• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3  * project.
4  */
5 /* ====================================================================
6  * Copyright (c) 2015 The OpenSSL Project.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  *
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  *
20  * 3. All advertising materials mentioning features or use of this
21  *    software must display the following acknowledgment:
22  *    "This product includes software developed by the OpenSSL Project
23  *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24  *
25  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26  *    endorse or promote products derived from this software without
27  *    prior written permission. For written permission, please contact
28  *    licensing@OpenSSL.org.
29  *
30  * 5. Products derived from this software may not be called "OpenSSL"
31  *    nor may "OpenSSL" appear in their names without prior written
32  *    permission of the OpenSSL Project.
33  *
34  * 6. Redistributions of any form whatsoever must retain the following
35  *    acknowledgment:
36  *    "This product includes software developed by the OpenSSL Project
37  *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38  *
39  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
43  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50  * OF THE POSSIBILITY OF SUCH DAMAGE.
51  * ====================================================================
52  */
53 
54 #include <openssl/evp.h>
55 
56 #include <stdio.h>
57 #include <stdint.h>
58 #include <stdlib.h>
59 #include <string.h>
60 
61 OPENSSL_MSVC_PRAGMA(warning(push))
62 OPENSSL_MSVC_PRAGMA(warning(disable: 4702))
63 
64 #include <map>
65 #include <string>
66 #include <utility>
67 #include <vector>
68 
OPENSSL_MSVC_PRAGMA(warning (pop)) const69 OPENSSL_MSVC_PRAGMA(warning(pop))
70 
71 #include <gtest/gtest.h>
72 
73 #include <openssl/buf.h>
74 #include <openssl/bytestring.h>
75 #include <openssl/crypto.h>
76 #include <openssl/digest.h>
77 #include <openssl/dsa.h>
78 #include <openssl/err.h>
79 #include <openssl/rsa.h>
80 
81 #include "../test/file_test.h"
82 #include "../test/test_util.h"
83 #include "../test/wycheproof_util.h"
84 
85 
86 // evp_test dispatches between multiple test types. PrivateKey tests take a key
87 // name parameter and single block, decode it as a PEM private key, and save it
88 // under that key name. Decrypt, Sign, and Verify tests take a previously
89 // imported key name as parameter and test their respective operations.
90 
91 static const EVP_MD *GetDigest(FileTest *t, const std::string &name) {
92   if (name == "MD5") {
93     return EVP_md5();
94   } else if (name == "SHA1") {
95     return EVP_sha1();
96   } else if (name == "SHA224") {
97     return EVP_sha224();
98   } else if (name == "SHA256") {
99     return EVP_sha256();
100   } else if (name == "SHA384") {
101     return EVP_sha384();
102   } else if (name == "SHA512") {
103     return EVP_sha512();
104   }
105   ADD_FAILURE() << "Unknown digest: " << name;
106   return nullptr;
107 }
108 
GetKeyType(FileTest * t,const std::string & name)109 static int GetKeyType(FileTest *t, const std::string &name) {
110   if (name == "RSA") {
111     return EVP_PKEY_RSA;
112   }
113   if (name == "EC") {
114     return EVP_PKEY_EC;
115   }
116   if (name == "DSA") {
117     return EVP_PKEY_DSA;
118   }
119   if (name == "Ed25519") {
120     return EVP_PKEY_ED25519;
121   }
122   if (name == "X25519") {
123     return EVP_PKEY_X25519;
124   }
125   ADD_FAILURE() << "Unknown key type: " << name;
126   return EVP_PKEY_NONE;
127 }
128 
