• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2010 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef _LIBINPUT_INPUT_TRANSPORT_H
18 #define _LIBINPUT_INPUT_TRANSPORT_H
19 
20 #pragma GCC system_header
21 
22 /**
23  * Native input transport.
24  *
25  * The InputChannel provides a mechanism for exchanging InputMessage structures across processes.
26  *
27  * The InputPublisher and InputConsumer each handle one end-point of an input channel.
28  * The InputPublisher is used by the input dispatcher to send events to the application.
29  * The InputConsumer is used by the application to receive events from the input dispatcher.
30  */
31 
32 #include <string>
33 
34 #include <android-base/chrono_utils.h>
35 
36 #include <binder/IBinder.h>
37 #include <input/Input.h>
38 #include <utils/BitSet.h>
39 #include <utils/Errors.h>
40 #include <utils/RefBase.h>
41 #include <utils/Timers.h>
42 #include <utils/Vector.h>
43 
44 #include <android-base/unique_fd.h>
45 
46 namespace android {
47 class Parcel;
48 
49 /*
50  * Intermediate representation used to send input events and related signals.
51  *
52  * Note that this structure is used for IPCs so its layout must be identical
53  * on 64 and 32 bit processes. This is tested in StructLayout_test.cpp.
54  *
55  * Since the struct must be aligned to an 8-byte boundary, there could be uninitialized bytes
56  * in-between the defined fields. This padding data should be explicitly accounted for by adding
57  * "empty" fields into the struct. This data is memset to zero before sending the struct across
58  * the socket. Adding the explicit fields ensures that the memset is not optimized away by the
59  * compiler. When a new field is added to the struct, the corresponding change
60  * in StructLayout_test should be made.
61  */
62 struct InputMessage {
63     enum class Type : uint32_t {
64         KEY,
65         MOTION,
66         FINISHED,
67         FOCUS,
68     };
69 
70     struct Header {
71         Type type; // 4 bytes
72         // We don't need this field in order to align the body below but we
73         // leave it here because InputMessage::size() and other functions
74         // compute the size of this structure as sizeof(Header) + sizeof(Body).
75         uint32_t padding;
76     } header;
77 
78     // Body *must* be 8 byte aligned.
79     // For keys and motions, rely on the fact that std::array takes up exactly as much space
80     // as the underlying data. This is not guaranteed by C++, but it simplifies the conversions.
81     static_assert(sizeof(std::array<uint8_t, 32>) == 32);
82     union Body {
83         struct Key {
84             uint32_t seq;
85             int32_t eventId;
86             nsecs_t eventTime __attribute__((aligned(8)));
87             int32_t deviceId;
88             int32_t source;
89             int32_t displayId;
90             std::array<uint8_t, 32> hmac;
91             int32_t action;
92             int32_t flags;
93             int32_t keyCode;
94             int32_t scanCode;
95             int32_t metaState;
96             int32_t repeatCount;
97             uint32_t empty2;
98             nsecs_t downTime __attribute__((aligned(8)));
99 
sizeInputMessage::Body::Key100             inline size_t size() const { return sizeof(Key); }
101         } key;
102 
103         struct Motion {
104             uint32_t seq;
105             int32_t eventId;
106             nsecs_t eventTime __attribute__((aligned(8)));
107             int32_t deviceId;
108             int32_t source;
109             int32_t displayId;
110             std::array<uint8_t, 32> hmac;
111             int32_t action;
112             int32_t actionButton;
113             int32_t flags;
114             int32_t metaState;
115             int32_t buttonState;
116             MotionClassification classification; // base type: uint8_t
117             uint8_t empty2[3];                   // 3 bytes to fill gap created by classification
118             int32_t edgeFlags;
119             nsecs_t downTime __attribute__((aligned(8)));
120             float xScale;
121             float yScale;
122             float xOffset;
123             float yOffset;
124             float xPrecision;
125             float yPrecision;
126             float xCursorPosition;
127             float yCursorPosition;
128             uint32_t pointerCount;
129             uint32_t empty3;
130             /**
131              * The "pointers" field must be the last field of the struct InputMessage.
132              * When we send the struct InputMessage across the socket, we are not
133              * writing the entire "pointers" array, but only the pointerCount portion
134              * of it as an optimization. Adding a field after "pointers" would break this.
