1#! /usr/bin/env perl 2# Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved. 3# 4# Licensed under the OpenSSL license (the "License"). You may not use 5# this file except in compliance with the License. You can obtain a copy 6# in the file LICENSE in the source distribution or at 7# https://www.openssl.org/source/license.html 8 9# 10# ==================================================================== 11# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL 12# project. The module is, however, dual licensed under OpenSSL and 13# CRYPTOGAMS licenses depending on where you obtain it. For further 14# details see http://www.openssl.org/~appro/cryptogams/. 15# ==================================================================== 16# 17# GHASH for ARMv8 Crypto Extension, 64-bit polynomial multiplication. 18# 19# June 2014 20# Initial version was developed in tight cooperation with Ard Biesheuvel 21# of Linaro from bits-n-pieces from other assembly modules. Just like 22# aesv8-armx.pl this module supports both AArch32 and AArch64 execution modes. 23# 24# July 2014 25# Implement 2x aggregated reduction [see ghash-x86.pl for background 26# information]. 27# 28# Current performance in cycles per processed byte: 29# 30# PMULL[2] 32-bit NEON(*) 31# Apple A7 0.92 5.62 32# Cortex-A53 1.01 8.39 33# Cortex-A57 1.17 7.61 34# Denver 0.71 6.02 35# Mongoose 1.10 8.06 36# Kryo 1.16 8.00 37# 38# (*) presented for reference/comparison purposes; 39 40$flavour = shift; 41$output = shift; 42 43$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; 44( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or 45( $xlate="${dir}../../../perlasm/arm-xlate.pl" and -f $xlate) or 46die "can't locate arm-xlate.pl"; 47 48open OUT,"| \"$^X\" $xlate $flavour $output"; 49*STDOUT=*OUT; 50 51$Xi="x0"; # argument block 52$Htbl="x1"; 53$inp="x2"; 54$len="x3"; 55 56$inc="x12"; 57 58{ 59my ($Xl,$Xm,$Xh,$IN)=map("q$_",(0..3)); 60my ($t0,$t1,$t2,$xC2,$H,$Hhl,$H2)=map("q$_",(8..14)); 61 62$code=<<___; 63#include <openssl/arm_arch.h> 64 65.text 66___ 67$code.=".arch armv8-a+crypto\n" if ($flavour =~ /64/); 68$code.=<<___ if ($flavour !~ /64/); 69.fpu neon 70.code 32 71#undef __thumb2__ 72___ 73 74################################################################################ 75# void gcm_init_v8(u128 Htable[16],const u64 H[2]); 76# 77# input: 128-bit H - secret parameter E(K,0^128) 78# output: precomputed table filled with degrees of twisted H; 79# H is twisted to handle reverse bitness of GHASH; 80# only few of 16 slots of Htable[16] are used; 81# data is opaque to outside world (which allows to 82# optimize the code independently); 83# 84$code.=<<___; 85.global gcm_init_v8 86.type gcm_init_v8,%function 87.align 4 88gcm_init_v8: 89 vld1.64 {$t1},[x1] @ load input H 90 vmov.i8 $xC2,#0xe1 91 vshl.i64 $xC2,$xC2,#57 @ 0xc2.0 92 vext.8 $IN,$t1,$t1,#8 93 vshr.u64 $t2,$xC2,#63 94 vdup.32 $t1,${t1}[1] 95 vext.8 $t0,$t2,$xC2,#8 @ t0=0xc2....01 96 vshr.u64 $t2,$IN,#63 97 vshr.s32 $t1,$t1,#31 @ broadcast carry bit 98 vand $t2,$t2,$t0 99 vshl.i64 $IN,$IN,#1 100 vext.8 $t2,$t2,$t2,#8 101 vand $t0,$t0,$t1 102 vorr $IN,$IN,$t2 @ H<<<=1 103 veor $H,$IN,$t0 @ twisted H 104 vst1.64 {$H},[x0],#16 @ store Htable[0] 105 106 @ calculate