• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-sigmoid/scalar-p5-div.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 #include <math.h>
12 
13 #include <xnnpack/common.h>
14 #include <xnnpack/vunary.h>
15 
16 #include <fp16/bitcasts.h>
17 
18 
xnn_f32_sigmoid_ukernel__scalar_p5_div_x2(size_t n,const float * x,float * y,const void * params)19 void xnn_f32_sigmoid_ukernel__scalar_p5_div_x2(
20     size_t n,
21     const float* x,
22     float* y,
23     const void* params)
24 {
25   assert(n % sizeof(float) == 0);
26 
27   const float vmagic_bias = 0x1.8000FEp23f;
28   // The largest z for which sigmoidf(-z) is normalized.
29   // This number is also the largest z for which expf(-z) is normalized.
30   const float vdenorm_cutoff = 0x1.5D589Ep+6f;
31   const float vminus_log2e = -0x1.715476p+0f;
32   // Last 7 bits are zeroes
33   const float vln2_hi = 0x1.62E400p-1f;
34   const float vln2_lo = 0x1.7F7D1Cp-20f;
35   const float vone = 1.0f;
36 
37   const float vc1 = -0x1.FFFFF6p-1f;
38   const float vc2 =  0x1.FFFDC6p-2f;
39   const float vc3 = -0x1.555A80p-3f;
40   const float vc4 =  0x1.573A1Ap-5f;
41   const float vc5 = -0x1.0F9F9Cp-7f;
42 
43   for (; n >= 2 * sizeof(float); n -= 2 * sizeof(float)) {
44     const float vx0 = x[0];
45     const float vx1 = x[1];
46     x += 2;
47 
48     // General structure of the algorithm:
49     //           / exp(x) / (1 + exp(x)) if x <= 0
50     //   f[x] :=
51     //           \ 1 - f[-x] if x >= 0
52     //
53     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
54     // then replace result with 1 - f[-z] if x >= 0.
55     const float vz0 = fabsf(vx0);
56     const float vz1 = fabsf(vx1);
57 
58     // Compute reduced argument n := round(-z / log(2)).
59     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
60     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
61     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
62     // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
63     // anyway. We fixup the result for such inputs at the very end of the algorithm.
64     float vn0 = vz0 * vminus_log2e + vmagic_bias;
65     float vn1 = vz1 * vminus_log2e + vmagic_bias;
66 
67     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
68     // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
69     const float vs0 = fp32_from_bits(fp32_to_bits(vn0) << 23);
70     const float vs1 = fp32_from_bits(fp32_to_bits(vn1) << 23);
71 
72     // Subtract the large number back to get the final n := round(-z / log(2)) as a floating-point number.
73     vn0 -= vmagic_bias;
74     vn1 -= vmagic_bias;
75 
76     // Compute reduced argument t := z + n * log(2). Note that -t = -z - n * log(2).
77     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
78     float vt0 = vn0 * vln2_hi + vz0;
79     float vt1 = vn1 * vln2_hi + vz1;
80 
81     vt0 = vn0 * vln2_lo + vt0;
82     vt1 = vn1 * vln2_lo + vt1;
83 
84     // Compute degree-5 polynomial approximation for exp(-t) on [-log(2)/2, log(2)/2]:
85     //   P5(t) = 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
86     float vp0 = vt0 * vc5 + vc4;
87     float vp1 = vt1 * vc5 + vc4;
88 
89     vp0 = vt0 * vp0 + vc3;
90     vp1 = vt1 * vp1 + vc3;
91 
92     vp0 = vt0 * vp0 + vc2;
93     vp1 = vt1 * vp1 + vc2;
94 
95     vp0 = vt0 * vp0 + vc1;
96     vp1 = vt1 * vp1 + vc1;
97 
98     // Reconstruct the exp(-z) value:
99     //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
100     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
101     //     = s + (t * s) * p
102     vt0 *= vs0;
103     vt1 *= vs1;
104 
105     const float ve0 = vt0 * vp0 + vs0;
106     const float ve1 = vt1 * vp1 + vs1;
107 
108     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
109     float vf0 = ve0 / (ve0 + vone);
110     float vf1 = ve1 / (ve1 + vone);
111 
112     // For inputs below denormal cutoff, replace output with +0.0f.
113     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
114     if XNN_UNPREDICTABLE(vz0 > vdenorm_cutoff) {
115       vf0 = 0.0f;
116     }
117     if XNN_UNPREDICTABLE(vz1 > vdenorm_cutoff) {
118       vf1 = 0.0f;
119     }
120 
121     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
122     if XNN_UNPREDICTABLE(vx0 > 0.0f) {
123       vf0 = vone - vf0;
124     }
125     if XNN_UNPREDICTABLE(vx1 > 0.0f) {
126       vf1 = vone - vf1;
127     }
128 
129     y[0] = vf0;
130     y[1] = vf1;
131     y += 2;
132   }
133   if XNN_UNLIKELY(n != 0) {
134     const float vx = *x;
135 
136     // General structure of the algorithm:
137     //           / exp(x) / (1 + exp(x)) if x <= 0
138     //   f[x] :=
139     //           \ 1 - f[-x] if x >= 0
140     //
141     // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
142     // then replace result with 1 - f[-z] if x >= 0.
143     const float vz = fabsf(vx);
144 
145     // Compute reduced argument n := round(-z / log(2)).
146     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
147     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
148     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
149     // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
150     // anyway. We fixup the result for such inputs at the very end of the algorithm.
151     float vn = vz * vminus_log2e + vmagic_bias;
152 
153     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
154     // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
155     const float vs = fp32_from_bits(fp32_to_bits(vn) << 23);
156 
157     // Subtract the large number back to get the final n := round(-z / log(2)) as a floating-point number.
158     vn -= vmagic_bias;
159 
160     // Compute reduced argument t := z + n * log(2). Note that -t = -z - n * log(2).
161     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
162     float vt = vn * vln2_hi + vz;
163     vt = vn * vln2_lo + vt;
164 
165     // Compute degree-5 polynomial approximation for exp(-t) on [-log(2)/2, log(2)/2]:
166     //   P5(t) = 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
167     float vp = vt * vc5 + vc4;
168     vp = vt * vp + vc3;
169     vp = vt * vp + vc2;
170     vp = vt * vp + vc1;
171 
172     // Reconstruct the exp(-z) value:
173     //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
174     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
175     //     = s + (t * s) * p
176     vt *= vs;
177     const float ve = vt * vp + vs;
178 
179     // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
180     float vf = ve / (ve + vone);
181 
182     // For inputs above denormal cutoff, replace output with +0.0f.
183     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
184     if XNN_UNPREDICTABLE(vz > vdenorm_cutoff) {
185       vf = 0.0f;
186     }
187 
188     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
189     if XNN_UNPREDICTABLE(vx > 0.0f) {
190       vf = vone - vf;
191     }
192 
193     *y = vf;
194   }
195 }
196