Home
last modified time | relevance | path

Searched refs:solutions (Results 1 – 25 of 148) sorted by relevance

123456

/external/mesa3d/src/panfrost/util/
Dlcra.c59 l->solutions = calloc(sizeof(l->solutions[0]), node_count); in lcra_alloc_equations()
61 memset(l->solutions, ~0, sizeof(l->solutions[0]) * node_count); in lcra_alloc_equations()
80 free(l->solutions); in lcra_free()
138 lcra_test_linear(struct lcra_state *l, unsigned *solutions, unsigned i) in lcra_test_linear() argument
141 signed constant = solutions[i]; in lcra_test_linear()
144 if (solutions[j] == ~0) continue; in lcra_test_linear()
146 signed lhs = solutions[j] - constant; in lcra_test_linear()
162 if (l->solutions[step] != ~0) continue; in lcra_solve()
181 l->solutions[step] = ((m * P + n) << shift) + class_start; in lcra_solve()
182 succ = lcra_test_linear(l, l->solutions, step); in lcra_solve()
Dlcra.h69 unsigned *solutions; member
/external/fonttools/Lib/fontTools/pens/
DpointInsidePen.py123 solutions = sorted(solveCubic(ay, by, cy, dy - y))
124 solutions = [t for t in solutions if -0. <= t <= 1.]
125 if not solutions:
135 for t in solutions:
179 solutions = sorted(solveQuadratic(a, b, c - y))
180 solutions = [t for t in solutions if ZERO_MINUS_EPSILON <= t <= ONE_PLUS_EPSILON]
181 if not solutions:
/external/fonttools/Lib/fontTools/misc/
DbezierTools.py308 solutions = solveQuadratic(a[isHorizontal], b[isHorizontal],
310 solutions = sorted([t for t in solutions if 0 <= t < 1])
311 if not solutions:
313 return _splitQuadraticAtT(a, b, c, *solutions)
332 solutions = solveCubic(a[isHorizontal], b[isHorizontal], c[isHorizontal],
334 solutions = sorted([t for t in solutions if 0 <= t < 1])
335 if not solutions:
337 return _splitCubicAtT(a, b, c, d, *solutions)
/external/u-boot/drivers/i2c/
Dstm32f7_i2c.c487 struct list_head *solutions) in stm32_i2c_compute_solutions() argument
542 list_add_tail(&v->node, solutions); in stm32_i2c_compute_solutions()
552 if (list_empty(solutions)) { in stm32_i2c_compute_solutions()
561 struct list_head *solutions, in stm32_i2c_choose_solution() argument
596 list_for_each_entry(v, solutions, node) { in stm32_i2c_choose_solution()
648 struct list_head solutions; in stm32_i2c_compute_timing() local
678 INIT_LIST_HEAD(&solutions); in stm32_i2c_compute_timing()
679 ret = stm32_i2c_compute_solutions(setup, &solutions); in stm32_i2c_compute_timing()
683 ret = stm32_i2c_choose_solution(setup, &solutions, output); in stm32_i2c_compute_timing()
694 list_for_each_entry_safe(v, _v, &solutions, node) { in stm32_i2c_compute_timing()
/external/mesa3d/src/panfrost/midgard/
Dmidgard_ra.c94 .reg = l->solutions[reg] / 16, in index_to_reg()
95 .offset = l->solutions[reg] & 0xF, in index_to_reg()
566 l->solutions[ins->src[0]] = 0; in allocate_registers()
569 l->solutions[ins->src[2]] = (16 * 1) + COMPONENT_X * 4; in allocate_registers()
572 l->solutions[ins->src[3]] = (16 * 1) + COMPONENT_Y * 4; in allocate_registers()
575 l->solutions[ins->src[1]] = (16 * 1) + COMPONENT_Z * 4; in allocate_registers()
578 l->solutions[ins->dest] = (16 * 1) + COMPONENT_W * 4; in allocate_registers()
594 l->solutions[node_r1] = (16 * 1); in allocate_registers()
634 l->solutions[ctx->blend_input] = 0; in allocate_registers()
642 l->solutions[ctx->blend_src1] = (16 * 2); in allocate_registers()
/external/eigen/doc/
DWrongStackAlignment.dox22 …nalignedArrayAssert "assertion on unaligned arrays". So far we found the three following solutions.
35 …as to be done for every such function, so you may prefer one of the following two global solutions.
38 \section sec_sol2 Global solutions
