/external/tensorflow/tensorflow/python/kernel_tests/ |
D | reduction_ops_test.py | 120 def _tf_reduce(self, x, reduction_axes, keepdims): argument 123 def _np_reduce(self, x, reduction_axes, keepdims): argument 138 def _compare(self, x, reduction_axes, keepdims, feed_dict=None): argument 139 np_ans = self._np_reduce(x, reduction_axes, keepdims) 141 tf_ans = self._tf_reduce(x, reduction_axes, keepdims) 146 def _compareAll(self, x, reduction_axes, feed_dict=None): argument 147 if reduction_axes is not None and np.shape(reduction_axes) == (1,): 149 self._compareAll(x, reduction_axes[0]) 150 self._compare(x, reduction_axes, keepdims=False, feed_dict=feed_dict) 151 self._compare(x, reduction_axes, keepdims=True, feed_dict=feed_dict) [all …]
|
D | reduction_ops_test_big.py | 32 def _tf_reduce(self, x, reduction_axes, keepdims): argument 39 def _tf_reduce_max(self, x, reduction_axes, keepdims): argument 40 return math_ops.reduce_max(x, reduction_axes, keepdims) 42 def _tf_reduce_all(self, x, reduction_axes, keepdims): argument 43 return math_ops.reduce_all(x, reduction_axes, keepdims) 45 def _tf_reduce_mean(self, x, reduction_axes, keepdims): argument 46 return math_ops.reduce_mean(x, reduction_axes, keepdims) 48 def _tf_reduce_sum(self, x, reduction_axes, keepdims): argument 49 return math_ops.reduce_sum(x, reduction_axes, keepdims)
|
D | sparse_ops_test.py | 614 def _compare(self, sp_t, reduction_axes, ndims, keep_dims, do_sum): argument 618 if reduction_axes is None: 624 if not isinstance(reduction_axes, list): # Single scalar. 625 reduction_axes = [reduction_axes] 626 reduction_axes = np.array(reduction_axes).astype(np.int32) 628 reduction_axes = (reduction_axes + ndims) % ndims 630 reduction_axes.sort() 631 for ra in reduction_axes.ravel()[::-1]: 639 tf_dense_ans = sparse_ops.sparse_reduce_sum(sp_t, reduction_axes, 642 tf_dense_ans = sparse_ops.sparse_reduce_max(sp_t, reduction_axes, [all …]
|
/external/tensorflow/tensorflow/core/kernels/ |
D | reduction_ops.h | 56 const ReductionAxes& reduction_axes, const Reducer& reducer) { 57 out.device(d) = in.reduce(reduction_axes, reducer); 66 const ReductionAxes& reduction_axes, 70 out.device(d) = in.reduce(reduction_axes, sum_reducer) / 83 const ReductionAxes& reduction_axes, \ 89 reduction_axes, sum_reducer) / \ 110 const ReductionAxes& reduction_axes, 115 (in * in.conjugate()).reduce(reduction_axes, sum_reducer).sqrt(); 124 const ReductionAxes& reduction_axes, 130 .reduce(reduction_axes, sum_reducer) [all …]
|
D | reduction_gpu_kernels.cu.h | 1075 const ReductionAxes& reduction_axes, Op op) { 1082 reduction_axes[0] == 1) { // row reduction 1085 reduction_axes[0] == 0) { // column reduction 1087 } else if (in_rank == 3 && out_rank == 2 && reduction_axes[0] == 1) { 1096 } else if (in_rank == 3 && out_rank == 1 && reduction_axes[0] == 0 && 1097 reduction_axes[1] == 2) { 1104 if (out_rank == 1) ss << " " << reduction_axes[0]; 1105 if (out_rank == 2) ss << " " << reduction_axes[1]; 1114 const ReductionAxes& reduction_axes, 1122 const ReductionAxes& reduction_axes, [all …]
|
D | sparse_reduce_op.cc | 59 std::vector<int32> reduction_axes(axes_slice.begin(), axes_slice.end()); in SparseTensorReduceHelper() local 61 for (int64 i = 0; i < reduction_axes.size(); ++i) { in SparseTensorReduceHelper() 62 reduction_axes[i] = (reduction_axes[i] + ndims) % ndims; in SparseTensorReduceHelper() 64 std::sort(reduction_axes.begin(), reduction_axes.end()); in SparseTensorReduceHelper() 74 perm.begin(), perm.end(), reduction_axes.begin(), reduction_axes.end(), in SparseTensorReduceHelper()
|
D | reduction_ops_common_gpu.h | 33 const ReductionAxes& reduction_axes,
|
D | reduction_ops_gpu_bool.cu.cc | 40 const Eigen::array<Index, NUM_AXES>& reduction_axes, \
|
D | reduction_ops_gpu_complex128.cu.cc | 40 const Eigen::array<Index, NUM_AXES>& reduction_axes, \
|
D | reduction_ops_gpu_complex64.cu.cc | 40 const Eigen::array<Index, NUM_AXES>& reduction_axes, \
|
D | reduction_ops_half_prod_max_min.cu.cc | 40 const Eigen::array<Index, NUM_AXES>& reduction_axes, \
|
