFMT >> S_SHIFT] = {
569 [S_IFREG >> S_SHIFT] = F2FS_FT_REG_FILE,
570 [S_IFDIR >> S_SHIFT] = F2FS_FT_DIR,
571 [S_IFCHR >> S_SHIFT] = F2FS_FT_CHRDEV,
572 [S_IFBLK >> S_SHIFT] = F2FS_FT_BLKDEV,
573 [S_IFIFO >> S_SHIFT] = F2FS_FT_FIFO,
574 [S_IFSOCK >> S_SHIFT] = F2FS_FT_SOCK,
575 [S_IFLNK >> S_SHIFT] = F2FS_FT_SYMLINK,
576 };
577
map_de_type(umode_t mode)578 static inline int map_de_type(umode_t mode)
579 {
580 return f2fs_type_by_mode[(mode & S_IFMT) >> S_SHIFT];
581 }
582
inline_xattr_addr(struct f2fs_inode * inode)583 static inline void *inline_xattr_addr(struct f2fs_inode *inode)
584 {
585 return (void *)&(inode->i_addr[DEF_ADDRS_PER_INODE -
586 get_inline_xattr_addrs(inode)]);
587 }
588
inline_xattr_size(struct f2fs_inode * inode)589 static inline int inline_xattr_size(struct f2fs_inode *inode)
590 {
591 return get_inline_xattr_addrs(inode) * sizeof(__le32);
592 }
593
594 extern int lookup_nat_in_journal(struct f2fs_sb_info *sbi, u32 nid, struct f2fs_nat_entry *ne);
595 #define IS_SUM_NODE_SEG(footer) (footer.entry_type == SUM_TYPE_NODE)
596 #define IS_SUM_DATA_SEG(footer) (footer.entry_type == SUM_TYPE_DATA)
597
dir_buckets(unsigned int level,int dir_level)598 static inline unsigned int dir_buckets(unsigned int level, int dir_level)
599 {
600 if (level + dir_level < MAX_DIR_HASH_DEPTH / 2)
601 return 1 << (level + dir_level);
602 else
603 return MAX_DIR_BUCKETS;
604 }
605
bucket_blocks(unsigned int level)606 static inline unsigned int bucket_blocks(unsigned int level)
607 {
608 if (level < MAX_DIR_HASH_DEPTH / 2)
609 return 2;
610 else
611 return 4;
612 }
613
dir_block_index(unsigned int level,int dir_level,unsigned int idx)614 static inline unsigned long dir_block_index(unsigned int level,
615 int dir_level, unsigned int idx)
616 {
617 unsigned long i;
618 unsigned long bidx = 0;
619
620 for (i = 0; i < level; i++)
621 bidx += dir_buckets(i, dir_level) * bucket_blocks(i);
622 bidx += idx * bucket_blocks(level);
623 return bidx;
624 }
625
is_dot_dotdot(const unsigned char * name,const int len)626 static inline int is_dot_dotdot(const unsigned char *name, const int len)
627 {
628 if (len == 1 && name[0] == '.')
629 return 1;
630 if (len == 2 && name[0] == '.' && name[1] == '.')
631 return 1;
632 return 0;
633 }
634
get_encoding(struct f2fs_sb_info * sbi)635 static inline int get_encoding(struct f2fs_sb_info *sbi)
636 {
637 return le16_to_cpu(F2FS_RAW_SUPER(sbi)->s_encoding);
638 }
639
640 #endif /* _F2FS_H_ */
641