1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include <errno.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <sys/stat.h>
9
10 #include <algorithm>
11 #include <fstream>
12 #include <iomanip>
13 #include <iterator>
14 #include <string>
15 #include <tuple>
16 #include <unordered_map>
17 #include <utility>
18 #include <vector>
19
20 #ifdef ENABLE_VTUNE_JIT_INTERFACE
21 #include "src/third_party/vtune/v8-vtune.h"
22 #endif
23
24 #include "include/libplatform/libplatform.h"
25 #include "include/libplatform/v8-tracing.h"
26 #include "include/v8-inspector.h"
27 #include "include/v8-profiler.h"
28 #include "src/api/api-inl.h"
29 #include "src/base/cpu.h"
30 #include "src/base/logging.h"
31 #include "src/base/platform/platform.h"
32 #include "src/base/platform/time.h"
33 #include "src/base/sys-info.h"
34 #include "src/d8/d8-console.h"
35 #include "src/d8/d8-platforms.h"
36 #include "src/d8/d8.h"
37 #include "src/debug/debug-interface.h"
38 #include "src/deoptimizer/deoptimizer.h"
39 #include "src/diagnostics/basic-block-profiler.h"
40 #include "src/execution/vm-state-inl.h"
41 #include "src/flags/flags.h"
42 #include "src/handles/maybe-handles.h"
43 #include "src/init/v8.h"
44 #include "src/interpreter/interpreter.h"
45 #include "src/logging/counters.h"
46 #include "src/logging/log-utils.h"
47 #include "src/objects/managed.h"
48 #include "src/objects/objects-inl.h"
49 #include "src/objects/objects.h"
50 #include "src/parsing/parse-info.h"
51 #include "src/parsing/parsing.h"
52 #include "src/parsing/scanner-character-streams.h"
53 #include "src/profiler/profile-generator.h"
54 #include "src/sanitizer/msan.h"
55 #include "src/snapshot/snapshot.h"
56 #include "src/tasks/cancelable-task.h"
57 #include "src/trap-handler/trap-handler.h"
58 #include "src/utils/ostreams.h"
59 #include "src/utils/utils.h"
60 #include "src/wasm/wasm-engine.h"
61
62 #ifdef V8_FUZZILLI
63 #include "src/d8/cov.h"
64 #endif // V8_FUZZILLI
65
66 #ifdef V8_USE_PERFETTO
67 #include "perfetto/tracing.h"
68 #endif // V8_USE_PERFETTO
69
70 #ifdef V8_INTL_SUPPORT
71 #include "unicode/locid.h"
72 #endif // V8_INTL_SUPPORT
73
74 #ifdef V8_OS_LINUX
75 #include <sys/mman.h> // For MultiMappedAllocator.
76 #endif
77
78 #if !defined(_WIN32) && !defined(_WIN64)
79 #include <unistd.h> // NOLINT
80 #else
81 #include <windows.h> // NOLINT
82 #endif // !defined(_WIN32) && !defined(_WIN64)
83
84 #ifndef DCHECK
85 #define DCHECK(condition) assert(condition)
86 #endif
87
88 #ifndef CHECK
89 #define CHECK(condition) assert(condition)
90 #endif
91
92 #define TRACE_BS(...) \
93 do { \
94 if (i::FLAG_trace_backing_store) PrintF(__VA_ARGS__); \
95 } while (false)
96
97 namespace v8 {
98
99 namespace {
100
101 const int kMB = 1024 * 1024;
102
103 #ifdef V8_FUZZILLI
104 // REPRL = read-eval-print-reset-loop
105 // These file descriptors are being opened when Fuzzilli uses fork & execve to
106 // run V8.
107 #define REPRL_CRFD 100 // Control read file decriptor
108 #define REPRL_CWFD 101 // Control write file decriptor
109 #define REPRL_DRFD 102 // Data read file decriptor
110 #define REPRL_DWFD 103 // Data write file decriptor
111 bool fuzzilli_reprl = true;
112 #else
113 bool fuzzilli_reprl = false;
114 #endif // V8_FUZZILLI
115
116 const int kMaxSerializerMemoryUsage =
117 1 * kMB; // Arbitrary maximum for testing.
118
119 // Base class for shell ArrayBuffer allocators. It forwards all opertions to
120 // the default v8 allocator.
121 class ArrayBufferAllocatorBase : public v8::ArrayBuffer::Allocator {
122 public:
Allocate(size_t length)123 void* Allocate(size_t length) override {
124 return allocator_->Allocate(length);
125 }
126
AllocateUninitialized(size_t length)127 void* AllocateUninitialized(size_t length) override {
128 return allocator_->AllocateUninitialized(length);
129 }
130
Free(void * data,size_t length)131 void Free(void* data, size_t length) override {
132 allocator_->Free(data, length);
133 }
134
135 private:
136 std::unique_ptr<Allocator> allocator_ =
137 std::unique_ptr<Allocator>(NewDefaultAllocator());
138 };
139
140 // ArrayBuffer allocator that can use virtual memory to improve performance.
141 class ShellArrayBufferAllocator : public ArrayBufferAllocatorBase {
142 public:
Allocate(size_t length)143 void* Allocate(size_t length) override {
144 if (length >= kVMThreshold) return AllocateVM(length);
145 return ArrayBufferAllocatorBase::Allocate(length);
146 }
147
AllocateUninitialized(size_t length)148 void* AllocateUninitialized(size_t length) override {
149 if (length >= kVMThreshold) return AllocateVM(length);
150 return ArrayBufferAllocatorBase::AllocateUninitialized(length);
151 }
152
Free(void * data,size_t length)153 void Free(void* data, size_t length) override {
154 if (length >= kVMThreshold) {
155 FreeVM(data, length);
156 } else {
157 ArrayBufferAllocatorBase::Free(data, length);
158 }
159 }
160
161 private:
162 static constexpr size_t kVMThreshold = 65536;
163
AllocateVM(size_t length)164 void* AllocateVM(size_t length) {
165 DCHECK_LE(kVMThreshold, length);
166 v8::PageAllocator* page_allocator = i::GetPlatformPageAllocator();
167 size_t page_size = page_allocator->AllocatePageSize();
168 size_t allocated = RoundUp(length, page_size);
169 return i::AllocatePages(page_allocator, nullptr, allocated, page_size,
170 PageAllocator::kReadWrite);
171 }
172
FreeVM(void * data,size_t length)173 void FreeVM(void* data, size_t length) {
174 v8::PageAllocator* page_allocator = i::GetPlatformPageAllocator();
175 size_t page_size = page_allocator->AllocatePageSize();
176 size_t allocated = RoundUp(length, page_size);
177 CHECK(i::FreePages(page_allocator, data, allocated));
178 }
179 };
180
181 // ArrayBuffer allocator that never allocates over 10MB.
182 class MockArrayBufferAllocator : public ArrayBufferAllocatorBase {
183 protected:
Allocate(size_t length)184 void* Allocate(size_t length) override {
185 return ArrayBufferAllocatorBase::Allocate(Adjust(length));
186 }
187
AllocateUninitialized(size_t length)188 void* AllocateUninitialized(size_t length) override {
189 return ArrayBufferAllocatorBase::AllocateUninitialized(Adjust(length));
190 }
191
Free(void * data,size_t length)192 void Free(void* data, size_t length) override {
193 return ArrayBufferAllocatorBase::Free(data, Adjust(length));
194 }
195
196 private:
Adjust(size_t length)197 size_t Adjust(size_t length) {
198 const size_t kAllocationLimit = 10 * kMB;
199 return length > kAllocationLimit ? i::AllocatePageSize() : length;
200 }
201 };
202
203 // ArrayBuffer allocator that can be equipped with a limit to simulate system
204 // OOM.
205 class MockArrayBufferAllocatiorWithLimit : public MockArrayBufferAllocator {
206 public:
MockArrayBufferAllocatiorWithLimit(size_t allocation_limit)207 explicit MockArrayBufferAllocatiorWithLimit(size_t allocation_limit)
208 : space_left_(allocation_limit) {}
209
210 protected:
Allocate(size_t length)211 void* Allocate(size_t length) override {
212 if (length > space_left_) {
213 return nullptr;
214 }
215 space_left_ -= length;
216 return MockArrayBufferAllocator::Allocate(length);
217 }
218
AllocateUninitialized(size_t length)219 void* AllocateUninitialized(size_t length) override {
220 if (length > space_left_) {
221 return nullptr;
222 }
223 space_left_ -= length;
224 return MockArrayBufferAllocator::AllocateUninitialized(length);
225 }
226
Free(void * data,size_t length)227 void Free(void* data, size_t length) override {
228 space_left_ += length;
229 return MockArrayBufferAllocator::Free(data, length);
230 }
231
232 private:
233 std::atomic<size_t> space_left_;
234 };
235
236 #ifdef V8_OS_LINUX
237
238 // This is a mock allocator variant that provides a huge virtual allocation
239 // backed by a small real allocation that is repeatedly mapped. If you create an
240 // array on memory allocated by this allocator, you will observe that elements
241 // will alias each other as if their indices were modulo-divided by the real
242 // allocation length.
243 // The purpose is to allow stability-testing of huge (typed) arrays without
244 // actually consuming huge amounts of physical memory.
245 // This is currently only available on Linux because it relies on {mremap}.
246 class MultiMappedAllocator : public ArrayBufferAllocatorBase {
247 protected:
Allocate(size_t length)248 void* Allocate(size_t length) override {
249 if (length < kChunkSize) {
250 return ArrayBufferAllocatorBase::Allocate(length);
251 }
252 // We use mmap, which initializes pages to zero anyway.
253 return AllocateUninitialized(length);
254 }
255
AllocateUninitialized(size_t length)256 void* AllocateUninitialized(size_t length) override {
257 if (length < kChunkSize) {
258 return ArrayBufferAllocatorBase::AllocateUninitialized(length);
259 }
260 size_t rounded_length = RoundUp(length, kChunkSize);
261 int prot = PROT_READ | PROT_WRITE;
262 // We have to specify MAP_SHARED to make {mremap} below do what we want.
263 int flags = MAP_SHARED | MAP_ANONYMOUS;
264 void* real_alloc = mmap(nullptr, kChunkSize, prot, flags, -1, 0);
265 if (reinterpret_cast<intptr_t>(real_alloc) == -1) {
266 // If we ran into some limit (physical or virtual memory, or number
267 // of mappings, etc), return {nullptr}, which callers can handle.
268 if (errno == ENOMEM) {
269 return nullptr;
270 }
271 // Other errors may be bugs which we want to learn about.
272 FATAL("mmap (real) failed with error %d: %s", errno, strerror(errno));
273 }
274 void* virtual_alloc =
275 mmap(nullptr, rounded_length, prot, flags | MAP_NORESERVE, -1, 0);
276 if (reinterpret_cast<intptr_t>(virtual_alloc) == -1) {
277 if (errno == ENOMEM) {
278 // Undo earlier, successful mappings.
279 munmap(real_alloc, kChunkSize);
280 return nullptr;
281 }
282 FATAL("mmap (virtual) failed with error %d: %s", errno, strerror(errno));
283 }
284 i::Address virtual_base = reinterpret_cast<i::Address>(virtual_alloc);
285 i::Address virtual_end = virtual_base + rounded_length;
286 for (i::Address to_map = virtual_base; to_map < virtual_end;
287 to_map += kChunkSize) {
288 // Specifying 0 as the "old size" causes the existing map entry to not
289 // get deleted, which is important so that we can remap it again in the
290 // next iteration of this loop.
291 void* result =
292 mremap(real_alloc, 0, kChunkSize, MREMAP_MAYMOVE | MREMAP_FIXED,
293 reinterpret_cast<void*>(to_map));
294 if (reinterpret_cast<intptr_t>(result) == -1) {
295 if (errno == ENOMEM) {
296 // Undo earlier, successful mappings.
297 munmap(real_alloc, kChunkSize);
298 munmap(virtual_alloc, (to_map - virtual_base));
299 return nullptr;
300 }
301 FATAL("mremap failed with error %d: %s", errno, strerror(errno));
302 }
303 }
304 base::MutexGuard lock_guard(®ions_mutex_);
305 regions_[virtual_alloc] = real_alloc;
306 return virtual_alloc;
307 }
308
Free(void * data,size_t length)309 void Free(void* data, size_t length) override {
310 if (length < kChunkSize) {
311 return ArrayBufferAllocatorBase::Free(data, length);
312 }
313 base::MutexGuard lock_guard(®ions_mutex_);
314 void* real_alloc = regions_[data];
315 munmap(real_alloc, kChunkSize);
316 size_t rounded_length = RoundUp(length, kChunkSize);
317 munmap(data, rounded_length);
318 regions_.erase(data);
319 }
320
321 private:
322 // Aiming for a "Huge Page" (2M on Linux x64) to go easy on the TLB.
323 static constexpr size_t kChunkSize = 2 * 1024 * 1024;
324
325 std::unordered_map<void*, void*> regions_;
326 base::Mutex regions_mutex_;
327 };
328
329 #endif // V8_OS_LINUX
330
331 v8::Platform* g_default_platform;
332 std::unique_ptr<v8::Platform> g_platform;
333
Throw(Isolate * isolate,const char * message)334 static Local<Value> Throw(Isolate* isolate, const char* message) {
335 return isolate->ThrowException(
336 String::NewFromUtf8(isolate, message).ToLocalChecked());
337 }
338
TryGetValue(v8::Isolate * isolate,Local<Context> context,Local<v8::Object> object,const char * property)339 static MaybeLocal<Value> TryGetValue(v8::Isolate* isolate,
340 Local<Context> context,
341 Local<v8::Object> object,
342 const char* property) {
343 MaybeLocal<String> v8_str = String::NewFromUtf8(isolate, property);
344 if (v8_str.IsEmpty()) return {};
345 return object->Get(context, v8_str.ToLocalChecked());
346 }
347
GetValue(v8::Isolate * isolate,Local<Context> context,Local<v8::Object> object,const char * property)348 static Local<Value> GetValue(v8::Isolate* isolate, Local<Context> context,
349 Local<v8::Object> object, const char* property) {
350 return TryGetValue(isolate, context, object, property).ToLocalChecked();
351 }
352
GetWorkerFromInternalField(Isolate * isolate,Local<Object> object)353 std::shared_ptr<Worker> GetWorkerFromInternalField(Isolate* isolate,
354 Local<Object> object) {
355 if (object->InternalFieldCount() != 1) {
356 Throw(isolate, "this is not a Worker");
357 return nullptr;
358 }
359
360 i::Handle<i::Object> handle = Utils::OpenHandle(*object->GetInternalField(0));
361 if (handle->IsSmi()) {
362 Throw(isolate, "Worker is defunct because main thread is terminating");
363 return nullptr;
364 }
365 auto managed = i::Handle<i::Managed<Worker>>::cast(handle);
366 return managed->get();
367 }
368
GetThreadOptions(const char * name)369 base::Thread::Options GetThreadOptions(const char* name) {
370 // On some systems (OSX 10.6) the stack size default is 0.5Mb or less
371 // which is not enough to parse the big literal expressions used in tests.