H^2 107 vext.8 $t0,$H,$H,#8 @ Karatsuba pre-processing 108 vpmull.p64 $Xl,$H,$H 109 veor $t0,$t0,$H 110 vpmull2.p64 $Xh,$H,$H 111 vpmull.p64 $Xm,$t0,$t0 112 113 vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing 114 veor $t2,$Xl,$Xh 115 veor $Xm,$Xm,$t1 116 veor $Xm,$Xm,$t2 117 vpmull.p64 $t2,$Xl,$xC2 @ 1st phase 118 119 vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result 120 vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl 121 veor $Xl,$Xm,$t2 122 123 vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase 124 vpmull.p64 $Xl,$Xl,$xC2 125 veor $t2,$t2,$Xh 126 veor $H2,$Xl,$t2 127 128 vext.8 $t1,$H2,$H2,#8 @ Karatsuba pre-processing 129 veor $t1,$t1,$H2 130 vext.8 $Hhl,$t0,$t1,#8 @ pack Karatsuba pre-processed 131 vst1.64 {$Hhl-$H2},[x0] @ store Htable[1..2] 132 133 ret 134.size gcm_init_v8,.-gcm_init_v8 135___ 136################################################################################ 137# void gcm_gmult_v8(u64 Xi[2],const u128 Htable[16]); 138# 139# input: Xi - current hash value; 140# Htable - table precomputed in gcm_init_v8; 141# output: Xi - next hash value Xi; 142# 143$code.=<<___; 144.global gcm_gmult_v8 145.type gcm_gmult_v8,%function 146.align 4 147gcm_gmult_v8: 148 vld1.64 {$t1},[$Xi] @ load Xi 149 vmov.i8 $xC2,#0xe1 150 vld1.64 {$H-$Hhl},[$Htbl] @ load twisted H, ... 151 vshl.u64 $xC2,$xC2,#57 152#ifndef __ARMEB__ 153 vrev64.8 $t1,$t1 154#endif 155 vext.8 $IN,$t1,$t1,#8 156 157 vpmull.p64 $Xl,$H,$IN @ H.lo·Xi.lo 158 veor $t1,$t1,$IN @ Karatsuba pre-processing 159 vpmull2.p64 $Xh,$H,$IN @ H.hi·Xi.hi 160 vpmull.p64 $Xm,$Hhl,$t1 @ (H.lo+H.hi)·(Xi.lo+Xi.hi) 161 162 vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing 163 veor $t2,$Xl,$Xh 164 veor $Xm,$Xm,$t1 165 veor $Xm,$Xm,$t2 166 vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction 167 168 vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result 169 vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl 170 veor $Xl,$Xm,$t2 171 172 vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction 173 vpmull.p64 $Xl,$Xl,$xC2 174 veor $t2,$t2,$Xh 175 veor $Xl,$Xl,$t2 176 177#ifndef __ARMEB__ 178 vrev64.8 $Xl,$Xl 179#endif 180 vext.8 $Xl,$Xl,$Xl,#8 181 vst1.64 {$Xl},[$Xi] @ write out Xi 182 183 ret 184.size gcm_gmult_v8,.-gcm_gmult_v8 185___ 186################################################################################ 187# void gcm_ghash_v8(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len); 188# 189# input: table precomputed in gcm_init_v8; 190# current hash value Xi; 191# pointer to input data; 192# length of input data in bytes, but divisible by block size; 193# output: next hash value Xi; 194# 195$code.=<<___; 196.global gcm_ghash_v8 197.type gcm_ghash_v8,%function 198.align 4 199gcm_ghash_v8: 200___ 201$code.=<<___ if ($flavour !~ /64/); 202 vstmdb sp!,{d8-d15} @ 32-bit ABI says so 203___ 204$code.