D | reduction_ops_half_mean_sum.cu.cc | 40 const Eigen::array<Index, NUM_AXES>& reduction_axes, \
|
D | reduction_ops_gpu_float.cu.cc | 40 const Eigen::array<Index, NUM_AXES>& reduction_axes, \
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_SparseReduceSumSparse.pbtxt | 23 name: "reduction_axes" 40 Reduces `sp_input` along the dimensions given in `reduction_axes`. Unless 42 `reduction_axes`. If `keep_dims` is true, the reduced dimensions are retained 45 If `reduction_axes` has no entries, all dimensions are reduced, and a tensor
|
D | api_def_SparseReduceMaxSparse.pbtxt | 23 name: "reduction_axes" 40 Reduces `sp_input` along the dimensions given in `reduction_axes`. Unless 42 `reduction_axes`. If `keep_dims` is true, the reduced dimensions are retained 45 If `reduction_axes` has no entries, all dimensions are reduced, and a tensor
|
D | api_def_SparseReduceSum.pbtxt | 23 name: "reduction_axes" 46 Reduces `sp_input` along the dimensions given in `reduction_axes`. Unless 48 `reduction_axes`. If `keep_dims` is true, the reduced dimensions are retained 51 If `reduction_axes` has no entries, all dimensions are reduced, and a tensor
|
D | api_def_SparseReduceMax.pbtxt | 23 name: "reduction_axes" 46 Reduces `sp_input` along the dimensions given in `reduction_axes`. Unless 48 `reduction_axes`. If `keep_dims` is true, the reduced dimensions are retained 51 If `reduction_axes` has no entries, all dimensions are reduced, and a tensor
|
/external/tensorflow/tensorflow/core/ops/compat/ops_history_v1/ |
D | SparseReduceMax.pbtxt | 16 name: "reduction_axes" 63 name: "reduction_axes" 112 name: "reduction_axes" 162 name: "reduction_axes"
|
D | SparseReduceMaxSparse.pbtxt | 16 name: "reduction_axes" 71 name: "reduction_axes" 128 name: "reduction_axes" 186 name: "reduction_axes"
|
D | SparseReduceSum.pbtxt | 16 name: "reduction_axes" 68 name: "reduction_axes" 122 name: "reduction_axes" 177 name: "reduction_axes"
|
D | SparseReduceSumSparse.pbtxt | 16 name: "reduction_axes" 76 name: "reduction_axes" 138 name: "reduction_axes" 201 name: "reduction_axes"
|
/external/tensorflow/tensorflow/python/ops/ |
D | sparse_ops.py | 1133 reduction_axes = None 1139 math_ops._ReductionDims(sp_input, axis, reduction_axes), keepdims, 1146 math_ops._ReductionDims(sp_input, axis, reduction_axes), keepdims, 1158 reduction_axes=None, keep_dims=None): argument 1218 math_ops._ReductionDims(sp_input, axis, reduction_axes), keepdims) 1228 reduction_axes=None, argument 1267 math_ops._ReductionDims(sp_input, axis, reduction_axes), keepdims)) 1323 reduction_axes = None 1329 math_ops._ReductionDims(sp_input, axis, reduction_axes), keepdims, 1335 math_ops._ReductionDims(sp_input, axis, reduction_axes), keepdims, [all …]
|
/external/tensorflow/tensorflow/tools/api/golden/v1/ |
D | tensorflow.sparse.pbtxt | 69 …argspec: "args=[\'sp_input\', \'axis\', \'keepdims\', \'reduction_axes\', \'keep_dims\'], varargs=… 73 …argspec: "args=[\'sp_input\', \'axis\', \'keepdims\', \'reduction_axes\', \'keep_dims\'], varargs=… 77 …argspec: "args=[\'sp_input\', \'axis\', \'keepdims\', \'reduction_axes\', \'keep_dims\'], varargs=… 81 …argspec: "args=[\'sp_input\', \'axis\', \'keepdims\', \'reduction_axes\', \'keep_dims\'], varargs=…
|
/external/tensorflow/tensorflow/python/keras/layers/preprocessing/ |
D | normalization.py | 158 reduction_axes = tuple(np.delete(range(values.ndim), self.axis)) 159 mean = np.mean(values, axis=reduction_axes, dtype=np.float64) 160 variance = np.var(values, axis=reduction_axes, dtype=np.float64)
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | normalization.py | 655 def _calculate_mean_and_var(self, inputs, reduction_axes, keep_dims): argument 656 return nn.moments(inputs, reduction_axes, keep_dims=keep_dims) 658 def _moments(self, inputs, reduction_axes, keep_dims): argument 659 mean, variance = self._calculate_mean_and_var(inputs, reduction_axes, 709 reduction_axes = [i for i in range(ndims) if i not in self.axis] 711 del reduction_axes[1] # Do not reduce along virtual batch dim 719 reduction_axes != list(range(ndims - 1))): 754 reduction_axes,
|