GetRSAPadding(FileTest * t,int * out,const std::string & name)129 static int GetRSAPadding(FileTest *t, int *out, const std::string &name) {
130   if (name == "PKCS1") {
131     *out = RSA_PKCS1_PADDING;
132     return true;
133   }
134   if (name == "PSS") {
135     *out = RSA_PKCS1_PSS_PADDING;
136     return true;
137   }
138   if (name == "OAEP") {
139     *out = RSA_PKCS1_OAEP_PADDING;
140     return true;
141   }
142   ADD_FAILURE() << "Unknown RSA padding mode: " << name;
143   return false;
144 }
145 
146 using KeyMap = std::map<std::string, bssl::UniquePtr<EVP_PKEY>>;
147 
ImportKey(FileTest * t,KeyMap * key_map,EVP_PKEY * (* parse_func)(CBS * cbs),int (* marshal_func)(CBB * cbb,const EVP_PKEY * key))148 static bool ImportKey(FileTest *t, KeyMap *key_map,
149                       EVP_PKEY *(*parse_func)(CBS *cbs),
150                       int (*marshal_func)(CBB *cbb, const EVP_PKEY *key)) {
151   std::vector<uint8_t> input;
152   if (!t->GetBytes(&input, "Input")) {
153     return false;
154   }
155 
156   CBS cbs;
157   CBS_init(&cbs, input.data(), input.size());
158   bssl::UniquePtr<EVP_PKEY> pkey(parse_func(&cbs));
159   if (!pkey) {
160     return false;
161   }
162 
163   std::string key_type;
164   if (!t->GetAttribute(&key_type, "Type")) {
165     return false;
166   }
167   EXPECT_EQ(GetKeyType(t, key_type), EVP_PKEY_id(pkey.get()));
168 
169   // The key must re-encode correctly.
170   bssl::ScopedCBB cbb;
171   uint8_t *der;
172   size_t der_len;
173   if (!CBB_init(cbb.get(), 0) ||
174       !marshal_func(cbb.get(), pkey.get()) ||
175       !CBB_finish(cbb.get(), &der, &der_len)) {
176     return false;
177   }
178   bssl::UniquePtr<uint8_t> free_der(der);
179 
180   std::vector<uint8_t> output = input;
181   if (t->HasAttribute("Output") &&
182       !t->GetBytes(&output, "Output")) {
183     return false;
184   }
185   EXPECT_EQ(Bytes(output), Bytes(der, der_len))
186       << "Re-encoding the key did not match.";
187 
188   if (t->HasAttribute("ExpectNoRawPrivate")) {
189     size_t len;
190     EXPECT_FALSE(EVP_PKEY_get_raw_private_key(pkey.get(), nullptr, &len));
191   } else if (t->HasAttribute("ExpectRawPrivate")) {
192     std::vector<uint8_t> expected;
193     if (!t->GetBytes(&expected, "ExpectRawPrivate")) {
194       return false;
195     }
196 
197     std::vector<uint8_t> raw;
198     size_t len;
199     if (!EVP_PKEY_get_raw_private_key(pkey.get(), nullptr, &len)) {
200       return false;
201     }
202     raw.resize(len);
203     if (!EVP_PKEY_get_raw_private_key(pkey.get(), raw.data(), &len)) {
204       return false;
205     }
206     raw.resize(len);
207     EXPECT_EQ(Bytes(raw), Bytes(expected));
208 
209     // Short buffers should be rejected.
210     raw.resize(len - 1);
211     len = raw.size();
212     EXPECT_FALSE(EVP_PKEY_get_raw_private_key(pkey.get(), raw.data(), &len));
213   }
214 
215   if (t->HasAttribute("ExpectNoRawPublic")) {
216     size_t len;
217     EXPECT_FALSE(EVP_PKEY_get_raw_public_key(pkey.get(), nullptr, &len));
218   } else if (t->HasAttribute("ExpectRawPublic")) {
219     std::vector<uint8_t> expected;
220     if (!t->GetBytes(&expected, "ExpectRawPublic")) {
221       return false;
222     }
223 
224     std::vector<uint8_t> raw;
225     size_t len;
226     if (!EVP_PKEY_get_raw_public_key(pkey.get(), nullptr, &len)) {
227       return false;
228     }
229     raw.resize(len);
230     if (!EVP_PKEY_get_raw_public_key(pkey.get(), raw.data(), &len)) {
231       return false;
232     }
233     raw.resize(len);
234     EXPECT_EQ(Bytes(raw), Bytes(expected));
235 
236     // Short buffers should be rejected.