372 // The stack size should be at least StackGuard::kLimitSize + some
373 // OS-specific padding for thread startup code. 2Mbytes seems to be enough.
374 return base::Thread::Options(name, 2 * kMB);
375 }
376
377 } // namespace
378
379 namespace tracing {
380
381 namespace {
382
383 static constexpr char kIncludedCategoriesParam[] = "included_categories";
384
385 class TraceConfigParser {
386 public:
FillTraceConfig(v8::Isolate * isolate,platform::tracing::TraceConfig * trace_config,const char * json_str)387 static void FillTraceConfig(v8::Isolate* isolate,
388 platform::tracing::TraceConfig* trace_config,
389 const char* json_str) {
390 HandleScope outer_scope(isolate);
391 Local<Context> context = Context::New(isolate);
392 Context::Scope context_scope(context);
393 HandleScope inner_scope(isolate);
394
395 Local<String> source =
396 String::NewFromUtf8(isolate, json_str).ToLocalChecked();
397 Local<Value> result = JSON::Parse(context, source).ToLocalChecked();
398 Local<v8::Object> trace_config_object = Local<v8::Object>::Cast(result);
399
400 UpdateIncludedCategoriesList(isolate, context, trace_config_object,
401 trace_config);
402 }
403
404 private:
UpdateIncludedCategoriesList(v8::Isolate * isolate,Local<Context> context,Local<v8::Object> object,platform::tracing::TraceConfig * trace_config)405 static int UpdateIncludedCategoriesList(
406 v8::Isolate* isolate, Local<Context> context, Local<v8::Object> object,
407 platform::tracing::TraceConfig* trace_config) {
408 Local<Value> value =
409 GetValue(isolate, context, object, kIncludedCategoriesParam);
410 if (value->IsArray()) {
411 Local<Array> v8_array = Local<Array>::Cast(value);
412 for (int i = 0, length = v8_array->Length(); i < length; ++i) {
413 Local<Value> v = v8_array->Get(context, i)
414 .ToLocalChecked()
415 ->ToString(context)
416 .ToLocalChecked();
417 String::Utf8Value str(isolate, v->ToString(context).ToLocalChecked());
418 trace_config->AddIncludedCategory(*str);
419 }
420 return v8_array->Length();
421 }
422 return 0;
423 }
424 };
425
426 } // namespace
427
CreateTraceConfigFromJSON(v8::Isolate * isolate,const char * json_str)428 static platform::tracing::TraceConfig* CreateTraceConfigFromJSON(
429 v8::Isolate* isolate, const char* json_str) {
430 platform::tracing::TraceConfig* trace_config =
431 new platform::tracing::TraceConfig();
432 TraceConfigParser::FillTraceConfig(isolate, trace_config, json_str);
433 return trace_config;
434 }
435
436 } // namespace tracing
437
438 class ExternalOwningOneByteStringResource
439 : public String::ExternalOneByteStringResource {
440 public:
441 ExternalOwningOneByteStringResource() = default;
ExternalOwningOneByteStringResource(std::unique_ptr<base::OS::MemoryMappedFile> file)442 ExternalOwningOneByteStringResource(
443 std::unique_ptr<base::OS::MemoryMappedFile> file)
444 : file_(std::move(file)) {}
data() const445 const char* data() const override {
446 return static_cast<char*>(file_->memory());
447 }
length() const448 size_t length() const override { return file_->size(); }
449
450 private:
451 std::unique_ptr<base::OS::MemoryMappedFile> file_;
452 };
453
454 CounterMap* Shell::counter_map_;
455 base::OS::MemoryMappedFile* Shell::counters_file_ = nullptr;
456 CounterCollection Shell::local_counters_;
457 CounterCollection* Shell::counters_ = &local_counters_;
458 base::LazyMutex Shell::context_mutex_;
459 const base::TimeTicks Shell::kInitialTicks =
460 base::TimeTicks::HighResolutionNow();
461 Global<Function> Shell::stringify_function_;
462 base::LazyMutex Shell::workers_mutex_;
463 bool Shell::allow_new_workers_ = true;
464 std::unordered_set<std::shared_ptr<Worker>> Shell::running_workers_;
465 std::atomic<bool> Shell::script_executed_{false};
466 base::LazyMutex Shell::isolate_status_lock_;
467 std::map<v8::Isolate*, bool> Shell::isolate_status_;
468 std::map<v8::Isolate*, int> Shell::isolate_running_streaming_tasks_;
469 base::LazyMutex Shell::cached_code_mutex_;
470 std::map<std::string, std::unique_ptr<ScriptCompiler::CachedData>>
471 Shell::cached_code_map_;
472 std::atomic<int> Shell::unhandled_promise_rejections_{0};
473
474 Global<Context> Shell::evaluation_context_;
475 ArrayBuffer::Allocator* Shell::array_buffer_allocator;
476 bool check_d8_flag_contradictions = true;
477 ShellOptions Shell::options;
478 base::OnceType Shell::quit_once_ = V8_ONCE_INIT;
479
LookupCodeCache(Isolate * isolate,Local<Value> source)480 ScriptCompiler::CachedData* Shell::LookupCodeCache(Isolate* isolate,
481 Local<Value> source) {
482 base::MutexGuard lock_guard(cached_code_mutex_.Pointer());
483 CHECK(source->IsString());
484 v8::String::Utf8Value key(isolate, source);
485 DCHECK(*key);
486 auto entry = cached_code_map_.find(*key);
487 if (entry != cached_code_map_.end() && entry->second) {
488 int length = entry->second->length;
489 uint8_t* cache = new uint8_t[length];
490 memcpy(cache, entry->second->data, length);
491 ScriptCompiler::CachedData* cached_data = new ScriptCompiler::CachedData(
492 cache, length, ScriptCompiler::CachedData::BufferOwned);
493 return cached_data;
494 }
495 return nullptr;
496 }
497
StoreInCodeCache(Isolate * isolate,Local<Value> source,const ScriptCompiler::CachedData * cache_data)498 void Shell::StoreInCodeCache(Isolate* isolate, Local<Value> source,
499 const ScriptCompiler::CachedData* cache_data) {
500 base::MutexGuard lock_guard(cached_code_mutex_.Pointer());
501 CHECK(source->IsString());
502 if (cache_data == nullptr) return;
503 v8::String::Utf8Value key(isolate, source);
504 DCHECK(*key);
505 int length = cache_data->length;
506 uint8_t* cache = new uint8_t[length];
507 memcpy(cache, cache_data->data, length);
508 cached_code_map_[*key] = std::unique_ptr<ScriptCompiler::CachedData>(
509 new ScriptCompiler::CachedData(cache, length,
510 ScriptCompiler::CachedData::BufferOwned));
511 }
512
513 // Dummy external source stream which returns the whole source in one go.
514 // TODO(leszeks): Also test chunking the data.
515 class DummySourceStream : public v8::ScriptCompiler::ExternalSourceStream {
516 public:
DummySourceStream(Local<String> source)517 explicit DummySourceStream(Local<String> source) : done_(false) {
518 source_buffer_ = Utils::OpenHandle(*source)->ToCString(
519 i::ALLOW_NULLS, i::FAST_STRING_TRAVERSAL, &source_length_);
520 }
521
GetMoreData(const uint8_t ** src)522 size_t GetMoreData(const uint8_t** src) override {
523 if (done_) {
524 return 0;
525 }
526 *src = reinterpret_cast<uint8_t*>(source_buffer_.release());
527 done_ = true;
528
529 return source_length_;
530 }
531
532 private:
533 int source_length_;
534 std::unique_ptr<char[]> source_buffer_;
535 bool done_;
536 };
537
538 class StreamingCompileTask final : public v8::Task {
539 public:
StreamingCompileTask(Isolate * isolate,v8::ScriptCompiler::StreamedSource * streamed_source)540 StreamingCompileTask(Isolate* isolate,
541 v8::ScriptCompiler::StreamedSource* streamed_source)
542 : isolate_(isolate),
543 script_streaming_task_(
544 v8::ScriptCompiler::StartStreaming(isolate, streamed_source)) {
545 Shell::NotifyStartStreamingTask(isolate_);
546 }
547
Run()548 void Run() override {
549 script_streaming_task_->Run();
550 // Signal that the task has finished using the task runner to wake the
551 // message loop.
552 Shell::PostForegroundTask(isolate_, std::make_unique<FinishTask>(isolate_));
553 }
554
555 private:
556 class FinishTask final : public v8::Task {
557 public:
FinishTask(Isolate * isolate)558 explicit FinishTask(Isolate* isolate) : isolate_(isolate) {}
Run()559 void Run() final { Shell::NotifyFinishStreamingTask(isolate_); }
560 Isolate* isolate_;
561 };
562
563 Isolate* isolate_;
564 std::unique_ptr<v8::ScriptCompiler::ScriptStreamingTask>
565 script_streaming_task_;
566 };
567
568 // Executes a string within the current v8 context.
ExecuteString(Isolate * isolate,Local<String> source,Local<Value> name,PrintResult print_result,ReportExceptions report_exceptions,ProcessMessageQueue process_message_queue)569 bool Shell::ExecuteString(Isolate* isolate, Local<String> source,
570 Local<Value> name, PrintResult print_result,
571 ReportExceptions report_exceptions,
572 ProcessMessageQueue process_message_queue) {
573 if (i::FLAG_parse_only) {
574 i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
575 i::VMState<PARSER> state(i_isolate);
576 i::Handle<i::String> str = Utils::OpenHandle(*(source));
577
578 // Set up ParseInfo.
579 i::UnoptimizedCompileState compile_state(i_isolate);
580
581 i::UnoptimizedCompileFlags flags =
582 i::UnoptimizedCompileFlags::ForToplevelCompile(
583 i_isolate, true, i::construct_language_mode(i::FLAG_use_strict),
584 i::REPLMode::kNo);
585
586 if (options.compile_options == v8::ScriptCompiler::kEagerCompile) {
587 flags.set_is_eager(true);
588 }
589
590 i::ParseInfo parse_info(i_isolate, flags, &compile_state);
591
592 i::Handle<i::Script> script = parse_info.CreateScript(
593 i_isolate, str, i::kNullMaybeHandle, ScriptOriginOptions());
594 if (!i::parsing::ParseProgram(&parse_info, script, i_isolate,
595 i::parsing::ReportStatisticsMode::kYes)) {
596 parse_info.pending_error_handler()->PrepareErrors(
597 i_isolate, parse_info.ast_value_factory());
598 parse_info.pending_error_handler()->ReportErrors(i_isolate, script);
599
600 fprintf(stderr, "Failed parsing\n");
601 return false;
602 }
603 return true;
604 }
605
606 HandleScope handle_scope(isolate);
607 TryCatch try_catch(isolate);
608 try_catch.SetVerbose(report_exceptions == kReportExceptions);
609
610 MaybeLocal<Value> maybe_result;
611 bool success = true;
612 {
613 PerIsolateData* data = PerIsolateData::Get(isolate);
614 Local<Context> realm =
615 Local<Context>::New(isolate, data->realms_[data->realm_current_]);
616 Context::Scope context_scope(realm);
617 MaybeLocal<Script> maybe_script;
618 Local<Context> context(isolate->GetCurrentContext());
619 ScriptOrigin origin(name);
620
621 if (options.compile_options == ScriptCompiler::kConsumeCodeCache) {
622 ScriptCompiler::CachedData* cached_code =
623 LookupCodeCache(isolate, source);
624 if (cached_code != nullptr) {
625 ScriptCompiler::Source script_source(source, origin, cached_code);
626 maybe_script = ScriptCompiler::Compile(context, &script_source,
627 options.compile_options);
628 CHECK(!cached_code->rejected);
629 } else {
630 ScriptCompiler::Source script_source(source, origin);
631 maybe_script = ScriptCompiler::Compile(
632 context, &script_source, ScriptCompiler::kNoCompileOptions);
633 }
634 } else if (options.streaming_compile) {
635 v8::ScriptCompiler::StreamedSource streamed_source(
636 std::make_unique<DummySourceStream>(source),
637 v8::ScriptCompiler::StreamedSource::UTF8);
638
639 PostBlockingBackgroundTask(
640 std::make_unique<StreamingCompileTask>(isolate, &streamed_source));
641
642 // Pump the loop until the streaming task completes.
643 Shell::CompleteMessageLoop(isolate);
644
645 maybe_script =
646 ScriptCompiler::Compile(context, &streamed_source, source, origin);
647 } else {
648 ScriptCompiler::Source script_source(source, origin);
649 maybe_script = ScriptCompiler::Compile(context, &script_source,
650 options.compile_options);
651 }
652
653 Local<Script> script;
654 if (!maybe_script.ToLocal(&script)) {
655 return false;
656 }
657
658 if (options.code_cache_options ==
659 ShellOptions::CodeCacheOptions::kProduceCache) {
660 // Serialize and store it in memory for the next execution.
661 ScriptCompiler::CachedData* cached_data =
662 ScriptCompiler::CreateCodeCache(script->GetUnboundScript());
663 StoreInCodeCache(isolate, source, cached_data);
664 delete cached_data;
665 }
666 maybe_result = script->Run(realm);
667 if (options.code_cache_options ==
668 ShellOptions::CodeCacheOptions::kProduceCacheAfterExecute) {
669 // Serialize and store it in memory for the next execution.
670 ScriptCompiler::CachedData* cached_data =
671 ScriptCompiler::CreateCodeCache(script->GetUnboundScript());
672 StoreInCodeCache(isolate, source, cached_data);
673 delete cached_data;
674 }
675 if (process_message_queue) {
676 if (!EmptyMessageQueues(isolate)) success = false;
677 if (!HandleUnhandledPromiseRejections(isolate)) success = false;
678 }
679 data->realm_current_ = data->realm_switch_;
680 }
681 Local<Value> result;
682 if (!maybe_result.ToLocal(&result)) {
683 DCHECK(try_catch.HasCaught());
684 return false;
685 }
686 // It's possible that a FinalizationRegistry cleanup task threw an error.
687 if (try_catch.HasCaught()) success = false;
688 if (print_result) {
689 if (options.test_shell) {
690 if (!result->IsUndefined()) {
691 // If all went well and the result wasn't undefined then print
692 // the returned value.
693 v8::String::Utf8Value str(isolate, result);
694 fwrite(*str, sizeof(**str), str.length(), stdout);
695 printf("\n");
696 }
697 } else {
698 v8::String::Utf8Value str(isolate, Stringify(isolate, result));
699 fwrite(*str, sizeof(**str), str.length(), stdout);
700 printf("\n");
701 }
702 }
703 return success;
704 }
705
706 namespace {
707
ToSTLString(Isolate * isolate,Local<String> v8_str)708 std::string ToSTLString(Isolate* isolate, Local<String> v8_str) {
709 String::Utf8Value utf8(isolate, v8_str);
710 // Should not be able to fail since the input is a String.
711 CHECK(*utf8);
712 return *utf8;
713 }
714
IsAbsolutePath(const std::string & path)715 bool IsAbsolutePath(const std::string& path) {
716 #if defined(_WIN32) || defined(_WIN64)
717 // This is an incorrect approximation, but should
718 // work for all our test-running cases.
