/external/libvpx/libvpx/vp9/common/ |
D | vp9_scale.c | 82 sf->predict[0][0][0] = vpx_convolve_copy; 83 sf->predict[0][0][1] = vpx_convolve_avg; 84 sf->predict[0][1][0] = vpx_convolve8_vert; 85 sf->predict[0][1][1] = vpx_convolve8_avg_vert; 86 sf->predict[1][0][0] = vpx_convolve8_horiz; 87 sf->predict[1][0][1] = vpx_convolve8_avg_horiz; 90 sf->predict[0][0][0] = vpx_scaled_vert; 91 sf->predict[0][0][1] = vpx_scaled_avg_vert; 92 sf->predict[0][1][0] = vpx_scaled_vert; 93 sf->predict[0][1][1] = vpx_scaled_avg_vert; [all …]
|
/external/libvpx/libvpx/test/ |
D | idct_test.cc | 36 predict = new Buffer<uint8_t>(4, 4, 3); in SetUp() 37 ASSERT_TRUE(predict != NULL); in SetUp() 38 ASSERT_TRUE(predict->Init()); in SetUp() 46 delete predict; in TearDown() 53 Buffer<uint8_t> *predict; member in __anonbe1d992a0111::IDCTTest 60 predict->Set(0); in TEST_P() 63 ASM_REGISTER_STATE_CHECK(UUT(input->TopLeftPixel(), predict->TopLeftPixel(), in TEST_P() 64 predict->stride(), output->TopLeftPixel(), in TEST_P() 78 predict->Set(0); in TEST_P() 81 ASM_REGISTER_STATE_CHECK(UUT(input->TopLeftPixel(), predict->TopLeftPixel(), in TEST_P() [all …]
|
/external/tensorflow/tensorflow/python/keras/engine/ |
D | base_preprocessing_layer_test.py | 168 self.assertAllEqual([[16], [17], [18]], model.predict([1., 2., 3.])) 183 self.assertAllEqual([[16], [17], [18]], model.predict([1., 2., 3.])) 198 self.assertAllEqual([[16], [17], [18]], model.predict([1., 2., 3.])) 217 self.assertAllEqual([[16], [17], [18]], model.predict([1., 2., 3.])) 233 self.assertAllEqual([[16], [17], [18]], model.predict([1., 2., 3.])) 249 self.assertAllEqual([[16], [17], [18]], model.predict([1., 2., 3.])) 265 self.assertAllEqual([[16], [17], [18]], model.predict([1., 2., 3.])) 281 self.assertAllEqual([[16], [17], [18]], model.predict([1., 2., 3.])) 284 self.assertAllEqual([[19], [20], [21]], model.predict([1., 2., 3.])) 302 self.assertAllEqual([[16], [17], [18]], model.predict([1., 2., 3.])) [all …]
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | convolutional_recurrent_test.py | 71 state = model.predict(inputs) 113 out1 = model.predict(np.ones_like(inputs)) 118 out2 = model.predict(np.ones_like(inputs)) 126 out3 = model.predict(np.ones_like(inputs)) 131 out4 = model.predict(np.ones_like(inputs)) 135 out5 = model.predict(np.ones_like(inputs)) 194 reference_outputs = model.predict(test_inputs) 202 outputs = clone.predict(test_inputs)
|
D | gru_v2_test.py | 116 model.predict(x_train) 178 y_1 = gru_model.predict(x_train) 181 y_2 = gru_model.predict(x_train) 189 y_3 = cudnn_model.predict(x_train) 192 y_4 = cudnn_model.predict(x_train) 226 y_ref = model.predict(x) 231 y = cloned_model.predict(x) 251 y_1 = cpu_model.predict(x_train) 258 y_2 = gpu_model.predict(x_train) 270 y_3 = canonical_model.predict(x_train) [all …]
|
D | lstm_v2_test.py | 272 state = model.predict(inputs) 290 model.predict(inputs) 350 y_1 = lstm_model.predict(x_train) 353 y_2 = lstm_model.predict(x_train) 359 y_3 = cudnn_model.predict(x_train) 362 y_4 = cudnn_model.predict(x_train) 457 y_ref = lstm_model.predict(x_train) 462 y = lstm_v2_model.predict(x_train) 490 model.predict(x_train) 521 y_ref = model.predict(x) [all …]
|
D | gru_test.py | 132 gru_model.predict(x_train) 172 out1 = model.predict(np.ones((num_samples, timesteps))) 178 out2 = model.predict(np.ones((num_samples, timesteps))) 186 out3 = model.predict(np.ones((num_samples, timesteps))) 191 out4 = model.predict(np.ones((num_samples, timesteps))) 195 out5 = model.predict(np.ones((num_samples, timesteps))) 204 out6 = model.predict(left_padded_input) 211 out7 = model.predict(right_padded_input)
|
D | simplernn_test.py | 179 out1 = model.predict(np.ones((num_samples, timesteps))) 185 out2 = model.predict(np.ones((num_samples, timesteps))) 193 out3 = model.predict(np.ones((num_samples, timesteps))) 198 out4 = model.predict(np.ones((num_samples, timesteps))) 202 out5 = model.predict(np.ones((num_samples, timesteps))) 211 out6 = model.predict(left_padded_input) 218 out7 = model.predict(right_padded_input)