237     raw.resize(len - 1);
238     len = raw.size();
239     EXPECT_FALSE(EVP_PKEY_get_raw_public_key(pkey.get(), raw.data(), &len));
240   }
241 
242   // Save the key for future tests.
243   const std::string &key_name = t->GetParameter();
244   EXPECT_EQ(0u, key_map->count(key_name)) << "Duplicate key: " << key_name;
245   (*key_map)[key_name] = std::move(pkey);
246   return true;
247 }
248 
249 // SetupContext configures |ctx| based on attributes in |t|, with the exception
250 // of the signing digest which must be configured externally.
SetupContext(FileTest * t,KeyMap * key_map,EVP_PKEY_CTX * ctx)251 static bool SetupContext(FileTest *t, KeyMap *key_map, EVP_PKEY_CTX *ctx) {
252   if (t->HasAttribute("RSAPadding")) {
253     int padding;
254     if (!GetRSAPadding(t, &padding, t->GetAttributeOrDie("RSAPadding")) ||
255         !EVP_PKEY_CTX_set_rsa_padding(ctx, padding)) {
256       return false;
257     }
258   }
259   if (t->HasAttribute("PSSSaltLength") &&
260       !EVP_PKEY_CTX_set_rsa_pss_saltlen(
261           ctx, atoi(t->GetAttributeOrDie("PSSSaltLength").c_str()))) {
262     return false;
263   }
264   if (t->HasAttribute("MGF1Digest")) {
265     const EVP_MD *digest = GetDigest(t, t->GetAttributeOrDie("MGF1Digest"));
266     if (digest == nullptr || !EVP_PKEY_CTX_set_rsa_mgf1_md(ctx, digest)) {
267       return false;
268     }
269   }
270   if (t->HasAttribute("OAEPDigest")) {
271     const EVP_MD *digest = GetDigest(t, t->GetAttributeOrDie("OAEPDigest"));
272     if (digest == nullptr || !EVP_PKEY_CTX_set_rsa_oaep_md(ctx, digest)) {
273       return false;
274     }
275   }
276   if (t->HasAttribute("OAEPLabel")) {
277     std::vector<uint8_t> label;
278     if (!t->GetBytes(&label, "OAEPLabel")) {
279       return false;
280     }
281     // For historical reasons, |EVP_PKEY_CTX_set0_rsa_oaep_label| expects to be
282     // take ownership of the input.
283     bssl::UniquePtr<uint8_t> buf(
284         reinterpret_cast<uint8_t *>(BUF_memdup(label.data(), label.size())));
285     if (!buf ||
286         !EVP_PKEY_CTX_set0_rsa_oaep_label(ctx, buf.get(), label.size())) {
287       return false;
288     }
289     buf.release();
290   }
291   if (t->HasAttribute("DerivePeer")) {
292     std::string derive_peer = t->GetAttributeOrDie("DerivePeer");
293     if (key_map->count(derive_peer) == 0) {
294       ADD_FAILURE() << "Could not find key " << derive_peer;
295       return false;
296     }
297     EVP_PKEY *derive_peer_key = (*key_map)[derive_peer].get();
298     if (!EVP_PKEY_derive_set_peer(ctx, derive_peer_key)) {
299       return false;
300     }
301   }
302   return true;
303 }
304 
TestDerive(FileTest * t,KeyMap * key_map,EVP_PKEY * key)305 static bool TestDerive(FileTest *t, KeyMap *key_map, EVP_PKEY *key) {
306   bssl::UniquePtr<EVP_PKEY_CTX> ctx(EVP_PKEY_CTX_new(key, nullptr));
307   if (!ctx ||
308       !EVP_PKEY_derive_init(ctx.get()) ||
309       !SetupContext(t, key_map, ctx.get())) {
310     return false;
311   }
312 
313   bssl::UniquePtr<EVP_PKEY_CTX> copy(EVP_PKEY_CTX_dup(ctx.get()));
314   if (!copy) {
315     return false;
316   }
317 
318   for (EVP_PKEY_CTX *pctx : {ctx.get(), copy.get()}) {
319     size_t len;
320     std::vector<uint8_t> actual, output;
321     if (!EVP_PKEY_derive(pctx, nullptr, &len)) {
322       return false;
323     }
324     actual.resize(len);
325     if (!EVP_PKEY_derive(pctx, actual.data(), &len)) {
326       return false;
327     }
328     actual.resize(len);
329 
330     // Defer looking up the attribute so Error works properly.