719 return path.find(':') != std::string::npos;
720 #else
721 return path[0] == '/';
722 #endif
723 }
724
GetWorkingDirectory()725 std::string GetWorkingDirectory() {
726 #if defined(_WIN32) || defined(_WIN64)
727 char system_buffer[MAX_PATH];
728 // Unicode paths are unsupported, which is fine as long as
729 // the test directory doesn't include any such paths.
730 DWORD len = GetCurrentDirectoryA(MAX_PATH, system_buffer);
731 CHECK_GT(len, 0);
732 return system_buffer;
733 #else
734 char curdir[PATH_MAX];
735 CHECK_NOT_NULL(getcwd(curdir, PATH_MAX));
736 return curdir;
737 #endif
738 }
739
740 // Returns the directory part of path, without the trailing '/'.
DirName(const std::string & path)741 std::string DirName(const std::string& path) {
742 DCHECK(IsAbsolutePath(path));
743 size_t last_slash = path.find_last_of('/');
744 DCHECK(last_slash != std::string::npos);
745 return path.substr(0, last_slash);
746 }
747
748 // Resolves path to an absolute path if necessary, and does some
749 // normalization (eliding references to the current directory
750 // and replacing backslashes with slashes).
NormalizePath(const std::string & path,const std::string & dir_name)751 std::string NormalizePath(const std::string& path,
752 const std::string& dir_name) {
753 std::string absolute_path;
754 if (IsAbsolutePath(path)) {
755 absolute_path = path;
756 } else {
757 absolute_path = dir_name + '/' + path;
758 }
759 std::replace(absolute_path.begin(), absolute_path.end(), '\\', '/');
760 std::vector<std::string> segments;
761 std::istringstream segment_stream(absolute_path);
762 std::string segment;
763 while (std::getline(segment_stream, segment, '/')) {
764 if (segment == "..") {
765 segments.pop_back();
766 } else if (segment != ".") {
767 segments.push_back(segment);
768 }
769 }
770 // Join path segments.
771 std::ostringstream os;
772 std::copy(segments.begin(), segments.end() - 1,
773 std::ostream_iterator<std::string>(os, "/"));
774 os << *segments.rbegin();
775 return os.str();
776 }
777
778 // Per-context Module data, allowing sharing of module maps
779 // across top-level module loads.
780 class ModuleEmbedderData {
781 private:
782 class ModuleGlobalHash {
783 public:
ModuleGlobalHash(Isolate * isolate)784 explicit ModuleGlobalHash(Isolate* isolate) : isolate_(isolate) {}
operator ()(const Global<Module> & module) const785 size_t operator()(const Global<Module>& module) const {
786 return module.Get(isolate_)->GetIdentityHash();
787 }
788
789 private:
790 Isolate* isolate_;
791 };
792
793 public:
ModuleEmbedderData(Isolate * isolate)794 explicit ModuleEmbedderData(Isolate* isolate)
795 : module_to_specifier_map(10, ModuleGlobalHash(isolate)) {}
796
797 // Map from normalized module specifier to Module.
798 std::unordered_map<std::string, Global<Module>> specifier_to_module_map;
799 // Map from Module to its URL as defined in the ScriptOrigin
800 std::unordered_map<Global<Module>, std::string, ModuleGlobalHash>
801 module_to_specifier_map;
802 };
803
804 enum { kModuleEmbedderDataIndex, kInspectorClientIndex };
805
InitializeModuleEmbedderData(Local<Context> context)806 void InitializeModuleEmbedderData(Local<Context> context) {
807 context->SetAlignedPointerInEmbedderData(
808 kModuleEmbedderDataIndex, new ModuleEmbedderData(context->GetIsolate()));
809 }
810
GetModuleDataFromContext(Local<Context> context)811 ModuleEmbedderData* GetModuleDataFromContext(Local<Context> context) {
812 return static_cast<ModuleEmbedderData*>(
813 context->GetAlignedPointerFromEmbedderData(kModuleEmbedderDataIndex));
814 }
815
DisposeModuleEmbedderData(Local<Context> context)816 void DisposeModuleEmbedderData(Local<Context> context) {
817 delete GetModuleDataFromContext(context);
818 context->SetAlignedPointerInEmbedderData(kModuleEmbedderDataIndex, nullptr);
819 }
820
ResolveModuleCallback(Local<Context> context,Local<String> specifier,Local<Module> referrer)821 MaybeLocal<Module> ResolveModuleCallback(Local<Context> context,
822 Local<String> specifier,
823 Local<Module> referrer) {
824 Isolate* isolate = context->GetIsolate();
825 ModuleEmbedderData* d = GetModuleDataFromContext(context);
826 auto specifier_it =
827 d->module_to_specifier_map.find(Global<Module>(isolate, referrer));
828 CHECK(specifier_it != d->module_to_specifier_map.end());
829 std::string absolute_path = NormalizePath(ToSTLString(isolate, specifier),
830 DirName(specifier_it->second));
831 auto module_it = d->specifier_to_module_map.find(absolute_path);
832 CHECK(module_it != d->specifier_to_module_map.end());
833 return module_it->second.Get(isolate);
834 }
835
836 } // anonymous namespace
837
FetchModuleTree(Local<Module> referrer,Local<Context> context,const std::string & file_name)838 MaybeLocal<Module> Shell::FetchModuleTree(Local<Module> referrer,
839 Local<Context> context,
840 const std::string& file_name) {
841 DCHECK(IsAbsolutePath(file_name));
842 Isolate* isolate = context->GetIsolate();
843 Local<String> source_text = ReadFile(isolate, file_name.c_str());
844 if (source_text.IsEmpty() && options.fuzzy_module_file_extensions) {
845 std::string fallback_file_name = file_name + ".js";
846 source_text = ReadFile(isolate, fallback_file_name.c_str());
847 if (source_text.IsEmpty()) {
848 fallback_file_name = file_name + ".mjs";
849 source_text = ReadFile(isolate, fallback_file_name.c_str());
850 }
851 }
852
853 ModuleEmbedderData* d = GetModuleDataFromContext(context);
854 if (source_text.IsEmpty()) {
855 std::string msg = "d8: Error reading module from " + file_name;
856 if (!referrer.IsEmpty()) {
857 auto specifier_it =
858 d->module_to_specifier_map.find(Global<Module>(isolate, referrer));
859 CHECK(specifier_it != d->module_to_specifier_map.end());
860 msg += "\n imported by " + specifier_it->second;
861 }
862 Throw(isolate, msg.c_str());
863 return MaybeLocal<Module>();
864 }
865 ScriptOrigin origin(
866 String::NewFromUtf8(isolate, file_name.c_str()).ToLocalChecked(),
867 Local<Integer>(), Local<Integer>(), Local<Boolean>(), Local<Integer>(),
868 Local<Value>(), Local<Boolean>(), Local<Boolean>(), True(isolate));
869 ScriptCompiler::Source source(source_text, origin);
870 Local<Module> module;
871 if (!ScriptCompiler::CompileModule(isolate, &source).ToLocal(&module)) {
872 return MaybeLocal<Module>();
873 }
874
875 CHECK(d->specifier_to_module_map
876 .insert(std::make_pair(file_name, Global<Module>(isolate, module)))
877 .second);
878 CHECK(d->module_to_specifier_map
879 .insert(std::make_pair(Global<Module>(isolate, module), file_name))
880 .second);
881
882 std::string dir_name = DirName(file_name);
883
884 for (int i = 0, length = module->GetModuleRequestsLength(); i < length; ++i) {
885 Local<String> name = module->GetModuleRequest(i);
886 std::string absolute_path =
887 NormalizePath(ToSTLString(isolate, name), dir_name);
888 if (d->specifier_to_module_map.count(absolute_path)) continue;
889 if (FetchModuleTree(module, context, absolute_path).IsEmpty()) {
890 return MaybeLocal<Module>();
891 }
892 }
893
894 return module;
895 }
896
897 namespace {
898
899 struct DynamicImportData {
DynamicImportDatav8::__anone44fe7ab0511::DynamicImportData900 DynamicImportData(Isolate* isolate_, Local<String> referrer_,
901 Local<String> specifier_,
902 Local<Promise::Resolver> resolver_)
903 : isolate(isolate_) {
904 referrer.Reset(isolate, referrer_);
905 specifier.Reset(isolate, specifier_);
906 resolver.Reset(isolate, resolver_);
907 }
908
909 Isolate* isolate;
910 Global<String> referrer;
911 Global<String> specifier;
912 Global<Promise::Resolver> resolver;
913 };
914
915 struct ModuleResolutionData {
ModuleResolutionDatav8::__anone44fe7ab0511::ModuleResolutionData916 ModuleResolutionData(Isolate* isolate_, Local<Value> module_namespace_,
917 Local<Promise::Resolver> resolver_)
918 : isolate(isolate_) {
919 module_namespace.Reset(isolate, module_namespace_);
920 resolver.Reset(isolate, resolver_);
921 }
922
923 Isolate* isolate;
924 Global<Value> module_namespace;
925 Global<Promise::Resolver> resolver;
926 };
927
928 } // namespace
929
ModuleResolutionSuccessCallback(const FunctionCallbackInfo<Value> & info)930 void Shell::ModuleResolutionSuccessCallback(
931 const FunctionCallbackInfo<Value>& info) {
932 std::unique_ptr<ModuleResolutionData> module_resolution_data(
933 static_cast<ModuleResolutionData*>(
934 info.Data().As<v8::External>()->Value()));
935 Isolate* isolate(module_resolution_data->isolate);
936 HandleScope handle_scope(isolate);
937
938 Local<Promise::Resolver> resolver(
939 module_resolution_data->resolver.Get(isolate));
940 Local<Value> module_namespace(
941 module_resolution_data->module_namespace.Get(isolate));
942
943 PerIsolateData* data = PerIsolateData::Get(isolate);
944 Local<Context> realm = data->realms_[data->realm_current_].Get(isolate);
945 Context::Scope context_scope(realm);
946
947 resolver->Resolve(realm, module_namespace).ToChecked();
948 }
949
ModuleResolutionFailureCallback(const FunctionCallbackInfo<Value> & info)950 void Shell::ModuleResolutionFailureCallback(
951 const FunctionCallbackInfo<Value>& info) {
952 std::unique_ptr<ModuleResolutionData> module_resolution_data(
953 static_cast<ModuleResolutionData*>(
954 info.Data().As<v8::External>()->Value()));
955 Isolate* isolate(module_resolution_data->isolate);
956 HandleScope handle_scope(isolate);
957
958 Local<Promise::Resolver> resolver(
959 module_resolution_data->resolver.Get(isolate));
960
961 PerIsolateData* data = PerIsolateData::Get(isolate);
962 Local<Context> realm = data->realms_[data->realm_current_].Get(isolate);
963 Context::Scope context_scope(realm);
964
965 DCHECK_EQ(info.Length(), 1);
966 resolver->Reject(realm, info[0]).ToChecked();
967 }
968
HostImportModuleDynamically(Local<Context> context,Local<ScriptOrModule> referrer,Local<String> specifier)969 MaybeLocal<Promise> Shell::HostImportModuleDynamically(
970 Local<Context> context, Local<ScriptOrModule> referrer,
971 Local<String> specifier) {
972 Isolate* isolate = context->GetIsolate();
973
974 MaybeLocal<Promise::Resolver> maybe_resolver =
975 Promise::Resolver::New(context);
976 Local<Promise::Resolver> resolver;
977 if (maybe_resolver.ToLocal(&resolver)) {
978 DynamicImportData* data = new DynamicImportData(
979 isolate, Local<String>::Cast(referrer->GetResourceName()), specifier,
980 resolver);
981 isolate->EnqueueMicrotask(Shell::DoHostImportModuleDynamically, data);
982 return resolver->GetPromise();
983 }
984
985 return MaybeLocal<Promise>();
986 }
987
HostInitializeImportMetaObject(Local<Context> context,Local<Module> module,Local<Object> meta)988 void Shell::HostInitializeImportMetaObject(Local<Context> context,
989 Local<Module> module,
990 Local<Object> meta) {
991 Isolate* isolate = context->GetIsolate();
992 HandleScope handle_scope(isolate);
993
994 ModuleEmbedderData* d = GetModuleDataFromContext(context);
995 auto specifier_it =
996 d->module_to_specifier_map.find(Global<Module>(isolate, module));
997 CHECK(specifier_it != d->module_to_specifier_map.end());
998
999 Local<String> url_key =
1000 String::NewFromUtf8Literal(isolate, "url", NewStringType::kInternalized);
1001 Local<String> url = String::NewFromUtf8(isolate, specifier_it->second.c_str())
1002 .ToLocalChecked();
1003 meta->CreateDataProperty(context, url_key, url).ToChecked();
1004 }
1005
DoHostImportModuleDynamically(void * import_data)1006 void Shell::DoHostImportModuleDynamically(void* import_data) {
1007 std::unique_ptr<DynamicImportData> import_data_(
1008 static_cast<DynamicImportData*>(import_data));
1009 Isolate* isolate(import_data_->isolate);
1010 HandleScope handle_scope(isolate);
1011
1012 Local<String> referrer(import_data_->referrer.Get(isolate));
1013 Local<String> specifier(import_data_->specifier.Get(isolate));
1014 Local<Promise::Resolver> resolver(import_data_->resolver.Get(isolate));
1015
1016 PerIsolateData* data = PerIsolateData::Get(isolate);
1017 Local<Context> realm = data->realms_[data->realm_current_].Get(isolate);
1018 Context::Scope context_scope(realm);
1019
1020 std::string source_url = ToSTLString(isolate, referrer);
1021 std::string dir_name =
1022 DirName(NormalizePath(source_url, GetWorkingDirectory()));
1023 std::string file_name = ToSTLString(isolate, specifier);
1024 std::string absolute_path = NormalizePath(file_name, dir_name);
1025
1026 TryCatch try_catch(isolate);
1027 try_catch.SetVerbose(true);
1028
1029 ModuleEmbedderData* d = GetModuleDataFromContext(realm);
1030 Local<Module> root_module;
1031 auto module_it = d->specifier_to_module_map.find(absolute_path);
1032 if (module_it != d->specifier_to_module_map.end()) {
1033 root_module = module_it->second.Get(isolate);
1034 } else if (!FetchModuleTree(Local<Module>(), realm, absolute_path)
1035 .ToLocal(&root_module)) {
1036 CHECK(try_catch.HasCaught());
1037 resolver->Reject(realm, try_catch.Exception()).ToChecked();
1038 return;
1039 }
1040
1041 MaybeLocal<Value> maybe_result;
1042 if (root_module->InstantiateModule(realm, ResolveModuleCallback)
1043 .FromMaybe(false)) {
1044 maybe_result = root_module->Evaluate(realm);
1045 CHECK_IMPLIES(i::FLAG_harmony_top_level_await, !maybe_result.IsEmpty());
1046 EmptyMessageQueues(isolate);
1047 }
1048
1049 Local<Value> result;
1050 if (!maybe_result.ToLocal(&result)) {
1051 DCHECK(try_catch.HasCaught());
1052 resolver->Reject(realm, try_catch.Exception()).ToChecked();
1053 return;
1054 }
1055
1056 Local<Value> module_namespace = root_module->GetModuleNamespace();
1057 if (i::FLAG_harmony_top_level_await) {
1058 Local<Promise> result_promise(Local<Promise>::Cast(result));
1059 if (result_promise->State() == Promise::kRejected) {
1060 resolver->Reject(realm, result_promise->Result()).ToChecked();
1061 return;
1062 }
1063
1064 // Setup callbacks, and then chain them to the result promise.