|
D | pooling_test.py | 56 output = model.predict(model_input) 69 output_ragged = model.predict(ragged_data, steps=1) 75 output_dense = model.predict(dense_data, steps=1) 89 output_ragged = model.predict(ragged_data, steps=1) 94 output_dense = model.predict(dense_data, steps=1) 107 output_ragged = model.predict(ragged_data, steps=1)
|
D | cudnn_recurrent_test.py | 94 state = model.predict(inputs) 121 out = model.predict(np.ones((num_samples, timesteps, input_size))) 221 out1 = model.predict(np.ones((num_samples, timesteps))) 227 out2 = model.predict(np.ones((num_samples, timesteps))) 235 out3 = model.predict(np.ones((num_samples, timesteps))) 240 out4 = model.predict(np.ones((num_samples, timesteps))) 244 out5 = model.predict(np.ones((num_samples, timesteps))) 319 self.assertAllClose(model.predict(inputs), cudnn_model.predict(inputs), 397 self.assertAllClose(model.predict(inputs), cudnn_model.predict(inputs),
|
D | merge_test.py | 52 out = model.predict([x1, x2, x3]) 85 out = model.predict([x1, x2]) 120 out = model.predict([x1, x2, x3]) 135 out = model.predict([x1, x2]) 150 out = model.predict([x1, x2]) 165 out = model.predict([x1, x2]) 181 out = model.predict([x1, x2]) 214 out = model.predict([x1, x2]) 227 out = model.predict([x1, x2]) 249 out_ragged = model.predict([ragged_data, ragged_data], steps=1) [all …]
|
D | recurrent_test.py | 198 y_np = model.predict(x_np) 206 y_np_2 = model.predict(x_np) 225 y_np = model.predict(x_np) 233 y_np_2 = model.predict(x_np) 380 y_np_1 = model.predict(x_np) 393 y_np_2 = model_2.predict(x_np) 418 y_np = model.predict([x_np, c_np]) 427 y_np_2 = model.predict([x_np, c_np]) 436 y_np_3 = model.predict([x_np, c_np]) 476 y_np = model.predict([x_np, c_np]) [all …]
|
D | lstm_test.py | 311 state = model.predict(inputs) 328 outputs = model.predict(inputs) 405 out1 = model.predict(np.ones((num_samples, timesteps))) 411 out2 = model.predict(np.ones((num_samples, timesteps))) 419 out3 = model.predict(np.ones((num_samples, timesteps))) 424 out4 = model.predict(np.ones((num_samples, timesteps))) 428 out5 = model.predict(np.ones((num_samples, timesteps))) 437 out6 = model.predict(left_padded_input) 444 out7 = model.predict(right_padded_input)
|
D | wrappers_test.py | 186 y = model.predict(np.random.random((10, 3, 2))) 376 output_with_mask = model_1.predict(data, steps=1) 385 output = model_2.predict(data, steps=1) 411 output_ragged = model_1.predict(ragged_data, steps=1) 421 output_dense = model_2.predict(dense_data, steps=1) 443 output_ragged = model_1.predict(ragged_data, steps=1) 450 output_dense = model_2.predict(dense_data, steps=1) 517 y_ref = model.predict(x) 520 y = model.predict(x) 576 y_1 = model.predict(x) [all …]
|
/external/webp/src/enc/ |
D | predictor_enc.c | 150 static uint8_t NearLosslessComponent(uint8_t value, uint8_t predict, in NearLosslessComponent() argument 152 const int residual = (value - predict) & 0xff; in NearLosslessComponent() 153 const int boundary_residual = (boundary - predict) & 0xff; in NearLosslessComponent() 189 static uint32_t NearLossless(uint32_t value, uint32_t predict, in NearLossless() argument 197 return VP8LSubPixels(value, predict); in NearLossless() 205 a = NearLosslessDiff((value >> 24) & 0xff, (predict >> 24) & 0xff); in NearLossless() 207 a = NearLosslessComponent(value >> 24, predict >> 24, 0xff, quantization); in NearLossless() 209 g = NearLosslessComponent((value >> 8) & 0xff, (predict >> 8) & 0xff, 0xff, in NearLossless() 214 new_green = ((predict >> 8) + g) & 0xff; in NearLossless() 221 (predict >> 16) & 0xff, 0xff - new_green, in NearLossless() [all …]
|
/external/tensorflow/tensorflow/python/keras/utils/ |
D | composite_tensor_support_test.py | 185 output = model.predict(input_data) 197 output = model.predict(input_data) 233 output = model.predict(input_data) 248 output = model.predict(input_data, batch_size=2) 263 output = model.predict(input_data) 283 output = model.predict(input_data, batch_size=2) 369 result = model.predict(input_data, **kwargs) 395 output = model.predict(input_data, steps=1) 401 output_2 = model.predict(input_data_2, steps=1) 449 output = model.predict(input_data, steps=1) [all …]