331     if (!t->GetBytes(&output, "Output")) {
332       return false;
333     }
334     EXPECT_EQ(Bytes(output), Bytes(actual));
335 
336     // Test when the buffer is too large.
337     actual.resize(len + 1);
338     len = actual.size();
339     if (!EVP_PKEY_derive(pctx, actual.data(), &len)) {
340       return false;
341     }
342     actual.resize(len);
343     EXPECT_EQ(Bytes(output), Bytes(actual));
344 
345     // Test when the buffer is too small.
346     actual.resize(len - 1);
347     len = actual.size();
348     if (t->HasAttribute("SmallBufferTruncates")) {
349       if (!EVP_PKEY_derive(pctx, actual.data(), &len)) {
350         return false;
351       }
352       actual.resize(len);
353       EXPECT_EQ(Bytes(output.data(), len), Bytes(actual));
354     } else {
355       EXPECT_FALSE(EVP_PKEY_derive(pctx, actual.data(), &len));
356       ERR_clear_error();
357     }
358   }
359   return true;
360 }
361 
TestEVP(FileTest * t,KeyMap * key_map)362 static bool TestEVP(FileTest *t, KeyMap *key_map) {
363   if (t->GetType() == "PrivateKey") {
364     return ImportKey(t, key_map, EVP_parse_private_key,
365                      EVP_marshal_private_key);
366   }
367 
368   if (t->GetType() == "PublicKey") {
369     return ImportKey(t, key_map, EVP_parse_public_key, EVP_marshal_public_key);
370   }
371 
372   // Load the key.
373   const std::string &key_name = t->GetParameter();
374   if (key_map->count(key_name) == 0) {
375     ADD_FAILURE() << "Could not find key " << key_name;
376     return false;
377   }
378   EVP_PKEY *key = (*key_map)[key_name].get();
379 
380   int (*key_op_init)(EVP_PKEY_CTX *ctx) = nullptr;
381   int (*key_op)(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *out_len,
382                 const uint8_t *in, size_t in_len) = nullptr;
383   int (*md_op_init)(EVP_MD_CTX * ctx, EVP_PKEY_CTX * *pctx, const EVP_MD *type,
384                     ENGINE *e, EVP_PKEY *pkey) = nullptr;
385   bool is_verify = false;
386   if (t->GetType() == "Decrypt") {
387     key_op_init = EVP_PKEY_decrypt_init;
388     key_op = EVP_PKEY_decrypt;
389   } else if (t->GetType() == "Sign") {
390     key_op_init = EVP_PKEY_sign_init;
391     key_op = EVP_PKEY_sign;
392   } else if (t->GetType() == "Verify") {
393     key_op_init = EVP_PKEY_verify_init;
394     is_verify = true;
395   } else if (t->GetType() == "SignMessage") {
396     md_op_init = EVP_DigestSignInit;
397   } else if (t->GetType() == "VerifyMessage") {
398     md_op_init = EVP_DigestVerifyInit;
399     is_verify = true;
400   } else if (t->GetType() == "Encrypt") {
401     key_op_init = EVP_PKEY_encrypt_init;
402     key_op = EVP_PKEY_encrypt;
403   } else if (t->GetType() == "Derive") {
404     return TestDerive(t, key_map, key);
405   } else {
406     ADD_FAILURE() << "Unknown test " << t->GetType();
407     return false;
408   }
409 
410   const EVP_MD *digest = nullptr;
411   if (t->HasAttribute("Digest")) {
412     digest = GetDigest(t, t->GetAttributeOrDie("Digest"));
413     if (digest == nullptr) {
414       return false;
415     }
416   }
417 
418   // For verify tests, the "output" is the signature. Read it now so that, for
419   // tests which expect a failure in SetupContext, the attribute is still
420   // consumed.