1065 // ModuleResolutionData will be deleted by the callbacks.
1066 auto module_resolution_data =
1067 new ModuleResolutionData(isolate, module_namespace, resolver);
1068 Local<v8::External> edata = External::New(isolate, module_resolution_data);
1069 Local<Function> callback_success;
1070 CHECK(Function::New(realm, ModuleResolutionSuccessCallback, edata)
1071 .ToLocal(&callback_success));
1072 Local<Function> callback_failure;
1073 CHECK(Function::New(realm, ModuleResolutionFailureCallback, edata)
1074 .ToLocal(&callback_failure));
1075 result_promise->Then(realm, callback_success, callback_failure)
1076 .ToLocalChecked();
1077 } else {
1078 // TODO(cbruni): Clean up exception handling after introducing new
1079 // API for evaluating async modules.
1080 DCHECK(!try_catch.HasCaught());
1081 resolver->Resolve(realm, module_namespace).ToChecked();
1082 }
1083 }
1084
ExecuteModule(Isolate * isolate,const char * file_name)1085 bool Shell::ExecuteModule(Isolate* isolate, const char* file_name) {
1086 HandleScope handle_scope(isolate);
1087
1088 PerIsolateData* data = PerIsolateData::Get(isolate);
1089 Local<Context> realm = data->realms_[data->realm_current_].Get(isolate);
1090 Context::Scope context_scope(realm);
1091
1092 std::string absolute_path = NormalizePath(file_name, GetWorkingDirectory());
1093
1094 // Use a non-verbose TryCatch and report exceptions manually using
1095 // Shell::ReportException, because some errors (such as file errors) are
1096 // thrown without entering JS and thus do not trigger
1097 // isolate->ReportPendingMessages().
1098 TryCatch try_catch(isolate);
1099
1100 Local<Module> root_module;
1101
1102 if (!FetchModuleTree(Local<Module>(), realm, absolute_path)
1103 .ToLocal(&root_module)) {
1104 CHECK(try_catch.HasCaught());
1105 ReportException(isolate, &try_catch);
1106 return false;
1107 }
1108
1109 MaybeLocal<Value> maybe_result;
1110 if (root_module->InstantiateModule(realm, ResolveModuleCallback)
1111 .FromMaybe(false)) {
1112 maybe_result = root_module->Evaluate(realm);
1113 CHECK_IMPLIES(i::FLAG_harmony_top_level_await, !maybe_result.IsEmpty());
1114 EmptyMessageQueues(isolate);
1115 }
1116 Local<Value> result;
1117 if (!maybe_result.ToLocal(&result)) {
1118 DCHECK(try_catch.HasCaught());
1119 ReportException(isolate, &try_catch);
1120 return false;
1121 }
1122 if (i::FLAG_harmony_top_level_await) {
1123 // Loop until module execution finishes
1124 // TODO(cbruni): This is a bit wonky. "Real" engines would not be
1125 // able to just busy loop waiting for execution to finish.
1126 Local<Promise> result_promise(Local<Promise>::Cast(result));
1127 while (result_promise->State() == Promise::kPending) {
1128 isolate->PerformMicrotaskCheckpoint();
1129 }
1130
1131 if (result_promise->State() == Promise::kRejected) {
1132 // If the exception has been caught by the promise pipeline, we rethrow
1133 // here in order to ReportException.
1134 // TODO(cbruni): Clean this up after we create a new API for the case
1135 // where TLA is enabled.
1136 if (!try_catch.HasCaught()) {
1137 isolate->ThrowException(result_promise->Result());
1138 } else {
1139 DCHECK_EQ(try_catch.Exception(), result_promise->Result());
1140 }
1141 ReportException(isolate, &try_catch);
1142 return false;
1143 }
1144 }
1145
1146 DCHECK(!try_catch.HasCaught());
1147 return true;
1148 }
1149
PerIsolateData(Isolate * isolate)1150 PerIsolateData::PerIsolateData(Isolate* isolate)
1151 : isolate_(isolate), realms_(nullptr) {
1152 isolate->SetData(0, this);
1153 if (i::FLAG_expose_async_hooks) {
1154 async_hooks_wrapper_ = new AsyncHooks(isolate);
1155 }
1156 ignore_unhandled_promises_ = false;
1157 }
1158
~PerIsolateData()1159 PerIsolateData::~PerIsolateData() {
1160 isolate_->SetData(0, nullptr); // Not really needed, just to be sure...
1161 if (i::FLAG_expose_async_hooks) {
1162 delete async_hooks_wrapper_; // This uses the isolate
1163 }
1164 }
1165
SetTimeout(Local<Function> callback,Local<Context> context)1166 void PerIsolateData::SetTimeout(Local<Function> callback,
1167 Local<Context> context) {
1168 set_timeout_callbacks_.emplace(isolate_, callback);
1169 set_timeout_contexts_.emplace(isolate_, context);
1170 }
1171
GetTimeoutCallback()1172 MaybeLocal<Function> PerIsolateData::GetTimeoutCallback() {
1173 if (set_timeout_callbacks_.empty()) return MaybeLocal<Function>();
1174 Local<Function> result = set_timeout_callbacks_.front().Get(isolate_);
1175 set_timeout_callbacks_.pop();
1176 return result;
1177 }
1178
GetTimeoutContext()1179 MaybeLocal<Context> PerIsolateData::GetTimeoutContext() {
1180 if (set_timeout_contexts_.empty()) return MaybeLocal<Context>();
1181 Local<Context> result = set_timeout_contexts_.front().Get(isolate_);
1182 set_timeout_contexts_.pop();
1183 return result;
1184 }
1185
RemoveUnhandledPromise(Local<Promise> promise)1186 void PerIsolateData::RemoveUnhandledPromise(Local<Promise> promise) {
1187 if (ignore_unhandled_promises_) return;
1188 // Remove handled promises from the list
1189 DCHECK_EQ(promise->GetIsolate(), isolate_);
1190 for (auto it = unhandled_promises_.begin(); it != unhandled_promises_.end();
1191 ++it) {
1192 v8::Local<v8::Promise> unhandled_promise = std::get<0>(*it).Get(isolate_);
1193 if (unhandled_promise == promise) {
1194 unhandled_promises_.erase(it--);
1195 }
1196 }
1197 }
1198
AddUnhandledPromise(Local<Promise> promise,Local<Message> message,Local<Value> exception)1199 void PerIsolateData::AddUnhandledPromise(Local<Promise> promise,
1200 Local<Message> message,
1201 Local<Value> exception) {
1202 if (ignore_unhandled_promises_) return;
1203 DCHECK_EQ(promise->GetIsolate(), isolate_);
1204 unhandled_promises_.emplace_back(v8::Global<v8::Promise>(isolate_, promise),
1205 v8::Global<v8::Message>(isolate_, message),
1206 v8::Global<v8::Value>(isolate_, exception));
1207 }
1208
HandleUnhandledPromiseRejections()1209 int PerIsolateData::HandleUnhandledPromiseRejections() {
1210 // Avoid recursive calls to HandleUnhandledPromiseRejections.
1211 if (ignore_unhandled_promises_) return 0;
1212 ignore_unhandled_promises_ = true;
1213 v8::HandleScope scope(isolate_);
1214 // Ignore promises that get added during error reporting.
1215 size_t i = 0;
1216 for (; i < unhandled_promises_.size(); i++) {
1217 const auto& tuple = unhandled_promises_[i];
1218 Local<v8::Message> message = std::get<1>(tuple).Get(isolate_);
1219 Local<v8::Value> value = std::get<2>(tuple).Get(isolate_);
1220 Shell::ReportException(isolate_, message, value);
1221 }
1222 unhandled_promises_.clear();
1223 ignore_unhandled_promises_ = false;
1224 return static_cast<int>(i);
1225 }
1226
RealmScope(PerIsolateData * data)1227 PerIsolateData::RealmScope::RealmScope(PerIsolateData* data) : data_(data) {
1228 data_->realm_count_ = 1;
1229 data_->realm_current_ = 0;
1230 data_->realm_switch_ = 0;
1231 data_->realms_ = new Global<Context>[1];
1232 data_->realms_[0].Reset(data_->isolate_,
1233 data_->isolate_->GetEnteredOrMicrotaskContext());
1234 }
1235
~RealmScope()1236 PerIsolateData::RealmScope::~RealmScope() {
1237 // Drop realms to avoid keeping them alive. We don't dispose the
1238 // module embedder data for the first realm here, but instead do
1239 // it in RunShell or in RunMain, if not running in interactive mode
1240 for (int i = 1; i < data_->realm_count_; ++i) {
1241 Global<Context>& realm = data_->realms_[i];
1242 if (realm.IsEmpty()) continue;
1243 DisposeModuleEmbedderData(realm.Get(data_->isolate_));
1244 }
1245 data_->realm_count_ = 0;
1246 delete[] data_->realms_;
1247 }
1248
RealmFind(Local<Context> context)1249 int PerIsolateData::RealmFind(Local<Context> context) {
1250 for (int i = 0; i < realm_count_; ++i) {
1251 if (realms_[i] == context) return i;
1252 }
1253 return -1;
1254 }
1255
RealmIndexOrThrow(const v8::FunctionCallbackInfo<v8::Value> & args,int arg_offset)1256 int PerIsolateData::RealmIndexOrThrow(
1257 const v8::FunctionCallbackInfo<v8::Value>& args, int arg_offset) {
1258 if (args.Length() < arg_offset || !args[arg_offset]->IsNumber()) {
1259 Throw(args.GetIsolate(), "Invalid argument");
1260 return -1;
1261 }
1262 int index = args[arg_offset]
1263 ->Int32Value(args.GetIsolate()->GetCurrentContext())
1264 .FromMaybe(-1);
1265 if (index < 0 || index >= realm_count_ || realms_[index].IsEmpty()) {
1266 Throw(args.GetIsolate(), "Invalid realm index");
1267 return -1;
1268 }
1269 return index;
1270 }
1271
1272 // performance.now() returns a time stamp as double, measured in milliseconds.
1273 // When FLAG_verify_predictable mode is enabled it returns result of
1274 // v8::Platform::MonotonicallyIncreasingTime().
PerformanceNow(const v8::FunctionCallbackInfo<v8::Value> & args)1275 void Shell::PerformanceNow(const v8::FunctionCallbackInfo<v8::Value>& args) {
1276 if (i::FLAG_verify_predictable) {
1277 args.GetReturnValue().Set(g_platform->MonotonicallyIncreasingTime());
1278 } else {
1279 base::TimeDelta delta =
1280 base::TimeTicks::HighResolutionNow() - kInitialTicks;
1281 args.GetReturnValue().Set(delta.InMillisecondsF());
1282 }
1283 }
1284
1285 // performance.measureMemory() implements JavaScript Memory API proposal.
1286 // See https://github.com/ulan/javascript-agent-memory/blob/master/explainer.md.
PerformanceMeasureMemory(const v8::FunctionCallbackInfo<v8::Value> & args)1287 void Shell::PerformanceMeasureMemory(
1288 const v8::FunctionCallbackInfo<v8::Value>& args) {
1289 v8::MeasureMemoryMode mode = v8::MeasureMemoryMode::kSummary;
1290 v8::Isolate* isolate = args.GetIsolate();
1291 Local<Context> context = isolate->GetCurrentContext();
1292 if (args.Length() >= 1 && args[0]->IsObject()) {
1293 Local<Object> object = args[0].As<Object>();
1294 Local<Value> value = TryGetValue(isolate, context, object, "detailed")
1295 .FromMaybe(Local<Value>());
1296 if (!value.IsEmpty() && value->IsBoolean() &&
1297 value->BooleanValue(isolate)) {
1298 mode = v8::MeasureMemoryMode::kDetailed;
1299 }
1300 }
1301 Local<v8::Promise::Resolver> promise_resolver =
1302 v8::Promise::Resolver::New(context).ToLocalChecked();
1303 args.GetIsolate()->MeasureMemory(
1304 v8::MeasureMemoryDelegate::Default(isolate, context, promise_resolver,
1305 mode),
1306 v8::MeasureMemoryExecution::kEager);
1307 args.GetReturnValue().Set(promise_resolver->GetPromise());
1308 }
1309
1310 // Realm.current() returns the index of the currently active realm.
RealmCurrent(const v8::FunctionCallbackInfo<v8::Value> & args)1311 void Shell::RealmCurrent(const v8::FunctionCallbackInfo<v8::Value>& args) {
1312 Isolate* isolate = args.GetIsolate();
1313 PerIsolateData* data = PerIsolateData::Get(isolate);
1314 int index = data->RealmFind(isolate->GetEnteredOrMicrotaskContext());
1315 if (index == -1) return;
1316 args.GetReturnValue().Set(index);
1317 }
1318
1319 // Realm.owner(o) returns the index of the realm that created o.
RealmOwner(const v8::FunctionCallbackInfo<v8::Value> & args)1320 void Shell::RealmOwner(const v8::FunctionCallbackInfo<v8::Value>& args) {
1321 Isolate* isolate = args.GetIsolate();
1322 PerIsolateData* data = PerIsolateData::Get(isolate);
1323 if (args.Length() < 1 || !args[0]->IsObject()) {
1324 Throw(args.GetIsolate(), "Invalid argument");
1325 return;
1326 }
1327 Local<Object> object =
1328 args[0]->ToObject(isolate->GetCurrentContext()).ToLocalChecked();
1329 i::Handle<i::JSReceiver> i_object = Utils::OpenHandle(*object);
1330 if (i_object->IsJSGlobalProxy() &&
1331 i::Handle<i::JSGlobalProxy>::cast(i_object)->IsDetached()) {
1332 return;
1333 }
1334 int index = data->RealmFind(object->CreationContext());
1335 if (index == -1) return;
1336 args.GetReturnValue().Set(index);
1337 }
1338
1339 // Realm.global(i) returns the global object of realm i.
1340 // (Note that properties of global objects cannot be read/written cross-realm.)