135              */
136             struct Pointer {
137                 PointerProperties properties;
138                 PointerCoords coords;
139             } pointers[MAX_POINTERS] __attribute__((aligned(8)));
140 
getActionIdInputMessage::Body::Motion141             int32_t getActionId() const {
142                 uint32_t index = (action & AMOTION_EVENT_ACTION_POINTER_INDEX_MASK)
143                         >> AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT;
144                 return pointers[index].properties.id;
145             }
146 
sizeInputMessage::Body::Motion147             inline size_t size() const {
148                 return sizeof(Motion) - sizeof(Pointer) * MAX_POINTERS
149                         + sizeof(Pointer) * pointerCount;
150             }
151         } motion;
152 
153         struct Finished {
154             uint32_t seq;
155             uint32_t handled; // actually a bool, but we must maintain 8-byte alignment
156 
sizeInputMessage::Body::Finished157             inline size_t size() const { return sizeof(Finished); }
158         } finished;
159 
160         struct Focus {
161             uint32_t seq;
162             int32_t eventId;
163             uint32_t empty1;
164             // The following two fields take up 4 bytes total
165             uint16_t hasFocus;    // actually a bool
166             uint16_t inTouchMode; // actually a bool, but we must maintain 8-byte alignment
167 
sizeInputMessage::Body::Focus168             inline size_t size() const { return sizeof(Focus); }
169         } focus;
170     } __attribute__((aligned(8))) body;
171 
172     bool isValid(size_t actualSize) const;
173     size_t size() const;
174     void getSanitizedCopy(InputMessage* msg) const;
175 };
176 
177 /*
178  * An input channel consists of a local unix domain socket used to send and receive
179  * input messages across processes.  Each channel has a descriptive name for debugging purposes.
180  *
181  * Each endpoint has its own InputChannel object that specifies its file descriptor.
182  *
183  * The input channel is closed when all references to it are released.
184  */
185 class InputChannel : public RefBase {
186 protected:
187     virtual ~InputChannel();
188 
189 public:
190     static sp<InputChannel> create(const std::string& name, android::base::unique_fd fd,
191                                    sp<IBinder> token);
192 
193     /**
194      * Create a pair of input channels.
195      * The two returned input channels are equivalent, and are labeled as "server" and "client"
196      * for convenience. The two input channels share the same token.
197      *
198      * Return OK on success.
199      */
200     static status_t openInputChannelPair(const std::string& name,
201             sp<InputChannel>& outServerChannel, sp<InputChannel>& outClientChannel);
202 
getName()203     inline std::string getName() const { return mName; }
getFd()204     inline int getFd() const { return mFd.get(); }
205 
206     /* Send a message to the other endpoint.
207      *
208      * If the channel is full then the message is guaranteed not to have been sent at all.
209      * Try again after the consumer has sent a finished signal indicating that it has
210      * consumed some of the pending messages from the channel.
211      *
212      * Return OK on success.
213      * Return WOULD_BLOCK if the channel is full.
214      * Return DEAD_OBJECT if the channel's peer has been closed.
215      * Other errors probably indicate that the channel is broken.
216      */
217     status_t sendMessage(const InputMessage* msg);
218 
219     /* Receive a message sent by the other endpoint.
220      *
221      * If there is no message present, try again after poll() indicates that the fd
222      * is readable.
223      *
224      * Return OK on success.
225      * Return WOULD_BLOCK if there is no message present.
226      * Return DEAD_OBJECT if the channel's peer has been closed.
227      * Other errors probably indicate that the channel is broken.
228      */
229     status_t receiveMessage(InputMessage* msg);
230 
231     /* Return a new object that has a duplicate of this channel's fd. */
232     sp<InputChannel> dup() const;
233 
234     status_t write(Parcel& out) const;
235     static sp<InputChannel> read(const Parcel& from);
236 
237     /**
238      * The connection token is used to identify the input connection, i.e.
239      * the pair of input channels that were created simultaneously. Input channels
240      * are always created in pairs, and the token can be used to find the server-side
241      * input channel from the client-side input channel, and vice versa.
242      *
243      * Do not use connection token to check equality of a specific input channel object
244      * to another, because two different (client and server) input channels will share the
245      * same connection token.
246      *
247      * Return the token that identifies this connection.