421   std::vector<uint8_t> input, actual, output;
422   if (!t->GetBytes(&input, "Input") ||
423       (is_verify && !t->GetBytes(&output, "Output"))) {
424     return false;
425   }
426 
427   if (md_op_init) {
428     bssl::ScopedEVP_MD_CTX ctx, copy;
429     EVP_PKEY_CTX *pctx;
430     if (!md_op_init(ctx.get(), &pctx, digest, nullptr, key) ||
431         !SetupContext(t, key_map, pctx) ||
432         !EVP_MD_CTX_copy_ex(copy.get(), ctx.get())) {
433       return false;
434     }
435 
436     if (is_verify) {
437       return EVP_DigestVerify(ctx.get(), output.data(), output.size(),
438                               input.data(), input.size()) &&
439              EVP_DigestVerify(copy.get(), output.data(), output.size(),
440                               input.data(), input.size());
441     }
442 
443     size_t len;
444     if (!EVP_DigestSign(ctx.get(), nullptr, &len, input.data(), input.size())) {
445       return false;
446     }
447     actual.resize(len);
448     if (!EVP_DigestSign(ctx.get(), actual.data(), &len, input.data(),
449                         input.size()) ||
450         !t->GetBytes(&output, "Output")) {
451       return false;
452     }
453     actual.resize(len);
454     EXPECT_EQ(Bytes(output), Bytes(actual));
455 
456     // Repeat the test with |copy|, to check |EVP_MD_CTX_copy_ex| duplicated
457     // everything.
458     if (!EVP_DigestSign(copy.get(), nullptr, &len, input.data(),
459                         input.size())) {
460       return false;
461     }
462     actual.resize(len);
463     if (!EVP_DigestSign(copy.get(), actual.data(), &len, input.data(),
464                         input.size()) ||
465         !t->GetBytes(&output, "Output")) {
466       return false;
467     }
468     actual.resize(len);
469     EXPECT_EQ(Bytes(output), Bytes(actual));
470     return true;
471   }
472 
473   bssl::UniquePtr<EVP_PKEY_CTX> ctx(EVP_PKEY_CTX_new(key, nullptr));
474   if (!ctx ||
475       !key_op_init(ctx.get()) ||
476       (digest != nullptr &&
477        !EVP_PKEY_CTX_set_signature_md(ctx.get(), digest)) ||
478       !SetupContext(t, key_map, ctx.get())) {
479     return false;
480   }
481 
482   bssl::UniquePtr<EVP_PKEY_CTX> copy(EVP_PKEY_CTX_dup(ctx.get()));
483   if (!copy) {
484     return false;
485   }
486 
487   if (is_verify) {
488     return EVP_PKEY_verify(ctx.get(), output.data(), output.size(),
489                            input.data(), input.size()) &&
490            EVP_PKEY_verify(copy.get(), output.data(), output.size(),
491                            input.data(), input.size());
492   }
493 
494   for (EVP_PKEY_CTX *pctx : {ctx.get(), copy.get()}) {
495     size_t len;
496     if (!key_op(pctx, nullptr, &len, input.data(), input.size())) {
497       return false;
498     }
499     actual.resize(len);
500     if (!key_op(pctx, actual.data(), &len, input.data(), input.size())) {
501       return false;
502     }
503 
504     if (t->HasAttribute("CheckDecrypt")) {
505       // Encryption is non-deterministic, so we check by decrypting.