=<<___; 205 vld1.64 {$Xl},[$Xi] @ load [rotated] Xi 206 @ "[rotated]" means that 207 @ loaded value would have 208 @ to be rotated in order to 209 @ make it appear as in 210 @ algorithm specification 211 subs $len,$len,#32 @ see if $len is 32 or larger 212 mov $inc,#16 @ $inc is used as post- 213 @ increment for input pointer; 214 @ as loop is modulo-scheduled 215 @ $inc is zeroed just in time 216 @ to preclude overstepping 217 @ inp[len], which means that 218 @ last block[s] are actually 219 @ loaded twice, but last 220 @ copy is not processed 221 vld1.64 {$H-$Hhl},[$Htbl],#32 @ load twisted H, ..., H^2 222 vmov.i8 $xC2,#0xe1 223 vld1.64 {$H2},[$Htbl] 224 cclr $inc,eq @ is it time to zero $inc? 225 vext.8 $Xl,$Xl,$Xl,#8 @ rotate Xi 226 vld1.64 {$t0},[$inp],#16 @ load [rotated] I[0] 227 vshl.u64 $xC2,$xC2,#57 @ compose 0xc2.0 constant 228#ifndef __ARMEB__ 229 vrev64.8 $t0,$t0 230 vrev64.8 $Xl,$Xl 231#endif 232 vext.8 $IN,$t0,$t0,#8 @ rotate I[0] 233 b.lo .Lodd_tail_v8 @ $len was less than 32 234___ 235{ my ($Xln,$Xmn,$Xhn,$In) = map("q$_",(4..7)); 236 ####### 237 # Xi+2 =[H*(Ii+1 + Xi+1)] mod P = 238 # [(H*Ii+1) + (H*Xi+1)] mod P = 239 # [(H*Ii+1) + H^2*(Ii+Xi)] mod P 240 # 241$code.=<<___; 242 vld1.64 {$t1},[$inp],$inc @ load [rotated] I[1] 243#ifndef __ARMEB__ 244 vrev64.8 $t1,$t1 245#endif 246 vext.8 $In,$t1,$t1,#8 247 veor $IN,$IN,$Xl @ I[i]^=Xi 248 vpmull.p64 $Xln,$H,$In @ H·Ii+1 249 veor $t1,$t1,$In @ Karatsuba pre-processing 250 vpmull2.p64 $Xhn,$H,$In 251 b .Loop_mod2x_v8 252 253.align 4 254.Loop_mod2x_v8: 255 vext.8 $t2,$IN,$IN,#8 256 subs $len,$len,#32 @ is there more data? 257 vpmull.p64 $Xl,$H2,$IN @ H^2.lo·Xi.lo 258 cclr $inc,lo @ is it time to zero $inc? 259 260 vpmull.p64 $Xmn,$Hhl,$t1 261 veor $t2,$t2,$IN @ Karatsuba pre-processing 262 vpmull2.p64 $Xh,$H2,$IN @ H^2.hi·Xi.hi 263 veor $Xl,$Xl,$Xln @ accumulate 264 vpmull2.p64 $Xm,$Hhl,$t2 @ (H^2.lo+H^2.hi)·(Xi.lo+Xi.hi) 265 vld1.64 {$t0},[$inp],$inc @ load [rotated] I[i+2] 266 267 veor $Xh,$Xh,$Xhn 268 cclr $inc,eq @ is it time to zero $inc? 269 veor $Xm,$Xm,$Xmn 270 271 vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing 272 veor $t2,$Xl,$Xh 273 veor $Xm,$Xm,$t1 274 vld1.64 {$t1},[$inp],$inc @ load [rotated] I[i+3] 275#ifndef __ARMEB__ 276 vrev64.8 $t0,$t0 277#endif 278 veor $Xm,$Xm,$t2 279 vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction 280 281#ifndef __ARMEB__ 282 vrev64.8 $t1,$t1 283#endif 284 vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result 285 vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl 286 vext.8 $In,$t1,$t1,#8 287 vext.8 $IN,$t0,$t0,#8 288 veor $Xl,$Xm,$t2 289 vpmull.p64 $Xln,$H,$In @ H·Ii+1 290 veor $IN,$IN,$Xh @ accumulate $IN early 291 292 vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction 293 vpmull.p64 $Xl,$Xl,$xC2 294 veor $IN,$IN,$t2 295 veor $t1,$t1,$In @ Karatsuba pre-processing 296 veor $IN,$IN,$Xl 297 vpmull2.p64 $Xhn,$H,$In 298 b.hs .Loop_mod2x_v8 @ there was at least 32 more bytes 299 300 veor $Xh,$Xh,$t2 301 vext.8 $IN,$t0,$t0,#8 @ re-construct $IN 302 adds $len,$len,#32 @ re-construct $len 303 veor $Xl,$Xl,$Xh @ re-construct $Xl 304 b.eq .Ldone_v8 @ is $len zero? 305___ 306} 307$code.