RealmGlobal(const v8::FunctionCallbackInfo<v8::Value> & args)1341 void Shell::RealmGlobal(const v8::FunctionCallbackInfo<v8::Value>& args) {
1342 PerIsolateData* data = PerIsolateData::Get(args.GetIsolate());
1343 int index = data->RealmIndexOrThrow(args, 0);
1344 if (index == -1) return;
1345 args.GetReturnValue().Set(
1346 Local<Context>::New(args.GetIsolate(), data->realms_[index])->Global());
1347 }
1348
CreateRealm(const v8::FunctionCallbackInfo<v8::Value> & args,int index,v8::MaybeLocal<Value> global_object)1349 MaybeLocal<Context> Shell::CreateRealm(
1350 const v8::FunctionCallbackInfo<v8::Value>& args, int index,
1351 v8::MaybeLocal<Value> global_object) {
1352 Isolate* isolate = args.GetIsolate();
1353 TryCatch try_catch(isolate);
1354 PerIsolateData* data = PerIsolateData::Get(isolate);
1355 if (index < 0) {
1356 Global<Context>* old_realms = data->realms_;
1357 index = data->realm_count_;
1358 data->realms_ = new Global<Context>[++data->realm_count_];
1359 for (int i = 0; i < index; ++i) {
1360 data->realms_[i].Reset(isolate, old_realms[i]);
1361 old_realms[i].Reset();
1362 }
1363 delete[] old_realms;
1364 }
1365 Local<ObjectTemplate> global_template = CreateGlobalTemplate(isolate);
1366 Local<Context> context =
1367 Context::New(isolate, nullptr, global_template, global_object);
1368 DCHECK(!try_catch.HasCaught());
1369 if (context.IsEmpty()) return MaybeLocal<Context>();
1370 InitializeModuleEmbedderData(context);
1371 data->realms_[index].Reset(isolate, context);
1372 args.GetReturnValue().Set(index);
1373 return context;
1374 }
1375
DisposeRealm(const v8::FunctionCallbackInfo<v8::Value> & args,int index)1376 void Shell::DisposeRealm(const v8::FunctionCallbackInfo<v8::Value>& args,
1377 int index) {
1378 Isolate* isolate = args.GetIsolate();
1379 PerIsolateData* data = PerIsolateData::Get(isolate);
1380 Local<Context> context = data->realms_[index].Get(isolate);
1381 DisposeModuleEmbedderData(context);
1382 data->realms_[index].Reset();
1383 // ContextDisposedNotification expects the disposed context to be entered.
1384 v8::Context::Scope scope(context);
1385 isolate->ContextDisposedNotification();
1386 isolate->IdleNotificationDeadline(g_platform->MonotonicallyIncreasingTime());
1387 }
1388
1389 // Realm.create() creates a new realm with a distinct security token
1390 // and returns its index.
RealmCreate(const v8::FunctionCallbackInfo<v8::Value> & args)1391 void Shell::RealmCreate(const v8::FunctionCallbackInfo<v8::Value>& args) {
1392 CreateRealm(args, -1, v8::MaybeLocal<Value>());
1393 }
1394
1395 // Realm.createAllowCrossRealmAccess() creates a new realm with the same
1396 // security token as the current realm.
RealmCreateAllowCrossRealmAccess(const v8::FunctionCallbackInfo<v8::Value> & args)1397 void Shell::RealmCreateAllowCrossRealmAccess(
1398 const v8::FunctionCallbackInfo<v8::Value>& args) {
1399 Local<Context> context;
1400 if (CreateRealm(args, -1, v8::MaybeLocal<Value>()).ToLocal(&context)) {
1401 context->SetSecurityToken(
1402 args.GetIsolate()->GetEnteredOrMicrotaskContext()->GetSecurityToken());
1403 }
1404 }
1405
1406 // Realm.navigate(i) creates a new realm with a distinct security token
1407 // in place of realm i.
RealmNavigate(const v8::FunctionCallbackInfo<v8::Value> & args)1408 void Shell::RealmNavigate(const v8::FunctionCallbackInfo<v8::Value>& args) {
1409 Isolate* isolate = args.GetIsolate();
1410 PerIsolateData* data = PerIsolateData::Get(isolate);
1411 int index = data->RealmIndexOrThrow(args, 0);
1412 if (index == -1) return;
1413 if (index == 0 || index == data->realm_current_ ||
1414 index == data->realm_switch_) {
1415 Throw(args.GetIsolate(), "Invalid realm index");
1416 return;
1417 }
1418
1419 Local<Context> context = Local<Context>::New(isolate, data->realms_[index]);
1420 v8::MaybeLocal<Value> global_object = context->Global();
1421
1422 // Context::Global doesn't return JSGlobalProxy if DetachGlobal is called in
1423 // advance.
1424 if (!global_object.IsEmpty()) {
1425 HandleScope scope(isolate);
1426 if (!Utils::OpenHandle(*global_object.ToLocalChecked())
1427 ->IsJSGlobalProxy()) {
1428 global_object = v8::MaybeLocal<Value>();
1429 }
1430 }
1431
1432 DisposeRealm(args, index);
1433 CreateRealm(args, index, global_object);
1434 }
1435
1436 // Realm.detachGlobal(i) detaches the global objects of realm i from realm i.
RealmDetachGlobal(const v8::FunctionCallbackInfo<v8::Value> & args)1437 void Shell::RealmDetachGlobal(const v8::FunctionCallbackInfo<v8::Value>& args) {
1438 Isolate* isolate = args.GetIsolate();
1439 PerIsolateData* data = PerIsolateData::Get(isolate);
1440 int index = data->RealmIndexOrThrow(args, 0);
1441 if (index == -1) return;
1442 if (index == 0 || index == data->realm_current_ ||
1443 index == data->realm_switch_) {
1444 Throw(args.GetIsolate(), "Invalid realm index");
1445 return;
1446 }
1447
1448 HandleScope scope(isolate);
1449 Local<Context> realm = Local<Context>::New(isolate, data->realms_[index]);
1450 realm->DetachGlobal();
1451 }
1452
1453 // Realm.dispose(i) disposes the reference to the realm i.
RealmDispose(const v8::FunctionCallbackInfo<v8::Value> & args)1454 void Shell::RealmDispose(const v8::FunctionCallbackInfo<v8::Value>& args) {
1455 Isolate* isolate = args.GetIsolate();
1456 PerIsolateData* data = PerIsolateData::Get(isolate);
1457 int index = data->RealmIndexOrThrow(args, 0);
1458 if (index == -1) return;
1459 if (index == 0 || index == data->realm_current_ ||
1460 index == data->realm_switch_) {
1461 Throw(args.GetIsolate(), "Invalid realm index");
1462 return;
1463 }
1464 DisposeRealm(args, index);
1465 }
1466
1467 // Realm.switch(i) switches to the realm i for consecutive interactive inputs.
RealmSwitch(const v8::FunctionCallbackInfo<v8::Value> & args)1468 void Shell::RealmSwitch(const v8::FunctionCallbackInfo<v8::Value>& args) {
1469 Isolate* isolate = args.GetIsolate();
1470 PerIsolateData* data = PerIsolateData::Get(isolate);
1471 int index = data->RealmIndexOrThrow(args, 0);
1472 if (index == -1) return;
1473 data->realm_switch_ = index;
1474 }
1475
1476 // Realm.eval(i, s) evaluates s in realm i and returns the result.
RealmEval(const v8::FunctionCallbackInfo<v8::Value> & args)1477 void Shell::RealmEval(const v8::FunctionCallbackInfo<v8::Value>& args) {
1478 Isolate* isolate = args.GetIsolate();
1479 PerIsolateData* data = PerIsolateData::Get(isolate);
1480 int index = data->RealmIndexOrThrow(args, 0);
1481 if (index == -1) return;
1482 if (args.Length() < 2 || !args[1]->IsString()) {
1483 Throw(args.GetIsolate(), "Invalid argument");
1484 return;
1485 }
1486 ScriptOrigin origin(String::NewFromUtf8Literal(isolate, "(d8)",
1487 NewStringType::kInternalized));
1488 ScriptCompiler::Source script_source(
1489 args[1]->ToString(isolate->GetCurrentContext()).ToLocalChecked(), origin);
1490 Local<UnboundScript> script;
1491 if (!ScriptCompiler::CompileUnboundScript(isolate, &script_source)
1492 .ToLocal(&script)) {
1493 return;
1494 }
1495 Local<Context> realm = Local<Context>::New(isolate, data->realms_[index]);
1496 realm->Enter();
1497 int previous_index = data->realm_current_;
1498 data->realm_current_ = data->realm_switch_ = index;
1499 Local<Value> result;
1500 if (!script->BindToCurrentContext()->Run(realm).ToLocal(&result)) {
1501 realm->Exit();
1502 data->realm_current_ = data->realm_switch_ = previous_index;
1503 return;
1504 }
1505 realm->Exit();
1506 data->realm_current_ = data->realm_switch_ = previous_index;
1507 args.GetReturnValue().Set(result);
1508 }
1509
1510 // Realm.shared is an accessor for a single shared value across realms.
RealmSharedGet(Local<String> property,const PropertyCallbackInfo<Value> & info)1511 void Shell::RealmSharedGet(Local<String> property,
1512 const PropertyCallbackInfo<Value>& info) {
1513 Isolate* isolate = info.GetIsolate();
1514 PerIsolateData* data = PerIsolateData::Get(isolate);
1515 if (data->realm_shared_.IsEmpty()) return;
1516 info.GetReturnValue().Set(data->realm_shared_);
1517 }
1518
RealmSharedSet(Local<String> property,Local<Value> value,const PropertyCallbackInfo<void> & info)1519 void Shell::RealmSharedSet(Local<String> property, Local<Value> value,
1520 const PropertyCallbackInfo<void>& info) {
1521 Isolate* isolate = info.GetIsolate();
1522 PerIsolateData* data = PerIsolateData::Get(isolate);
1523 data->realm_shared_.Reset(isolate, value);
1524 }
1525
LogGetAndStop(const v8::FunctionCallbackInfo<v8::Value> & args)1526 void Shell::LogGetAndStop(const v8::FunctionCallbackInfo<v8::Value>& args) {
1527 Isolate* isolate = args.GetIsolate();
1528 i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
1529 HandleScope handle_scope(isolate);
1530
1531 std::string file_name = i_isolate->logger()->file_name();
1532 if (!i::Log::IsLoggingToTemporaryFile(file_name)) {
1533 Throw(isolate, "Only capturing from temporary files is supported.");
1534 return;
1535 }
1536 if (!i_isolate->logger()->is_logging()) {
1537 Throw(isolate, "Logging not enabled.");
1538 return;
1539 }
1540
1541 std::string raw_log;
1542 FILE* log_file = i_isolate->logger()->TearDownAndGetLogFile();
1543 CHECK_NOT_NULL(log_file);
1544
1545 bool exists = false;
1546 raw_log = i::ReadFile(log_file, &exists, true);
1547 fclose(log_file);
1548
1549 if (!exists) {
1550 Throw(isolate, "Unable to read log file.");
1551 return;
1552 }
1553 Local<String> result =
1554 String::NewFromUtf8(isolate, raw_log.c_str(), NewStringType::kNormal,
1555 static_cast<int>(raw_log.size()))
1556 .ToLocalChecked();
1557
1558 args.GetReturnValue().Set(result);
1559 }
1560
1561 // async_hooks.createHook() registers functions to be called for different
1562 // lifetime events of each async operation.
AsyncHooksCreateHook(const v8::FunctionCallbackInfo<v8::Value> & args)1563 void Shell::AsyncHooksCreateHook(
1564 const v8::FunctionCallbackInfo<v8::Value>& args) {
1565 Local<Object> wrap =
1566 PerIsolateData::Get(args.GetIsolate())->GetAsyncHooks()->CreateHook(args);
1567 args.GetReturnValue().Set(wrap);
1568 }
1569
1570 // async_hooks.executionAsyncId() returns the asyncId of the current execution
1571 // context.
AsyncHooksExecutionAsyncId(const v8::FunctionCallbackInfo<v8::Value> & args)1572 void Shell::AsyncHooksExecutionAsyncId(
1573 const v8::FunctionCallbackInfo<v8::Value>& args) {
1574 Isolate* isolate = args.GetIsolate();
1575 HandleScope handle_scope(isolate);
1576 args.GetReturnValue().Set(v8::Number::New(
1577 isolate,
1578 PerIsolateData::Get(isolate)->GetAsyncHooks()->GetExecutionAsyncId()));
1579 }
1580
AsyncHooksTriggerAsyncId(const v8::FunctionCallbackInfo<v8::Value> & args)1581 void Shell::AsyncHooksTriggerAsyncId(
1582 const v8::FunctionCallbackInfo<v8::Value>& args) {
1583 Isolate* isolate = args.GetIsolate();
1584 HandleScope handle_scope(isolate);
1585 args.GetReturnValue().Set(v8::Number::New(
1586 isolate,
1587 PerIsolateData::Get(isolate)->GetAsyncHooks()->GetTriggerAsyncId()));
1588 }
1589
WriteToFile(FILE * file,const v8::FunctionCallbackInfo<v8::Value> & args)1590 void WriteToFile(FILE* file, const v8::FunctionCallbackInfo<v8::Value>& args) {
1591 for (int i = 0; i < args.Length(); i++) {
1592 HandleScope handle_scope(args.GetIsolate());
1593 if (i != 0) {
1594 fprintf(file, " ");
1595 }
1596
1597 // Explicitly catch potential exceptions in toString().
1598 v8::TryCatch try_catch(args.GetIsolate());
1599 Local<Value> arg = args[i];
1600 Local<String> str_obj;
1601
1602 if (arg->IsSymbol()) {
1603 arg = Local<Symbol>::Cast(arg)->Description();
1604 }
1605 if (!arg->ToString(args.GetIsolate()->GetCurrentContext())
1606 .ToLocal(&str_obj)) {
1607 try_catch.ReThrow();
1608 return;
1609 }
1610
1611 v8::String::Utf8Value str(args.GetIsolate(), str_obj);
1612 int n = static_cast<int>(fwrite(*str, sizeof(**str), str.length(), file));
1613 if (n != str.length()) {
1614 printf("Error in fwrite\n");
1615 base::OS::ExitProcess(1);
1616 }
1617 }
1618 }
1619
WriteAndFlush(FILE * file,const v8::FunctionCallbackInfo<v8::Value> & args)1620 void WriteAndFlush(FILE* file,
1621 const v8::FunctionCallbackInfo<v8::Value>& args) {
1622 WriteToFile(file, args);
1623 fprintf(file, "\n");
1624 fflush(file);
1625 }
1626
Print(const v8::FunctionCallbackInfo<v8::Value> & args)1627 void Shell::Print(const v8::FunctionCallbackInfo<v8::Value>& args) {
1628 WriteAndFlush(stdout, args);
1629 }
1630
PrintErr(const v8::FunctionCallbackInfo<v8::Value> & args)1631 void Shell::PrintErr(const v8::FunctionCallbackInfo<v8::Value>& args) {
1632 WriteAndFlush(stderr, args);
1633 }
1634
Write(const v8::FunctionCallbackInfo<v8::Value> & args)1635 void Shell::Write(const v8::FunctionCallbackInfo<v8::Value>& args) {
1636 WriteToFile(stdout, args);
1637 }
1638
Read(const v8::FunctionCallbackInfo<v8::Value> & args)1639 void Shell::Read(const v8::FunctionCallbackInfo<v8::Value>& args) {
1640 String::Utf8Value file(args.GetIsolate(), args[0]);
1641 if (*file == nullptr) {
1642 Throw(args.GetIsolate(), "Error loading file");
1643 return;
1644 }
1645 if (args.Length() == 2) {
1646 String::Utf8Value format(args.GetIsolate(), args[1]);
1647 if (*format && std::strcmp(*format, "binary") == 0) {
1648 ReadBuffer(args);
1649 return;
1650 }
1651 }
1652 Local<String> source = ReadFile(args.GetIsolate(), *file);
1653 if (source.IsEmpty()) {
1654 Throw(args.GetIsolate(), "Error loading file");
1655 return;
1656 }
1657 args.GetReturnValue().Set(source);
1658 }
1659
ReadFromStdin(Isolate * isolate)1660 Local<String> Shell::ReadFromStdin(Isolate* isolate) {
1661 static const int kBufferSize = 256;
1662 char buffer[kBufferSize];
1663 Local<String> accumulator = String::NewFromUtf8Literal(isolate, "");
1664 int length;
1665 while (true) {
1666 // Continue reading if the line ends with an escape '\\' or the line has
1667 // not been fully read into the buffer yet (does not end with '\n').