506       size_t plaintext_len;
507       bssl::UniquePtr<EVP_PKEY_CTX> decrypt_ctx(EVP_PKEY_CTX_new(key, nullptr));
508       if (!decrypt_ctx ||
509           !EVP_PKEY_decrypt_init(decrypt_ctx.get()) ||
510           (digest != nullptr &&
511            !EVP_PKEY_CTX_set_signature_md(decrypt_ctx.get(), digest)) ||
512           !SetupContext(t, key_map, decrypt_ctx.get()) ||
513           !EVP_PKEY_decrypt(decrypt_ctx.get(), nullptr, &plaintext_len,
514                             actual.data(), actual.size())) {
515         return false;
516       }
517       output.resize(plaintext_len);
518       if (!EVP_PKEY_decrypt(decrypt_ctx.get(), output.data(), &plaintext_len,
519                             actual.data(), actual.size())) {
520         ADD_FAILURE() << "Could not decrypt result.";
521         return false;
522       }
523       output.resize(plaintext_len);
524       EXPECT_EQ(Bytes(input), Bytes(output)) << "Decrypted result mismatch.";
525     } else if (t->HasAttribute("CheckVerify")) {
526       // Some signature schemes are non-deterministic, so we check by verifying.
527       bssl::UniquePtr<EVP_PKEY_CTX> verify_ctx(EVP_PKEY_CTX_new(key, nullptr));
528       if (!verify_ctx ||
529           !EVP_PKEY_verify_init(verify_ctx.get()) ||
530           (digest != nullptr &&
531            !EVP_PKEY_CTX_set_signature_md(verify_ctx.get(), digest)) ||
532           !SetupContext(t, key_map, verify_ctx.get())) {
533         return false;
534       }
535       if (t->HasAttribute("VerifyPSSSaltLength")) {
536         if (!EVP_PKEY_CTX_set_rsa_pss_saltlen(
537                 verify_ctx.get(),
538                 atoi(t->GetAttributeOrDie("VerifyPSSSaltLength").c_str()))) {
539           return false;
540         }
541       }
542       EXPECT_TRUE(EVP_PKEY_verify(verify_ctx.get(), actual.data(),
543                                   actual.size(), input.data(), input.size()))
544           << "Could not verify result.";
545     } else {
546       // By default, check by comparing the result against Output.
547       if (!t->GetBytes(&output, "Output")) {
548         return false;
549       }
550       actual.resize(len);
551       EXPECT_EQ(Bytes(output), Bytes(actual));
552     }
553   }
554   return true;
555 }
556 
TEST(EVPTest,TestVectors)557 TEST(EVPTest, TestVectors) {
558   KeyMap key_map;
559   FileTestGTest("crypto/evp/evp_tests.txt", [&](FileTest *t) {
560     bool result = TestEVP(t, &key_map);
561     if (t->HasAttribute("Error")) {
562       ASSERT_FALSE(result) << "Operation unexpectedly succeeded.";
563       uint32_t err = ERR_peek_error();
564       EXPECT_EQ(t->GetAttributeOrDie("Error"), ERR_reason_error_string(err));
565     } else if (!result) {
566       ADD_FAILURE() << "Operation unexpectedly failed.";
567     }
568   });
569 }
570 
RunWycheproofTest(const char * path)571 static void RunWycheproofTest(const char *path) {
572   SCOPED_TRACE(path);
573   FileTestGTest(path, [](FileTest *t) {
574     t->IgnoreInstruction("key.type");
575     // Extra ECDSA fields.
576     t->IgnoreInstruction("key.curve");
577     t->IgnoreInstruction("key.keySize");
578     t->IgnoreInstruction("key.wx");
579     t->IgnoreInstruction("key.wy");
580     t->IgnoreInstruction("key.uncompressed");
581     // Extra RSA fields.