52 These global solutions are easy to use, but note that they may slowdown your program because they l…
DLeastSquares.dox6 of equations, say \a Ax = \a b, has no solutions. In this case, it makes sense to search for the
22 computing least squares solutions:
DStructHavingEigenMembers.dox51 …oach is too intrusive, see also the \ref StructHavingEigenMembers_othersolutions "other solutions".
131 \section StructHavingEigenMembers_othersolutions Other solutions
133 …_ALIGNED_OPERATOR_NEW macro everywhere is too intrusive, there exists at least two other solutions.
/external/llvm/test/CodeGen/X86/
D2009-03-12-CPAlignBug.ll10 define void @SolveCubic_bb1(i32* %solutions, double* %x, x86_fp80 %.reload, x86_fp80 %.reload5, x86…
18 store i32 1, i32* %solutions, align 4
/external/swiftshader/third_party/llvm-7.0/llvm/test/CodeGen/X86/
D2009-03-12-CPAlignBug.ll10 define void @SolveCubic_bb1(i32* %solutions, double* %x, x86_fp80 %.reload, x86_fp80 %.reload5, x86…
18 store i32 1, i32* %solutions, align 4
/external/vulkan-validation-layers/build-gn/
Dupdate_deps.sh26 solutions = [
/external/skqp/platform_tools/android/
Dgclient.config4 solutions = [
/external/skia/platform_tools/android/
Dgclient.config4 solutions = [
/external/catch2/docs/
Dslow-compiles.md8 [Other possible solutions](#other-possible-solutions)<br>
66 ## Other possible solutions
/external/libyuv/files/chromium/
D.gclient1 solutions = [{
/external/golang-protobuf/.github/ISSUE_TEMPLATE/
Dfeature_request.md14 A clear and concise description of any alternative solutions or features you've considered.
/external/webrtc/chromium/
D.gclient1 solutions = [{
/external/angle/third_party/jsoncpp/source/.github/ISSUE_TEMPLATE/
Dfeature_request.md17 A clear and concise description of any alternative solutions or features you've considered.
/external/skqp/site/dev/design/conical/
Dindex.md37 there are multiple (at most 2) solutions of $t$, choose the bigger one.
55 $t = 1 - t_s$. The only catch here is that with multiple solutions of $t_s$, we shall choose the
66 interested positive solution $x_t$. Again, if there are multiple $x_t$ solutions, we may want to
82 eliminate negative $x_t$ solutions get us the theorem.
188 **Corollary 1.** By lemma 1. and 2., we conclude that the number of solutions $x_t$ is equal to the
199 * when $r_1 < 1$, there may be $0, 1$, or $2$ solutions; this was also previously as the "outside"
301 2. otherwise, the solutions are
/external/skia/site/dev/design/conical/
Dindex.md37 there are multiple (at most 2) solutions of $t$, choose the bigger one.
55 $t = 1 - t_s$. The only catch here is that with multiple solutions of $t_s$, we shall choose the
66 interested positive solution $x_t$. Again, if there are multiple $x_t$ solutions, we may want to
82 eliminate negative $x_t$ solutions get us the theorem.
188 **Corollary 1.** By lemma 1. and 2., we conclude that the number of solutions $x_t$ is equal to the
199 * when $r_1 < 1$, there may be $0, 1$, or $2$ solutions; this was also previously as the "outside"
301 2. otherwise, the solutions are
/external/python/google-api-python-client/.github/ISSUE_TEMPLATE/
Dfeature_request.md16 A clear and concise description of any alternative solutions or features you've considered.
/external/exoplayer/tree/.github/ISSUE_TEMPLATE/
Dfeature_request.md29 A clear and concise description of any alternative solutions you considered,
/external/libexif/m4m/
Dgp-pkg-config.m427 *** Possible solutions:
/external/exoplayer/.github/ISSUE_TEMPLATE/
Dfeature_request.md29 A clear and concise description of any alternative solutions you considered,

123456