248      */
249     sp<IBinder> getConnectionToken() const;
250 
251 private:
252     InputChannel(const std::string& name, android::base::unique_fd fd, sp<IBinder> token);
253     std::string mName;
254     android::base::unique_fd mFd;
255 
256     sp<IBinder> mToken;
257 };
258 
259 /*
260  * Publishes input events to an input channel.
261  */
262 class InputPublisher {
263 public:
264     /* Creates a publisher associated with an input channel. */
265     explicit InputPublisher(const sp<InputChannel>& channel);
266 
267     /* Destroys the publisher and releases its input channel. */
268     ~InputPublisher();
269 
270     /* Gets the underlying input channel. */
getChannel()271     inline sp<InputChannel> getChannel() { return mChannel; }
272 
273     /* Publishes a key event to the input channel.
274      *
275      * Returns OK on success.
276      * Returns WOULD_BLOCK if the channel is full.
277      * Returns DEAD_OBJECT if the channel's peer has been closed.
278      * Returns BAD_VALUE if seq is 0.
279      * Other errors probably indicate that the channel is broken.
280      */
281     status_t publishKeyEvent(uint32_t seq, int32_t eventId, int32_t deviceId, int32_t source,
282                              int32_t displayId, std::array<uint8_t, 32> hmac, int32_t action,
283                              int32_t flags, int32_t keyCode, int32_t scanCode, int32_t metaState,
284                              int32_t repeatCount, nsecs_t downTime, nsecs_t eventTime);
285 
286     /* Publishes a motion event to the input channel.
287      *
288      * Returns OK on success.
289      * Returns WOULD_BLOCK if the channel is full.
290      * Returns DEAD_OBJECT if the channel's peer has been closed.
291      * Returns BAD_VALUE if seq is 0 or if pointerCount is less than 1 or greater than MAX_POINTERS.
292      * Other errors probably indicate that the channel is broken.
293      */
294     status_t publishMotionEvent(uint32_t seq, int32_t eventId, int32_t deviceId, int32_t source,
295                                 int32_t displayId, std::array<uint8_t, 32> hmac, int32_t action,
296                                 int32_t actionButton, int32_t flags, int32_t edgeFlags,
297                                 int32_t metaState, int32_t buttonState,
298                                 MotionClassification classification, float xScale, float yScale,
299                                 float xOffset, float yOffset, float xPrecision, float yPrecision,
300                                 float xCursorPosition, float yCursorPosition, nsecs_t downTime,
301                                 nsecs_t eventTime, uint32_t pointerCount,
302                                 const PointerProperties* pointerProperties,
303                                 const PointerCoords* pointerCoords);
304 
305     /* Publishes a focus event to the input channel.
306      *
307      * Returns OK on success.
308      * Returns WOULD_BLOCK if the channel is full.
309      * Returns DEAD_OBJECT if the channel's peer has been closed.
310      * Other errors probably indicate that the channel is broken.
311      */
312     status_t publishFocusEvent(uint32_t seq, int32_t eventId, bool hasFocus, bool inTouchMode);
313 
314     /* Receives the finished signal from the consumer in reply to the original dispatch signal.
315      * If a signal was received, returns the message sequence number,
316      * and whether the consumer handled the message.
317      *
318      * The returned sequence number is never 0 unless the operation failed.
319      *
320      * Returns OK on success.
321      * Returns WOULD_BLOCK if there is no signal present.
322      * Returns DEAD_OBJECT if the channel's peer has been closed.
323      * Other errors probably indicate that the channel is broken.
324      */
325     status_t receiveFinishedSignal(uint32_t* outSeq, bool* outHandled);
326 
327 private:
328 
329     sp<InputChannel> mChannel;
330 };
331 
332 /*
333  * Consumes input events from an input channel.
334  */
335 class InputConsumer {
336 public:
337     /* Creates a consumer associated with an input channel. */
338     explicit InputConsumer(const sp<InputChannel>& channel);
339 
340     /* Destroys the consumer and releases its input channel. */
341     ~InputConsumer();
342 
343     /* Gets the underlying input channel. */
getChannel()344     inline sp<InputChannel> getChannel() { return mChannel; }
345 
346     /* Consumes an input event from the input channel and copies its contents into
347      * an InputEvent object created using the specified factory.
348      *
349      * Tries to combine a series of move events into larger batches whenever possible.