582     t->IgnoreInstruction("e");
583     t->IgnoreInstruction("keyAsn");
584     t->IgnoreInstruction("keysize");
585     t->IgnoreInstruction("n");
586     t->IgnoreAttribute("padding");
587     t->IgnoreInstruction("keyJwk.alg");
588     t->IgnoreInstruction("keyJwk.e");
589     t->IgnoreInstruction("keyJwk.kid");
590     t->IgnoreInstruction("keyJwk.kty");
591     t->IgnoreInstruction("keyJwk.n");
592     // Extra EdDSA fields.
593     t->IgnoreInstruction("key.pk");
594     t->IgnoreInstruction("key.sk");
595     t->IgnoreInstruction("jwk.crv");
596     t->IgnoreInstruction("jwk.d");
597     t->IgnoreInstruction("jwk.kid");
598     t->IgnoreInstruction("jwk.kty");
599     t->IgnoreInstruction("jwk.x");
600     // Extra DSA fields.
601     t->IgnoreInstruction("key.g");
602     t->IgnoreInstruction("key.p");
603     t->IgnoreInstruction("key.q");
604     t->IgnoreInstruction("key.y");
605 
606     std::vector<uint8_t> der;
607     ASSERT_TRUE(t->GetInstructionBytes(&der, "keyDer"));
608     CBS cbs;
609     CBS_init(&cbs, der.data(), der.size());
610     bssl::UniquePtr<EVP_PKEY> key(EVP_parse_public_key(&cbs));
611     ASSERT_TRUE(key);
612 
613     const EVP_MD *md = nullptr;
614     if (t->HasInstruction("sha")) {
615       md = GetWycheproofDigest(t, "sha", true);
616       ASSERT_TRUE(md);
617     }
618 
619     bool is_pss = t->HasInstruction("mgf");
620     const EVP_MD *mgf1_md = nullptr;
621     int pss_salt_len = -1;
622     if (is_pss) {
623       ASSERT_EQ("MGF1", t->GetInstructionOrDie("mgf"));
624       mgf1_md = GetWycheproofDigest(t, "mgfSha", true);
625 
626       std::string s_len;
627       ASSERT_TRUE(t->GetInstruction(&s_len, "sLen"));
628       pss_salt_len = atoi(s_len.c_str());
629     }
630 
631     std::vector<uint8_t> msg;
632     ASSERT_TRUE(t->GetBytes(&msg, "msg"));
633     std::vector<uint8_t> sig;
634     ASSERT_TRUE(t->GetBytes(&sig, "sig"));
635     WycheproofResult result;
636     ASSERT_TRUE(GetWycheproofResult(t, &result));
637 
638     if (EVP_PKEY_id(key.get()) == EVP_PKEY_DSA) {
639       // DSA is deprecated and is not usable via EVP.
640       DSA *dsa = EVP_PKEY_get0_DSA(key.get());
641       uint8_t digest[EVP_MAX_MD_SIZE];
642       unsigned digest_len;
643       ASSERT_TRUE(
644           EVP_Digest(msg.data(), msg.size(), digest, &digest_len, md, nullptr));
645       int valid;
646       bool sig_ok = DSA_check_signature(&valid, digest, digest_len, sig.data(),
647                                         sig.size(), dsa) &&
648                     valid;
649       if (result == WycheproofResult::kValid) {
650         EXPECT_TRUE(sig_ok);
651       } else if (result == WycheproofResult::kInvalid) {
652         EXPECT_FALSE(sig_ok);
653       } else {
654         // this is a legacy signature, which may or may not be accepted.
655       }
656     } else {
657       bssl::ScopedEVP_MD_CTX ctx;
658       EVP_PKEY_CTX *pctx;
659       ASSERT_TRUE(
660           EVP_DigestVerifyInit(ctx.get(), &pctx, md, nullptr, key.get()));
661       if (is_pss) {
662         ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING));
663         ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_mgf1_md(pctx, mgf1_md));
664         ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, pss_salt_len));
665       }
666       int ret = EVP_DigestVerify(ctx.get(), sig.data(), sig.size(), msg.data(),
667                                  msg.size());
668       if (result == WycheproofResult::kValid) {
669         EXPECT_EQ(1, ret);
670       } else if (result == WycheproofResult::kInvalid) {
671         EXPECT_EQ(0, ret);
672       } else {
673         // this is a legacy signature, which may or may not be accepted.