1668 // If fgets gets an error, just give up.
1669 char* input = nullptr;
1670 input = fgets(buffer, kBufferSize, stdin);
1671 if (input == nullptr) return Local<String>();
1672 length = static_cast<int>(strlen(buffer));
1673 if (length == 0) {
1674 return accumulator;
1675 } else if (buffer[length - 1] != '\n') {
1676 accumulator = String::Concat(
1677 isolate, accumulator,
1678 String::NewFromUtf8(isolate, buffer, NewStringType::kNormal, length)
1679 .ToLocalChecked());
1680 } else if (length > 1 && buffer[length - 2] == '\\') {
1681 buffer[length - 2] = '\n';
1682 accumulator =
1683 String::Concat(isolate, accumulator,
1684 String::NewFromUtf8(isolate, buffer,
1685 NewStringType::kNormal, length - 1)
1686 .ToLocalChecked());
1687 } else {
1688 return String::Concat(
1689 isolate, accumulator,
1690 String::NewFromUtf8(isolate, buffer, NewStringType::kNormal,
1691 length - 1)
1692 .ToLocalChecked());
1693 }
1694 }
1695 }
1696
Load(const v8::FunctionCallbackInfo<v8::Value> & args)1697 void Shell::Load(const v8::FunctionCallbackInfo<v8::Value>& args) {
1698 for (int i = 0; i < args.Length(); i++) {
1699 HandleScope handle_scope(args.GetIsolate());
1700 String::Utf8Value file(args.GetIsolate(), args[i]);
1701 if (*file == nullptr) {
1702 Throw(args.GetIsolate(), "Error loading file");
1703 return;
1704 }
1705 Local<String> source = ReadFile(args.GetIsolate(), *file);
1706 if (source.IsEmpty()) {
1707 Throw(args.GetIsolate(), "Error loading file");
1708 return;
1709 }
1710 if (!ExecuteString(
1711 args.GetIsolate(), source,
1712 String::NewFromUtf8(args.GetIsolate(), *file).ToLocalChecked(),
1713 kNoPrintResult,
1714 options.quiet_load ? kNoReportExceptions : kReportExceptions,
1715 kNoProcessMessageQueue)) {
1716 Throw(args.GetIsolate(), "Error executing file");
1717 return;
1718 }
1719 }
1720 }
1721
SetTimeout(const v8::FunctionCallbackInfo<v8::Value> & args)1722 void Shell::SetTimeout(const v8::FunctionCallbackInfo<v8::Value>& args) {
1723 Isolate* isolate = args.GetIsolate();
1724 args.GetReturnValue().Set(v8::Number::New(isolate, 0));
1725 if (args.Length() == 0 || !args[0]->IsFunction()) return;
1726 Local<Function> callback = Local<Function>::Cast(args[0]);
1727 Local<Context> context = isolate->GetCurrentContext();
1728 PerIsolateData::Get(isolate)->SetTimeout(callback, context);
1729 }
1730
WorkerNew(const v8::FunctionCallbackInfo<v8::Value> & args)1731 void Shell::WorkerNew(const v8::FunctionCallbackInfo<v8::Value>& args) {
1732 Isolate* isolate = args.GetIsolate();
1733 HandleScope handle_scope(isolate);
1734 if (args.Length() < 1 || !args[0]->IsString()) {
1735 Throw(args.GetIsolate(), "1st argument must be string");
1736 return;
1737 }
1738
1739 // d8 honors `options={type: string}`, which means the first argument is
1740 // not a filename but string of script to be run.
1741 bool load_from_file = true;
1742 if (args.Length() > 1 && args[1]->IsObject()) {
1743 Local<Object> object = args[1].As<Object>();
1744 Local<Context> context = isolate->GetCurrentContext();
1745 Local<Value> value;
1746 if (TryGetValue(args.GetIsolate(), context, object, "type")
1747 .ToLocal(&value) &&
1748 value->IsString()) {
1749 Local<String> worker_type = value->ToString(context).ToLocalChecked();
1750 String::Utf8Value str(isolate, worker_type);
1751 if (strcmp("string", *str) == 0) {
1752 load_from_file = false;
1753 } else if (strcmp("classic", *str) == 0) {
1754 load_from_file = true;
1755 } else {
1756 Throw(args.GetIsolate(), "Unsupported worker type");
1757 return;
1758 }
1759 }
1760 }
1761
1762 Local<Value> source;
1763 if (load_from_file) {
1764 String::Utf8Value filename(args.GetIsolate(), args[0]);
1765 source = ReadFile(args.GetIsolate(), *filename);
1766 if (source.IsEmpty()) {
1767 Throw(args.GetIsolate(), "Error loading worker script");
1768 return;
1769 }
1770 } else {
1771 source = args[0];
1772 }
1773
1774 if (!args.IsConstructCall()) {
1775 Throw(args.GetIsolate(), "Worker must be constructed with new");
1776 return;
1777 }
1778
1779 // Initialize the embedder field to 0; if we return early without
1780 // creating a new Worker (because the main thread is terminating) we can
1781 // early-out from the instance calls.
1782 args.Holder()->SetInternalField(0, v8::Integer::New(isolate, 0));
1783
1784 {
1785 // Don't allow workers to create more workers if the main thread
1786 // is waiting for existing running workers to terminate.
1787 base::MutexGuard lock_guard(workers_mutex_.Pointer());
1788 if (!allow_new_workers_) return;
1789
1790 String::Utf8Value script(args.GetIsolate(), source);
1791 if (!*script) {
1792 Throw(args.GetIsolate(), "Can't get worker script");
1793 return;
1794 }
1795
1796 // The C++ worker object's lifetime is shared between the Managed<Worker>
1797 // object on the heap, which the JavaScript object points to, and an
1798 // internal std::shared_ptr in the worker thread itself.
1799 auto worker = std::make_shared<Worker>(*script);
1800 i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
1801 const size_t kWorkerSizeEstimate = 4 * 1024 * 1024; // stack + heap.
1802 i::Handle<i::Object> managed = i::Managed<Worker>::FromSharedPtr(
1803 i_isolate, kWorkerSizeEstimate, worker);
1804 args.Holder()->SetInternalField(0, Utils::ToLocal(managed));
1805 if (!Worker::StartWorkerThread(std::move(worker))) {
1806 Throw(args.GetIsolate(), "Can't start thread");
1807 return;
1808 }
1809 }
1810 }
1811
WorkerPostMessage(const v8::FunctionCallbackInfo<v8::Value> & args)1812 void Shell::WorkerPostMessage(const v8::FunctionCallbackInfo<v8::Value>& args) {
1813 Isolate* isolate = args.GetIsolate();
1814 HandleScope handle_scope(isolate);
1815
1816 if (args.Length() < 1) {
1817 Throw(isolate, "Invalid argument");
1818 return;
1819 }
1820
1821 std::shared_ptr<Worker> worker =
1822 GetWorkerFromInternalField(isolate, args.Holder());
1823 if (!worker.get()) {
1824 return;
1825 }
1826
1827 Local<Value> message = args[0];
1828 Local<Value> transfer =
1829 args.Length() >= 2 ? args[1] : Local<Value>::Cast(Undefined(isolate));
1830 std::unique_ptr<SerializationData> data =
1831 Shell::SerializeValue(isolate, message, transfer);
1832 if (data) {
1833 worker->PostMessage(std::move(data));
1834 }
1835 }
1836
WorkerGetMessage(const v8::FunctionCallbackInfo<v8::Value> & args)1837 void Shell::WorkerGetMessage(const v8::FunctionCallbackInfo<v8::Value>& args) {
1838 Isolate* isolate = args.GetIsolate();
1839 HandleScope handle_scope(isolate);
1840 std::shared_ptr<Worker> worker =
1841 GetWorkerFromInternalField(isolate, args.Holder());
1842 if (!worker.get()) {
1843 return;
1844 }
1845
1846 std::unique_ptr<SerializationData> data = worker->GetMessage();
1847 if (data) {
1848 Local<Value> value;
1849 if (Shell::DeserializeValue(isolate, std::move(data)).ToLocal(&value)) {
1850 args.GetReturnValue().Set(value);
1851 }
1852 }
1853 }
1854
WorkerTerminate(const v8::FunctionCallbackInfo<v8::Value> & args)1855 void Shell::WorkerTerminate(const v8::FunctionCallbackInfo<v8::Value>& args) {
1856 Isolate* isolate = args.GetIsolate();
1857 HandleScope handle_scope(isolate);
1858 std::shared_ptr<Worker> worker =
1859 GetWorkerFromInternalField(isolate, args.Holder());
1860 if (!worker.get()) {
1861 return;
1862 }
1863
1864 worker->Terminate();
1865 }
1866
WorkerTerminateAndWait(const v8::FunctionCallbackInfo<v8::Value> & args)1867 void Shell::WorkerTerminateAndWait(
1868 const v8::FunctionCallbackInfo<v8::Value>& args) {
1869 Isolate* isolate = args.GetIsolate();
1870 HandleScope handle_scope(isolate);
1871 std::shared_ptr<Worker> worker =
1872 GetWorkerFromInternalField(isolate, args.Holder());
1873 if (!worker.get()) {
1874 return;
1875 }
1876
1877 worker->TerminateAndWaitForThread();
1878 }
1879
QuitOnce(v8::FunctionCallbackInfo<v8::Value> * args)1880 void Shell::QuitOnce(v8::FunctionCallbackInfo<v8::Value>* args) {
1881 int exit_code = (*args)[0]
1882 ->Int32Value(args->GetIsolate()->GetCurrentContext())
1883 .FromMaybe(0);
1884 WaitForRunningWorkers();
1885 args->GetIsolate()->Exit();
1886 OnExit(args->GetIsolate());
1887 base::OS::ExitProcess(exit_code);
1888 }
1889
Quit(const v8::FunctionCallbackInfo<v8::Value> & args)1890 void Shell::Quit(const v8::FunctionCallbackInfo<v8::Value>& args) {
1891 base::CallOnce(&quit_once_, &QuitOnce,
1892 const_cast<v8::FunctionCallbackInfo<v8::Value>*>(&args));
1893 }
1894
WaitUntilDone(const v8::FunctionCallbackInfo<v8::Value> & args)1895 void Shell::WaitUntilDone(const v8::FunctionCallbackInfo<v8::Value>& args) {
1896 SetWaitUntilDone(args.GetIsolate(), true);
1897 }
1898
NotifyDone(const v8::FunctionCallbackInfo<v8::Value> & args)1899 void Shell::NotifyDone(const v8::FunctionCallbackInfo<v8::Value>& args) {
1900 SetWaitUntilDone(args.GetIsolate(), false);
1901 }
1902
Version(const v8::FunctionCallbackInfo<v8::Value> & args)1903 void Shell::Version(const v8::FunctionCallbackInfo<v8::Value>& args) {
1904 args.GetReturnValue().Set(
1905 String::NewFromUtf8(args.GetIsolate(), V8::GetVersion())
1906 .ToLocalChecked());
1907 }
1908
1909 #ifdef V8_FUZZILLI
1910
1911 // We have to assume that the fuzzer will be able to call this function e.g. by
1912 // enumerating the properties of the global object and eval'ing them. As such
1913 // this function is implemented in a way that requires passing some magic value
1914 // as first argument (with the idea being that the fuzzer won't be able to
1915 // generate this value) which then also acts as a selector for the operation
1916 // to perform.
Fuzzilli(const v8::FunctionCallbackInfo<v8::Value> & args)1917 void Shell::Fuzzilli(const v8::FunctionCallbackInfo<v8::Value>& args) {
1918 HandleScope handle_scope(args.GetIsolate());
1919
1920 String::Utf8Value operation(args.GetIsolate(), args[0]);
1921 if (*operation == nullptr) {
1922 return;
1923 }
1924
1925 if (strcmp(*operation, "FUZZILLI_CRASH") == 0) {
1926 auto arg = args[1]
1927 ->Int32Value(args.GetIsolate()->GetCurrentContext())
1928 .FromMaybe(0);
1929 switch (arg) {
1930 case 0:
1931 V8_IMMEDIATE_CRASH();
1932 break;
1933 case 1:
1934 CHECK(0);
1935 break;
1936 default:
1937 DCHECK(false);
1938 break;
1939 }
1940 } else if (strcmp(*operation, "FUZZILLI_PRINT") == 0) {
1941 static FILE* fzliout = fdopen(REPRL_DWFD, "w");
1942 if (!fzliout) {
1943 fprintf(
1944 stderr,
1945 "Fuzzer output channel not available, printing to stdout instead\n");
1946 fzliout = stdout;
1947 }
1948
1949 String::Utf8Value string(args.GetIsolate(), args[1]);
1950 if (*string == nullptr) {
1951 return;
1952 }
1953 fprintf(fzliout, "%s\n", *string);
1954 fflush(fzliout);
1955 }
1956 }
1957
1958 #endif // V8_FUZZILLI
1959
ReportException(Isolate * isolate,Local<v8::Message> message,Local<v8::Value> exception_obj)1960 void Shell::ReportException(Isolate* isolate, Local<v8::Message> message,
1961 Local<v8::Value> exception_obj) {
1962 HandleScope handle_scope(isolate);
1963 Local<Context> context = isolate->GetCurrentContext();
1964 bool enter_context = context.IsEmpty();
1965 if (enter_context) {
1966 context = Local<Context>::New(isolate, evaluation_context_);
1967 context->Enter();
1968 }
1969 // Converts a V8 value to a C string.
1970 auto ToCString = [](const v8::String::Utf8Value& value) {
1971 return *value ? *value : "<string conversion failed>";
1972 };
1973
1974 v8::String::Utf8Value exception(isolate, exception_obj);
1975 const char* exception_string = ToCString(exception);
1976 if (message.IsEmpty()) {
1977 // V8 didn't provide any extra information about this error; just
1978 // print the exception.
1979 printf("%s\n", exception_string);
1980 } else if (message->GetScriptOrigin().Options().IsWasm()) {
1981 // Print wasm-function[(function index)]:(offset): (message).