350      *
351      * If consumeBatches is false, then defers consuming pending batched events if it
352      * is possible for additional samples to be added to them later.  Call hasPendingBatch()
353      * to determine whether a pending batch is available to be consumed.
354      *
355      * If consumeBatches is true, then events are still batched but they are consumed
356      * immediately as soon as the input channel is exhausted.
357      *
358      * The frameTime parameter specifies the time when the current display frame started
359      * rendering in the CLOCK_MONOTONIC time base, or -1 if unknown.
360      *
361      * The returned sequence number is never 0 unless the operation failed.
362      *
363      * Returns OK on success.
364      * Returns WOULD_BLOCK if there is no event present.
365      * Returns DEAD_OBJECT if the channel's peer has been closed.
366      * Returns NO_MEMORY if the event could not be created.
367      * Other errors probably indicate that the channel is broken.
368      */
369     status_t consume(InputEventFactoryInterface* factory, bool consumeBatches, nsecs_t frameTime,
370                      uint32_t* outSeq, InputEvent** outEvent);
371 
372     /* Sends a finished signal to the publisher to inform it that the message
373      * with the specified sequence number has finished being process and whether
374      * the message was handled by the consumer.
375      *
376      * Returns OK on success.
377      * Returns BAD_VALUE if seq is 0.
378      * Other errors probably indicate that the channel is broken.
379      */
380     status_t sendFinishedSignal(uint32_t seq, bool handled);
381 
382     /* Returns true if there is a deferred event waiting.
383      *
384      * Should be called after calling consume() to determine whether the consumer
385      * has a deferred event to be processed.  Deferred events are somewhat special in
386      * that they have already been removed from the input channel.  If the input channel
387      * becomes empty, the client may need to do extra work to ensure that it processes
388      * the deferred event despite the fact that the input channel's file descriptor
389      * is not readable.
390      *
391      * One option is simply to call consume() in a loop until it returns WOULD_BLOCK.
392      * This guarantees that all deferred events will be processed.
393      *
394      * Alternately, the caller can call hasDeferredEvent() to determine whether there is
395      * a deferred event waiting and then ensure that its event loop wakes up at least
396      * one more time to consume the deferred event.
397      */
398     bool hasDeferredEvent() const;
399 
400     /* Returns true if there is a pending batch.
401      *
402      * Should be called after calling consume() with consumeBatches == false to determine
403      * whether consume() should be called again later on with consumeBatches == true.
404      */
405     bool hasPendingBatch() const;
406 
407     /* Returns the source of first pending batch if exist.
408      *
409      * Should be called after calling consume() with consumeBatches == false to determine
410      * whether consume() should be called again later on with consumeBatches == true.
411      */
412     int32_t getPendingBatchSource() const;
413 
414 private:
415     // True if touch resampling is enabled.
416     const bool mResampleTouch;
417 
418     // The input channel.
419     sp<InputChannel> mChannel;
420 
421     // The current input message.
422     InputMessage mMsg;
423 
424     // True if mMsg contains a valid input message that was deferred from the previous
425     // call to consume and that still needs to be handled.
426     bool mMsgDeferred;
427 
428     // Batched motion events per device and source.
429     struct Batch {
430         Vector<InputMessage> samples;
431     };
432     Vector<Batch> mBatches;
433 
434     // Touch state per device and source, only for sources of class pointer.