674         EXPECT_TRUE(ret == 1 || ret == 0);
675       }
676     }
677   });
678 }
679 
TEST(EVPTest,WycheproofDSA)680 TEST(EVPTest, WycheproofDSA) {
681   RunWycheproofTest("third_party/wycheproof_testvectors/dsa_test.txt");
682 }
683 
TEST(EVPTest,WycheproofECDSAP224)684 TEST(EVPTest, WycheproofECDSAP224) {
685   RunWycheproofTest(
686       "third_party/wycheproof_testvectors/ecdsa_secp224r1_sha224_test.txt");
687   RunWycheproofTest(
688       "third_party/wycheproof_testvectors/ecdsa_secp224r1_sha256_test.txt");
689   RunWycheproofTest(
690       "third_party/wycheproof_testvectors/ecdsa_secp224r1_sha512_test.txt");
691 }
692 
TEST(EVPTest,WycheproofECDSAP256)693 TEST(EVPTest, WycheproofECDSAP256) {
694   RunWycheproofTest(
695       "third_party/wycheproof_testvectors/ecdsa_secp256r1_sha256_test.txt");
696   RunWycheproofTest(
697       "third_party/wycheproof_testvectors/ecdsa_secp256r1_sha512_test.txt");
698 }
699 
TEST(EVPTest,WycheproofECDSAP384)700 TEST(EVPTest, WycheproofECDSAP384) {
701   RunWycheproofTest(
702       "third_party/wycheproof_testvectors/ecdsa_secp384r1_sha384_test.txt");
703 }
704 
TEST(EVPTest,WycheproofECDSAP521)705 TEST(EVPTest, WycheproofECDSAP521) {
706   RunWycheproofTest(
707       "third_party/wycheproof_testvectors/ecdsa_secp384r1_sha512_test.txt");
708   RunWycheproofTest(
709       "third_party/wycheproof_testvectors/ecdsa_secp521r1_sha512_test.txt");
710 }
711 
TEST(EVPTest,WycheproofEdDSA)712 TEST(EVPTest, WycheproofEdDSA) {
713   RunWycheproofTest("third_party/wycheproof_testvectors/eddsa_test.txt");
714 }
715 
TEST(EVPTest,WycheproofRSAPKCS1)716 TEST(EVPTest, WycheproofRSAPKCS1) {
717   RunWycheproofTest(
718       "third_party/wycheproof_testvectors/rsa_signature_test.txt");
719 }
720 
TEST(EVPTest,WycheproofRSAPSS)721 TEST(EVPTest, WycheproofRSAPSS) {
722   RunWycheproofTest(
723       "third_party/wycheproof_testvectors/rsa_pss_2048_sha1_mgf1_20_test.txt");
724   RunWycheproofTest(
725       "third_party/wycheproof_testvectors/rsa_pss_2048_sha256_mgf1_0_test.txt");
726   RunWycheproofTest(
727       "third_party/wycheproof_testvectors/"
728       "rsa_pss_2048_sha256_mgf1_32_test.txt");
729   RunWycheproofTest(
730       "third_party/wycheproof_testvectors/"
731       "rsa_pss_3072_sha256_mgf1_32_test.txt");
732   RunWycheproofTest(
733       "third_party/wycheproof_testvectors/"
734       "rsa_pss_4096_sha256_mgf1_32_test.txt");
735   RunWycheproofTest(
736       "third_party/wycheproof_testvectors/"
737       "rsa_pss_4096_sha512_mgf1_32_test.txt");
738   RunWycheproofTest("third_party/wycheproof_testvectors/rsa_pss_misc_test.txt");
739 }
740