|
/external/tensorflow/tensorflow/python/keras/layers/preprocessing/ |
D | text_vectorization_test.py | 321 output_dataset = model.predict(input_array) 341 output_dataset = model.predict(input_array) 359 output_dataset = model.predict(input_array) 378 output_dataset = model.predict(input_array) 402 output_dataset = model.predict(input_array) 424 output_dataset = model.predict(input_array) 458 output_dataset = model.predict(input_array) 497 output = model.predict(input_array) 511 output = model.predict(input_array) 536 output_dataset = model.predict(input_array) [all …]
|
D | categorical_encoding_test.py | 67 output_dataset = model.predict(input_array) 88 output_dataset = model.predict(input_array) 108 output_dataset = model.predict(input_array) 129 output_dataset = model.predict(input_array) 153 output_dataset = model.predict(input_array) 178 output_dataset = model.predict(input_array) 208 output_dataset = model.predict(input_array) 230 output_dataset = model.predict(input_array) 252 output_dataset = model.predict(input_array) 334 _ = model.predict(input_array)
|
/external/tensorflow/tensorflow/python/keras/saving/saved_model/ |
D | saved_model_test.py | 252 model.predict(np.random.random((1, 3))) 282 expected_predict = model.predict(input_arr) 290 actual_predict = loaded.predict(input_arr) 297 predict = loaded.predict(input_arr) 304 self.assertAllClose(predict, model.predict(input_arr)) 402 def predict(inputs): function 418 'predict': predict, 421 'predict': predict, 427 model.predict(input_arr), 439 self.assertAllClose(model.predict(input_arr), outputs['predictions']) [all …]
|
/external/tensorflow/tensorflow/python/keras/saving/ |
D | saved_model_experimental_test.py | 75 ref_y = model.predict(x) 81 y = loaded_model.predict(x) 93 ref_y = model.predict(x) 99 y = loaded_model.predict(x) 119 ref_y = model.predict(x) 125 y = loaded_model.predict(x) 140 ref_y = model.predict(x) 146 y = loaded_model.predict(x) 162 ref_y = model.predict(x) 173 y = loaded_model.predict(x) [all …]
|
D | hdf5_format_test.py | 70 ref_y = model.predict(x) 73 y = model.predict(x) 83 y = model.predict(x) 233 ref_y = model.predict(x) 241 y = model.predict(x) 275 ref_y = model.predict(x) 281 y = model.predict(x) 411 out = model.predict(x) 416 out2 = new_model.predict(x) 427 out = model.predict(x) [all …]
|
/external/tensorflow/tensorflow/python/keras/applications/ |
D | imagenet_utils_test.py | 86 self.assertEqual(model.predict(x).shape, x.shape) 93 out1 = model1.predict(x) 101 out2 = model2.predict(x2) 111 self.assertEqual(model.predict(x[np.newaxis])[0].shape, x.shape) 118 out1 = model1.predict(x[np.newaxis])[0] 126 out2 = model2.predict(x2[np.newaxis])[0]
|
/external/tensorflow/tensorflow/python/keras/wrappers/ |
D | scikit_learn.py | 89 Sequential.fit, Sequential.predict, Sequential.predict_classes, 225 def predict(self, x, **kwargs): member in KerasClassifier 318 def predict(self, x, **kwargs): member in KerasRegressor 332 kwargs = self.filter_sk_params(Sequential.predict, kwargs) 333 return np.squeeze(self.model.predict(x, **kwargs))
|
/external/tensorflow/tensorflow/python/keras/distribute/ |
D | distribute_strategy_test.py | 461 model.predict(inputs) 462 model.predict(inputs, batch_size=8) 506 model.predict(inputs) 507 model.predict(inputs, batch_size=8) 576 model.predict(inputs) 577 model.predict(inputs, batch_size=8) 642 outs = model.predict(inputs) 722 predict_ground_truth = cpu_model.predict(inputs) 724 model_with_ds_strategy.predict(inputs, batch_size=4, steps=3), 730 model_with_ds_strategy.predict(inputs, batch_size=4), [all …]
|
/external/tensorflow/tensorflow/python/keras/tests/ |
D | model_subclassing_compiled_test.py | 164 y_ref = model.predict(x) 167 y_new = model.predict(x) 191 y = model.predict(x) 263 model.predict([x1, x2]) 287 y_ref_1, y_ref_2 = model.predict([x1, x2]) 304 y1, y2 = model.predict([x1, x2]) 311 y1, y2 = model.predict([x1, x2]) 447 y = model.predict(x)
|