1982 int function_index = message->GetWasmFunctionIndex();
1983 int offset = message->GetStartColumn(context).FromJust();
1984 printf("wasm-function[%d]:0x%x: %s\n", function_index, offset,
1985 exception_string);
1986 } else {
1987 // Print (filename):(line number): (message).
1988 v8::String::Utf8Value filename(isolate,
1989 message->GetScriptOrigin().ResourceName());
1990 const char* filename_string = ToCString(filename);
1991 int linenum = message->GetLineNumber(context).FromMaybe(-1);
1992 printf("%s:%i: %s\n", filename_string, linenum, exception_string);
1993 Local<String> sourceline;
1994 if (message->GetSourceLine(context).ToLocal(&sourceline)) {
1995 // Print line of source code.
1996 v8::String::Utf8Value sourcelinevalue(isolate, sourceline);
1997 const char* sourceline_string = ToCString(sourcelinevalue);
1998 printf("%s\n", sourceline_string);
1999 // Print wavy underline (GetUnderline is deprecated).
2000 int start = message->GetStartColumn(context).FromJust();
2001 for (int i = 0; i < start; i++) {
2002 printf(" ");
2003 }
2004 int end = message->GetEndColumn(context).FromJust();
2005 for (int i = start; i < end; i++) {
2006 printf("^");
2007 }
2008 printf("\n");
2009 }
2010 }
2011 Local<Value> stack_trace_string;
2012 if (v8::TryCatch::StackTrace(context, exception_obj)
2013 .ToLocal(&stack_trace_string) &&
2014 stack_trace_string->IsString()) {
2015 v8::String::Utf8Value stack_trace(isolate,
2016 Local<String>::Cast(stack_trace_string));
2017 printf("%s\n", ToCString(stack_trace));
2018 }
2019 printf("\n");
2020 if (enter_context) context->Exit();
2021 }
2022
ReportException(v8::Isolate * isolate,v8::TryCatch * try_catch)2023 void Shell::ReportException(v8::Isolate* isolate, v8::TryCatch* try_catch) {
2024 ReportException(isolate, try_catch->Message(), try_catch->Exception());
2025 }
2026
Bind(const char * name,bool is_histogram)2027 int32_t* Counter::Bind(const char* name, bool is_histogram) {
2028 int i;
2029 for (i = 0; i < kMaxNameSize - 1 && name[i]; i++)
2030 name_[i] = static_cast<char>(name[i]);
2031 name_[i] = '\0';
2032 is_histogram_ = is_histogram;
2033 return ptr();
2034 }
2035
AddSample(int32_t sample)2036 void Counter::AddSample(int32_t sample) {
2037 count_++;
2038 sample_total_ += sample;
2039 }
2040
CounterCollection()2041 CounterCollection::CounterCollection() {
2042 magic_number_ = 0xDEADFACE;
2043 max_counters_ = kMaxCounters;
2044 max_name_size_ = Counter::kMaxNameSize;
2045 counters_in_use_ = 0;
2046 }
2047
GetNextCounter()2048 Counter* CounterCollection::GetNextCounter() {
2049 if (counters_in_use_ == kMaxCounters) return nullptr;
2050 return &counters_[counters_in_use_++];
2051 }
2052
MapCounters(v8::Isolate * isolate,const char * name)2053 void Shell::MapCounters(v8::Isolate* isolate, const char* name) {
2054 counters_file_ = base::OS::MemoryMappedFile::create(
2055 name, sizeof(CounterCollection), &local_counters_);
2056 void* memory =
2057 (counters_file_ == nullptr) ? nullptr : counters_file_->memory();
2058 if (memory == nullptr) {
2059 printf("Could not map counters file %s\n", name);
2060 base::OS::ExitProcess(1);
2061 }
2062 counters_ = static_cast<CounterCollection*>(memory);
2063 isolate->SetCounterFunction(LookupCounter);
2064 isolate->SetCreateHistogramFunction(CreateHistogram);
2065 isolate->SetAddHistogramSampleFunction(AddHistogramSample);
2066 }
2067
GetCounter(const char * name,bool is_histogram)2068 Counter* Shell::GetCounter(const char* name, bool is_histogram) {
2069 auto map_entry = counter_map_->find(name);
2070 Counter* counter =
2071 map_entry != counter_map_->end() ? map_entry->second : nullptr;
2072
2073 if (counter == nullptr) {
2074 counter = counters_->GetNextCounter();
2075 if (counter != nullptr) {
2076 (*counter_map_)[name] = counter;
2077 counter->Bind(name, is_histogram);
2078 }
2079 } else {
2080 DCHECK(counter->is_histogram() == is_histogram);
2081 }
2082 return counter;
2083 }
2084
LookupCounter(const char * name)2085 int* Shell::LookupCounter(const char* name) {
2086 Counter* counter = GetCounter(name, false);
2087
2088 if (counter != nullptr) {
2089 return counter->ptr();
2090 } else {
2091 return nullptr;
2092 }
2093 }
2094
CreateHistogram(const char * name,int min,int max,size_t buckets)2095 void* Shell::CreateHistogram(const char* name, int min, int max,
2096 size_t buckets) {
2097 return GetCounter(name, true);
2098 }
2099
AddHistogramSample(void * histogram,int sample)2100 void Shell::AddHistogramSample(void* histogram, int sample) {
2101 Counter* counter = reinterpret_cast<Counter*>(histogram);
2102 counter->AddSample(sample);
2103 }
2104
2105 // Turn a value into a human-readable string.
Stringify(Isolate * isolate,Local<Value> value)2106 Local<String> Shell::Stringify(Isolate* isolate, Local<Value> value) {
2107 v8::Local<v8::Context> context =
2108 v8::Local<v8::Context>::New(isolate, evaluation_context_);
2109 if (stringify_function_.IsEmpty()) {
2110 Local<String> source =
2111 String::NewFromUtf8(isolate, stringify_source_).ToLocalChecked();
2112 Local<String> name = String::NewFromUtf8Literal(isolate, "d8-stringify");
2113 ScriptOrigin origin(name);
2114 Local<Script> script =
2115 Script::Compile(context, source, &origin).ToLocalChecked();
2116 stringify_function_.Reset(
2117 isolate, script->Run(context).ToLocalChecked().As<Function>());
2118 }
2119 Local<Function> fun = Local<Function>::New(isolate, stringify_function_);
2120 Local<Value> argv[1] = {value};
2121 v8::TryCatch try_catch(isolate);
2122 MaybeLocal<Value> result = fun->Call(context, Undefined(isolate), 1, argv);
2123 if (result.IsEmpty()) return String::Empty(isolate);
2124 return result.ToLocalChecked().As<String>();
2125 }
2126
CreateGlobalTemplate(Isolate * isolate)2127 Local<ObjectTemplate> Shell::CreateGlobalTemplate(Isolate* isolate) {
2128 Local<ObjectTemplate> global_template = ObjectTemplate::New(isolate);
2129 global_template->Set(Symbol::GetToStringTag(isolate),
2130 String::NewFromUtf8Literal(isolate, "global"));
2131 global_template->Set(isolate, "version",
2132 FunctionTemplate::New(isolate, Version));
2133
2134 global_template->Set(isolate, "print", FunctionTemplate::New(isolate, Print));
2135 global_template->Set(isolate, "printErr",
2136 FunctionTemplate::New(isolate, PrintErr));
2137 global_template->Set(isolate, "write", FunctionTemplate::New(isolate, Write));
2138 global_template->Set(isolate, "read", FunctionTemplate::New(isolate, Read));
2139 global_template->Set(isolate, "readbuffer",
2140 FunctionTemplate::New(isolate, ReadBuffer));
2141 global_template->Set(isolate, "readline",
2142 FunctionTemplate::New(isolate, ReadLine));
2143 global_template->Set(isolate, "load", FunctionTemplate::New(isolate, Load));
2144 global_template->Set(isolate, "setTimeout",
2145 FunctionTemplate::New(isolate, SetTimeout));
2146 // Some Emscripten-generated code tries to call 'quit', which in turn would
2147 // call C's exit(). This would lead to memory leaks, because there is no way
2148 // we can terminate cleanly then, so we need a way to hide 'quit'.
2149 if (!options.omit_quit) {
2150 global_template->Set(isolate, "quit", FunctionTemplate::New(isolate, Quit));
2151 }
2152 global_template->Set(isolate, "testRunner",
2153 Shell::CreateTestRunnerTemplate(isolate));
2154 global_template->Set(isolate, "Realm", Shell::CreateRealmTemplate(isolate));
2155 global_template->Set(isolate, "performance",
2156 Shell::CreatePerformanceTemplate(isolate));
2157 global_template->Set(isolate, "Worker", Shell::CreateWorkerTemplate(isolate));
2158 // Prevent fuzzers from creating side effects.
2159 if (!i::FLAG_fuzzing) {
2160 global_template->Set(isolate, "os", Shell::CreateOSTemplate(isolate));
2161 }
2162 global_template->Set(isolate, "d8", Shell::CreateD8Template(isolate));
2163
2164 #ifdef V8_FUZZILLI
2165 global_template->Set(
2166 String::NewFromUtf8(isolate, "fuzzilli", NewStringType::kNormal)
2167 .ToLocalChecked(),
2168 FunctionTemplate::New(isolate, Fuzzilli), PropertyAttribute::DontEnum);
2169 #endif // V8_FUZZILLI
2170
2171 if (i::FLAG_expose_async_hooks) {
2172 global_template->Set(isolate, "async_hooks",
2173 Shell::CreateAsyncHookTemplate(isolate));
2174 }
2175
2176 return global_template;
2177 }
2178
CreateOSTemplate(Isolate * isolate)2179 Local<ObjectTemplate> Shell::CreateOSTemplate(Isolate* isolate) {
2180 Local<ObjectTemplate> os_template = ObjectTemplate::New(isolate);
2181 AddOSMethods(isolate, os_template);
2182 return os_template;
2183 }
2184
CreateWorkerTemplate(Isolate * isolate)2185 Local<FunctionTemplate> Shell::CreateWorkerTemplate(Isolate* isolate) {
2186 Local<FunctionTemplate> worker_fun_template =
2187 FunctionTemplate::New(isolate, WorkerNew);
2188 Local<Signature> worker_signature =
2189 Signature::New(isolate, worker_fun_template);
2190 worker_fun_template->SetClassName(
2191 String::NewFromUtf8Literal(isolate, "Worker"));
2192 worker_fun_template->ReadOnlyPrototype();
2193 worker_fun_template->PrototypeTemplate()->Set(
2194 isolate, "terminate",
2195 FunctionTemplate::New(isolate, WorkerTerminate, Local<Value>(),
2196 worker_signature));
2197 worker_fun_template->PrototypeTemplate()->Set(
2198 isolate, "terminateAndWait",
2199 FunctionTemplate::New(isolate, WorkerTerminateAndWait, Local<Value>(),
2200 worker_signature));
2201 worker_fun_template->PrototypeTemplate()->Set(
2202 isolate, "postMessage",
2203 FunctionTemplate::New(isolate, WorkerPostMessage, Local<Value>(),
2204 worker_signature));
2205 worker_fun_template->PrototypeTemplate()->Set(
2206 isolate, "getMessage",
2207 FunctionTemplate::New(isolate, WorkerGetMessage, Local<Value>(),
2208 worker_signature));
2209 worker_fun_template->InstanceTemplate()->SetInternalFieldCount(1);
2210 return worker_fun_template;
2211 }
2212
CreateAsyncHookTemplate(Isolate * isolate)2213 Local<ObjectTemplate> Shell::CreateAsyncHookTemplate(Isolate* isolate) {
2214 Local<ObjectTemplate> async_hooks_templ = ObjectTemplate::New(isolate);
2215 async_hooks_templ->Set(isolate, "createHook",
2216 FunctionTemplate::New(isolate, AsyncHooksCreateHook));
2217 async_hooks_templ->Set(
2218 isolate, "executionAsyncId",
2219 FunctionTemplate::New(isolate, AsyncHooksExecutionAsyncId));
2220 async_hooks_templ->Set(
2221 isolate, "triggerAsyncId",
2222 FunctionTemplate::New(isolate, AsyncHooksTriggerAsyncId));
2223 return async_hooks_templ;
2224 }
2225
CreateTestRunnerTemplate(Isolate * isolate)2226 Local<ObjectTemplate> Shell::CreateTestRunnerTemplate(Isolate* isolate) {
2227 Local<ObjectTemplate> test_template = ObjectTemplate::New(isolate);
2228 test_template->Set(isolate, "notifyDone",
2229 FunctionTemplate::New(isolate, NotifyDone));
2230 test_template->Set(isolate, "waitUntilDone",
2231 FunctionTemplate::New(isolate, WaitUntilDone));
2232 // Reliable access to quit functionality. The "quit" method function
2233 // installed on the global object can be hidden with the --omit-quit flag
2234 // (e.g. on asan bots).
2235 test_template->Set(isolate, "quit", FunctionTemplate::New(isolate, Quit));
2236 return test_template;
2237 }
2238
CreatePerformanceTemplate(Isolate * isolate)2239 Local<ObjectTemplate> Shell::CreatePerformanceTemplate(Isolate* isolate) {
2240 Local<ObjectTemplate> performance_template = ObjectTemplate::New(isolate);
2241 performance_template->Set(isolate, "now",
2242 FunctionTemplate::New(isolate, PerformanceNow));
2243 performance_template->Set(
2244 isolate, "measureMemory",
2245 FunctionTemplate::New(isolate, PerformanceMeasureMemory));
2246 return performance_template;
2247 }
2248
CreateRealmTemplate(Isolate * isolate)2249 Local<ObjectTemplate> Shell::CreateRealmTemplate(Isolate* isolate) {
2250 Local<ObjectTemplate> realm_template = ObjectTemplate::New(isolate);
2251 realm_template->Set(isolate, "current",
2252 FunctionTemplate::New(isolate, RealmCurrent));
2253 realm_template->Set(isolate, "owner",
2254 FunctionTemplate::New(isolate, RealmOwner));
2255 realm_template->Set(isolate, "global",
2256 FunctionTemplate::New(isolate, RealmGlobal));
2257 realm_template->Set(isolate, "create",
2258 FunctionTemplate::New(isolate, RealmCreate));
2259 realm_template->Set(
2260 isolate, "createAllowCrossRealmAccess",
2261 FunctionTemplate::New(isolate, RealmCreateAllowCrossRealmAccess));
2262 realm_template->Set(isolate, "navigate",
2263 FunctionTemplate::New(isolate, RealmNavigate));
2264 realm_template->Set(isolate, "detachGlobal",
2265 FunctionTemplate::New(isolate, RealmDetachGlobal));
2266 realm_template->Set(isolate, "dispose",
2267 FunctionTemplate::New(isolate, RealmDispose));
2268 realm_template->Set(isolate, "switch",
2269 FunctionTemplate::New(isolate, RealmSwitch));
2270 realm_template->Set(isolate, "eval",
2271 FunctionTemplate::New(isolate, RealmEval));
2272 realm_template->SetAccessor(String::NewFromUtf8Literal(isolate, "shared"),
2273 RealmSharedGet, RealmSharedSet);
2274 return realm_template;
2275 }
2276
CreateD8Template(Isolate * isolate)2277 Local<ObjectTemplate> Shell::CreateD8Template(Isolate* isolate) {
2278 Local<ObjectTemplate> d8_template = ObjectTemplate::New(isolate);
2279 {
2280 Local<ObjectTemplate> log_template = ObjectTemplate::New(isolate);
2281 log_template->Set(isolate, "getAndStop",
2282 FunctionTemplate::New(isolate, LogGetAndStop));
2283
2284 d8_template->Set(isolate, "log", log_template);
2285 }
2286 return d8_template;
2287 }
2288
PrintMessageCallback(Local<Message> message,Local<Value> error)2289 static void PrintMessageCallback(Local<Message> message, Local<Value> error) {
2290 switch (message->ErrorLevel()) {
2291 case v8::Isolate::kMessageWarning:
2292 case v8::Isolate::kMessageLog:
2293 case v8::Isolate::kMessageInfo:
2294 case v8::Isolate::kMessageDebug: {
2295 break;
2296 }
2297
2298 case v8::Isolate::kMessageError: {
2299 Shell::ReportException(message->GetIsolate(), message, error);
2300 return;
2301 }
2302
2303 default: {
2304 UNREACHABLE();
2305 }
2306 }
2307 // Converts a V8 value to a C string.