=<<___; 308.Lodd_tail_v8: 309 vext.8 $t2,$Xl,$Xl,#8 310 veor $IN,$IN,$Xl @ inp^=Xi 311 veor $t1,$t0,$t2 @ $t1 is rotated inp^Xi 312 313 vpmull.p64 $Xl,$H,$IN @ H.lo·Xi.lo 314 veor $t1,$t1,$IN @ Karatsuba pre-processing 315 vpmull2.p64 $Xh,$H,$IN @ H.hi·Xi.hi 316 vpmull.p64 $Xm,$Hhl,$t1 @ (H.lo+H.hi)·(Xi.lo+Xi.hi) 317 318 vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing 319 veor $t2,$Xl,$Xh 320 veor $Xm,$Xm,$t1 321 veor $Xm,$Xm,$t2 322 vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction 323 324 vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result 325 vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl 326 veor $Xl,$Xm,$t2 327 328 vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction 329 vpmull.p64 $Xl,$Xl,$xC2 330 veor $t2,$t2,$Xh 331 veor $Xl,$Xl,$t2 332 333.Ldone_v8: 334#ifndef __ARMEB__ 335 vrev64.8 $Xl,$Xl 336#endif 337 vext.8 $Xl,$Xl,$Xl,#8 338 vst1.64 {$Xl},[$Xi] @ write out Xi 339 340___ 341$code.=<<___ if ($flavour !~ /64/); 342 vldmia sp!,{d8-d15} @ 32-bit ABI says so 343___ 344$code.=<<___; 345 ret 346.size gcm_ghash_v8,.-gcm_ghash_v8 347___ 348} 349$code.=<<___; 350.asciz "GHASH for ARMv8, CRYPTOGAMS by <appro\@openssl.org>" 351.align 2 352___ 353 354if ($flavour =~ /64/) { ######## 64-bit code 355 sub unvmov { 356 my $arg=shift; 357 358 $arg =~ m/q([0-9]+)#(lo|hi),\s*q([0-9]+)#(lo|hi)/o && 359 sprintf "ins v%d.d[%d],v%d.d[%d]",$1,($2 eq "lo")?0:1,$3,($4 eq "lo")?0:1; 360 } 361 foreach(split("\n",$code)) { 362 s/cclr\s+([wx])([^,]+),\s*([a-z]+)/csel $1$2,$1zr,$1$2,$3/o or 363 s/vmov\.i8/movi/o or # fix up legacy mnemonics 364 s/vmov\s+(.*)/unvmov($1)/geo or 365 s/vext\.8/ext/o or 366 s/vshr\.s/sshr\.s/o or 367 s/vshr/ushr/o or 368 s/^(\s+)v/$1/o or # strip off v prefix 369 s/\bbx\s+lr\b/ret/o; 370 371 s/\bq([0-9]+)\b/"v".($1<8?$1:$1+8).".16b"/geo; # old->new registers 372 s/@\s/\/\//o; # old->new style commentary 373 374 # fix up remaining legacy suffixes 375 s/\.[ui]?8(\s)/$1/o; 376 s/\.[uis]?32//o and s/\.16b/\.4s/go; 377 m/\.p64/o and s/\.16b/\.1q/o; # 1st pmull argument 378 m/l\.p64/o and s/\.16b/\.1d/go; # 2nd and 3rd pmull arguments 379 s/\.[uisp]?64//o and s/\.16b/\.2d/go; 380 s/\.[42]([sd])\[([0-3])\]/\.$1\[$2\]/o; 381 382 print $_,"\n"; 383 } 384} else { ######## 32-bit code 385 sub unvdup32 { 386 my $arg=shift; 387 388 $arg =~ m/q([0-9]+),\s*q([0-9]+)\[([0-3])\]/o && 389 sprintf "vdup.32 q%d,d%d[%d]",$1,2*$2+($3>>1),$3&1; 390 } 391 sub unvpmullp64 { 392 my ($mnemonic,$arg)=@_; 393 394 if ($arg =~ m/q([0-9]+),\s*q([0-9]+),\s*q([0-9]+)/o) { 395 my $word = 0xf2a00e00|(($1&7)<<13)|(($1&8)<<19) 396 |(($2&7)<<17)|(($2&8)<<4) 397 |(($3&7)<<1) |(($3&8)<<2); 398 $word |= 0x00010001 if ($mnemonic =~ "2"); 399 # since ARMv7 instructions are always encoded little-endian. 400 # correct solution is to use .inst directive, but older 401 # assemblers don't implement it:-( 402 sprintf ".byte\t0x%02x,0x%02x,0x%02x,0x%02x\t@ %s %s", 403 $word&0xff,($word>>8)&0xff, 404 ($word>>16)&0xff,($word>>24)&0xff, 405 $mnemonic,$arg; 406 } 407 } 408 409 foreach(split("\n",$code)) { 410 s/\b[wx]([0-9]+)\b/r$1/go; # new->old registers 411 s/\bv([0-9])\.[12468]+[bsd]\b/q$1/go; # new->old registers 412 s/\/\/\s?/@ /o; # new->old style commentary 413 414 # fix up remaining new-style suffixes 415 s/\],#[0-9]+/]!/o; 416 417 s/cclr\s+([^,]+),\s*([a-z]+)/mov$2 $1,#0/o or 418 s/vdup\.32\s+(.*)/unvdup32($1)/geo or 419 s/v?(pmull2?)\.p64\s+(.*)/unvpmullp64($1,$2)/geo or 420 s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo or 421 s/^(\s+)b\./$1b/o or 422 s/^(\s+)ret/$1bx\tlr/o; 423 424 print $_,"\n"; 425 } 426} 427 428close STDOUT or die "error closing STDOUT"; # enforce flush 429