435     struct History {
436         nsecs_t eventTime;
437         BitSet32 idBits;
438         int32_t idToIndex[MAX_POINTER_ID + 1];
439         PointerCoords pointers[MAX_POINTERS];
440 
initializeFromHistory441         void initializeFrom(const InputMessage& msg) {
442             eventTime = msg.body.motion.eventTime;
443             idBits.clear();
444             for (uint32_t i = 0; i < msg.body.motion.pointerCount; i++) {
445                 uint32_t id = msg.body.motion.pointers[i].properties.id;
446                 idBits.markBit(id);
447                 idToIndex[id] = i;
448                 pointers[i].copyFrom(msg.body.motion.pointers[i].coords);
449             }
450         }
451 
initializeFromHistory452         void initializeFrom(const History& other) {
453             eventTime = other.eventTime;
454             idBits = other.idBits; // temporary copy
455             for (size_t i = 0; i < other.idBits.count(); i++) {
456                 uint32_t id = idBits.clearFirstMarkedBit();
457                 int32_t index = other.idToIndex[id];
458                 idToIndex[id] = index;
459                 pointers[index].copyFrom(other.pointers[index]);
460             }
461             idBits = other.idBits; // final copy
462         }
463 
getPointerByIdHistory464         const PointerCoords& getPointerById(uint32_t id) const {
465             return pointers[idToIndex[id]];
466         }
467 
hasPointerIdHistory468         bool hasPointerId(uint32_t id) const {
469             return idBits.hasBit(id);
470         }
471     };
472     struct TouchState {
473         int32_t deviceId;
474         int32_t source;
475         size_t historyCurrent;
476         size_t historySize;
477         History history[2];
478         History lastResample;
479 
initializeTouchState480         void initialize(int32_t deviceId, int32_t source) {
481             this->deviceId = deviceId;
482             this->source = source;
483             historyCurrent = 0;
484             historySize = 0;
485             lastResample.eventTime = 0;
486             lastResample.idBits.clear();
487         }
488 
addHistoryTouchState489         void addHistory(const InputMessage& msg) {
490             historyCurrent ^= 1;
491             if (historySize < 2) {
492                 historySize += 1;
493             }
494             history[historyCurrent].initializeFrom(msg);
495         }
496 
getHistoryTouchState497         const History* getHistory(size_t index) const {
498             return &history[(historyCurrent + index) & 1];
499         }
500 
recentCoordinatesAreIdenticalTouchState501         bool recentCoordinatesAreIdentical(uint32_t id) const {
502             // Return true if the two most recently received "raw" coordinates are identical
503             if (historySize < 2) {
504                 return false;
505             }
506             if (!getHistory(0)->hasPointerId(id) || !getHistory(1)->hasPointerId(id)) {
507                 return false;
508             }
509             float currentX = getHistory(0)->getPointerById(id).getX();
510             float currentY = getHistory(0)->getPointerById(id).getY();
511             float previousX = getHistory(1)->getPointerById(id).getX();
512             float previousY = getHistory(1)->getPointerById(id).getY();
513             if (currentX == previousX && currentY == previousY) {
514                 return true;
515             }
516             return false;
517         }
518     };
519     Vector<TouchState> mTouchStates;
520 
521     // Chain of batched sequence numbers.  When multiple input messages are combined into
522     // a batch, we append a record here that associates the last sequence number in the
523     // batch with the previous one.  When the finished signal is sent, we traverse the
524     // chain to individually finish all input messages that were part of the batch.
525     struct SeqChain {
526         uint32_t seq;   // sequence number of batched input message
527         uint32_t chain; // sequence number of previous batched input message
528     };
529     Vector<SeqChain> mSeqChains;
530 
531     status_t consumeBatch(InputEventFactoryInterface* factory,
532             nsecs_t frameTime, uint32_t* outSeq, InputEvent** outEvent);
533     status_t consumeSamples(InputEventFactoryInterface* factory,
534             Batch& batch, size_t count, uint32_t* outSeq, InputEvent** outEvent);
535 
536     void updateTouchState(InputMessage& msg);
537     void resampleTouchState(nsecs_t frameTime, MotionEvent* event,
538             const InputMessage *next);
539 
540     ssize_t findBatch(int32_t deviceId, int32_t source) const;
541     ssize_t findTouchState(int32_t deviceId, int32_t source) const;
542 
543     status_t sendUnchainedFinishedSignal(uint32_t seq, bool handled);
544 
545     static void rewriteMessage(TouchState& state, InputMessage& msg);
546     static void initializeKeyEvent(KeyEvent* event, const InputMessage* msg);
547     static void initializeMotionEvent(MotionEvent* event, const InputMessage* msg);
548     static void initializeFocusEvent(FocusEvent* event, const InputMessage* msg);
549     static void addSample(MotionEvent* event, const InputMessage* msg);
550     static bool canAddSample(const Batch& batch, const InputMessage* msg);
551     static ssize_t findSampleNoLaterThan(const Batch& batch, nsecs_t time);
552     static bool shouldResampleTool(int32_t toolType);
553 
554     static bool isTouchResamplingEnabled();
555 };
556 
557 } // namespace android
558 
559 #endif // _LIBINPUT_INPUT_TRANSPORT_H
560