2308 auto ToCString = [](const v8::String::Utf8Value& value) {
2309 return *value ? *value : "<string conversion failed>";
2310 };
2311 Isolate* isolate = message->GetIsolate();
2312 v8::String::Utf8Value msg(isolate, message->Get());
2313 const char* msg_string = ToCString(msg);
2314 // Print (filename):(line number): (message).
2315 v8::String::Utf8Value filename(isolate,
2316 message->GetScriptOrigin().ResourceName());
2317 const char* filename_string = ToCString(filename);
2318 Maybe<int> maybeline = message->GetLineNumber(isolate->GetCurrentContext());
2319 int linenum = maybeline.IsJust() ? maybeline.FromJust() : -1;
2320 printf("%s:%i: %s\n", filename_string, linenum, msg_string);
2321 }
2322
PromiseRejectCallback(v8::PromiseRejectMessage data)2323 void Shell::PromiseRejectCallback(v8::PromiseRejectMessage data) {
2324 if (options.ignore_unhandled_promises) return;
2325 if (data.GetEvent() == v8::kPromiseRejectAfterResolved ||
2326 data.GetEvent() == v8::kPromiseResolveAfterResolved) {
2327 // Ignore reject/resolve after resolved.
2328 return;
2329 }
2330 v8::Local<v8::Promise> promise = data.GetPromise();
2331 v8::Isolate* isolate = promise->GetIsolate();
2332 PerIsolateData* isolate_data = PerIsolateData::Get(isolate);
2333
2334 if (data.GetEvent() == v8::kPromiseHandlerAddedAfterReject) {
2335 isolate_data->RemoveUnhandledPromise(promise);
2336 return;
2337 }
2338
2339 i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
2340 bool capture_exceptions =
2341 i_isolate->get_capture_stack_trace_for_uncaught_exceptions();
2342 isolate->SetCaptureStackTraceForUncaughtExceptions(true);
2343 v8::Local<Value> exception = data.GetValue();
2344 v8::Local<Message> message;
2345 // Assume that all objects are stack-traces.
2346 if (exception->IsObject()) {
2347 message = v8::Exception::CreateMessage(isolate, exception);
2348 }
2349 if (!exception->IsNativeError() &&
2350 (message.IsEmpty() || message->GetStackTrace().IsEmpty())) {
2351 // If there is no real Error object, manually throw and catch a stack trace.
2352 v8::TryCatch try_catch(isolate);
2353 try_catch.SetVerbose(true);
2354 isolate->ThrowException(v8::Exception::Error(
2355 v8::String::NewFromUtf8Literal(isolate, "Unhandled Promise.")));
2356 message = try_catch.Message();
2357 exception = try_catch.Exception();
2358 }
2359 isolate->SetCaptureStackTraceForUncaughtExceptions(capture_exceptions);
2360
2361 isolate_data->AddUnhandledPromise(promise, message, exception);
2362 }
2363
Initialize(Isolate * isolate,D8Console * console,bool isOnMainThread)2364 void Shell::Initialize(Isolate* isolate, D8Console* console,
2365 bool isOnMainThread) {
2366 isolate->SetPromiseRejectCallback(PromiseRejectCallback);
2367 if (isOnMainThread) {
2368 // Set up counters
2369 if (i::FLAG_map_counters[0] != '\0') {
2370 MapCounters(isolate, i::FLAG_map_counters);
2371 }
2372 // Disable default message reporting.
2373 isolate->AddMessageListenerWithErrorLevel(
2374 PrintMessageCallback,
2375 v8::Isolate::kMessageError | v8::Isolate::kMessageWarning |
2376 v8::Isolate::kMessageInfo | v8::Isolate::kMessageDebug |
2377 v8::Isolate::kMessageLog);
2378 }
2379
2380 isolate->SetHostImportModuleDynamicallyCallback(
2381 Shell::HostImportModuleDynamically);
2382 isolate->SetHostInitializeImportMetaObjectCallback(
2383 Shell::HostInitializeImportMetaObject);
2384
2385 #ifdef V8_FUZZILLI
2386 // Let the parent process (Fuzzilli) know we are ready.
2387 if (options.fuzzilli_enable_builtins_coverage) {
2388 cov_init_builtins_edges(static_cast<uint32_t>(
2389 i::BasicBlockProfiler::Get()
2390 ->GetCoverageBitmap(reinterpret_cast<i::Isolate*>(isolate))
2391 .size()));
2392 }
2393 char helo[] = "HELO";
2394 if (write(REPRL_CWFD, helo, 4) != 4 || read(REPRL_CRFD, helo, 4) != 4) {
2395 fuzzilli_reprl = false;
2396 }
2397
2398 if (memcmp(helo, "HELO", 4) != 0) {
2399 fprintf(stderr, "Invalid response from parent\n");
2400 _exit(-1);
2401 }
2402 #endif // V8_FUZZILLI
2403
2404 debug::SetConsoleDelegate(isolate, console);
2405 }
2406
CreateEvaluationContext(Isolate * isolate)2407 Local<Context> Shell::CreateEvaluationContext(Isolate* isolate) {
2408 // This needs to be a critical section since this is not thread-safe
2409 base::MutexGuard lock_guard(context_mutex_.Pointer());
2410 // Initialize the global objects
2411 Local<ObjectTemplate> global_template = CreateGlobalTemplate(isolate);
2412 EscapableHandleScope handle_scope(isolate);
2413 Local<Context> context = Context::New(isolate, nullptr, global_template);
2414 DCHECK(!context.IsEmpty());
2415 if (i::FLAG_perf_prof_annotate_wasm || i::FLAG_vtune_prof_annotate_wasm) {
2416 isolate->SetWasmLoadSourceMapCallback(ReadFile);
2417 }
2418 InitializeModuleEmbedderData(context);
2419 if (options.include_arguments) {
2420 Context::Scope scope(context);
2421 const std::vector<const char*>& args = options.arguments;
2422 int size = static_cast<int>(args.size());
2423 Local<Array> array = Array::New(isolate, size);
2424 for (int i = 0; i < size; i++) {
2425 Local<String> arg =
2426 v8::String::NewFromUtf8(isolate, args[i]).ToLocalChecked();
2427 Local<Number> index = v8::Number::New(isolate, i);
2428 array->Set(context, index, arg).FromJust();
2429 }
2430 Local<String> name = String::NewFromUtf8Literal(
2431 isolate, "arguments", NewStringType::kInternalized);
2432 context->Global()->Set(context, name, array).FromJust();
2433 }
2434 return handle_scope.Escape(context);
2435 }
2436
WriteIgnitionDispatchCountersFile(v8::Isolate * isolate)2437 void Shell::WriteIgnitionDispatchCountersFile(v8::Isolate* isolate) {
2438 HandleScope handle_scope(isolate);
2439 Local<Context> context = Context::New(isolate);
2440 Context::Scope context_scope(context);
2441
2442 Local<Object> dispatch_counters = reinterpret_cast<i::Isolate*>(isolate)
2443 ->interpreter()
2444 ->GetDispatchCountersObject();
2445 std::ofstream dispatch_counters_stream(
2446 i::FLAG_trace_ignition_dispatches_output_file);
2447 dispatch_counters_stream << *String::Utf8Value(
2448 isolate, JSON::Stringify(context, dispatch_counters).ToLocalChecked());
2449 }
2450
2451 namespace {
LineFromOffset(Local<debug::Script> script,int offset)2452 int LineFromOffset(Local<debug::Script> script, int offset) {
2453 debug::Location location = script->GetSourceLocation(offset);
2454 return location.GetLineNumber();
2455 }
2456
WriteLcovDataForRange(std::vector<uint32_t> * lines,int start_line,int end_line,uint32_t count)2457 void WriteLcovDataForRange(std::vector<uint32_t>* lines, int start_line,
2458 int end_line, uint32_t count) {
2459 // Ensure space in the array.
2460 lines->resize(std::max(static_cast<size_t>(end_line + 1), lines->size()), 0);
2461 // Boundary lines could be shared between two functions with different
2462 // invocation counts. Take the maximum.
2463 (*lines)[start_line] = std::max((*lines)[start_line], count);
2464 (*lines)[end_line] = std::max((*lines)[end_line], count);
2465 // Invocation counts for non-boundary lines are overwritten.
2466 for (int k = start_line + 1; k < end_line; k++) (*lines)[k] = count;
2467 }
2468
WriteLcovDataForNamedRange(std::ostream & sink,std::vector<uint32_t> * lines,const std::string & name,int start_line,int end_line,uint32_t count)2469 void WriteLcovDataForNamedRange(std::ostream& sink,
2470 std::vector<uint32_t>* lines,
2471 const std::string& name, int start_line,
2472 int end_line, uint32_t count) {
2473 WriteLcovDataForRange(lines, start_line, end_line, count);
2474 sink << "FN:" << start_line + 1 << "," << name << std::endl;
2475 sink << "FNDA:" << count << "," << name << std::endl;
2476 }
2477 } // namespace
2478
2479 // Write coverage data in LCOV format. See man page for geninfo(1).
WriteLcovData(v8::Isolate * isolate,const char * file)2480 void Shell::WriteLcovData(v8::Isolate* isolate, const char* file) {
2481 if (!file) return;
2482 HandleScope handle_scope(isolate);
2483 debug::Coverage coverage = debug::Coverage::CollectPrecise(isolate);
2484 std::ofstream sink(file, std::ofstream::app);
2485 for (size_t i = 0; i < coverage.ScriptCount(); i++) {
2486 debug::Coverage::ScriptData script_data = coverage.GetScriptData(i);
2487 Local<debug::Script> script = script_data.GetScript();
2488 // Skip unnamed scripts.
2489 Local<String> name;
2490 if (!script->Name().ToLocal(&name)) continue;
2491 std::string file_name = ToSTLString(isolate, name);
2492 // Skip scripts not backed by a file.
2493 if (!std::ifstream(file_name).good()) continue;
2494 sink << "SF:";
2495 sink << NormalizePath(file_name, GetWorkingDirectory()) << std::endl;
2496 std::vector<uint32_t> lines;
2497 for (size_t j = 0; j < script_data.FunctionCount(); j++) {
2498 debug::Coverage::FunctionData function_data =
2499 script_data.GetFunctionData(j);
2500
2501 // Write function stats.
2502 {
2503 debug::Location start =
2504 script->GetSourceLocation(function_data.StartOffset());
2505 debug::Location end =
2506 script->GetSourceLocation(function_data.EndOffset());
2507 int start_line = start.GetLineNumber();
2508 int end_line = end.GetLineNumber();
2509 uint32_t count = function_data.Count();
2510
2511 Local<String> name;
2512 std::stringstream name_stream;
2513 if (function_data.Name().ToLocal(&name)) {
2514 name_stream << ToSTLString(isolate, name);
2515 } else {
2516 name_stream << "<" << start_line + 1 << "-";
2517 name_stream << start.GetColumnNumber() << ">";
2518 }
2519
2520 WriteLcovDataForNamedRange(sink, &lines, name_stream.str(), start_line,
2521 end_line, count);
2522 }
2523
2524 // Process inner blocks.
2525 for (size_t k = 0; k < function_data.BlockCount(); k++) {
2526 debug::Coverage::BlockData block_data = function_data.GetBlockData(k);
2527 int start_line = LineFromOffset(script, block_data.StartOffset());
2528 int end_line = LineFromOffset(script, block_data.EndOffset() - 1);
2529 uint32_t count = block_data.Count();
2530 WriteLcovDataForRange(&lines, start_line, end_line, count);
2531 }
2532 }
2533 // Write per-line coverage. LCOV uses 1-based line numbers.
2534 for (size_t i = 0; i < lines.size(); i++) {
2535 sink << "DA:" << (i + 1) << "," << lines[i] << std::endl;
2536 }
2537 sink << "end_of_record" << std::endl;
2538 }
2539 }
2540
OnExit(v8::Isolate * isolate)2541 void Shell::OnExit(v8::Isolate* isolate) {
2542 isolate->Dispose();
2543
2544 if (i::FLAG_dump_counters || i::FLAG_dump_counters_nvp) {
2545 std::vector<std::pair<std::string, Counter*>> counters(
2546 counter_map_->begin(), counter_map_->end());
2547 std::sort(counters.begin(), counters.end());
2548
2549 if (i::FLAG_dump_counters_nvp) {
2550 // Dump counters as name-value pairs.
2551 for (const auto& pair : counters) {
2552 std::string key = pair.first;
2553 Counter* counter = pair.second;
2554 if (counter->is_histogram()) {
2555 std::cout << "\"c:" << key << "\"=" << counter->count() << "\n";
2556 std::cout << "\"t:" << key << "\"=" << counter->sample_total()
2557 << "\n";
2558 } else {
2559 std::cout << "\"" << key << "\"=" << counter->count() << "\n";
2560 }
2561 }
2562 } else {
2563 // Dump counters in formatted boxes.
2564 constexpr int kNameBoxSize = 64;
2565 constexpr int kValueBoxSize = 13;
2566 std::cout << "+" << std::string(kNameBoxSize, '-') << "+"
2567 << std::string(kValueBoxSize, '-') << "+\n";
2568 std::cout << "| Name" << std::string(kNameBoxSize - 5, ' ') << "| Value"
2569 << std::string(kValueBoxSize - 6, ' ') << "|\n";
2570 std::cout << "+" << std::string(kNameBoxSize, '-') << "+"
2571 << std::string(kValueBoxSize, '-') << "+\n";
2572 for (const auto& pair : counters) {
2573 std::string key = pair.first;
2574 Counter* counter = pair.second;
2575 if (counter->is_histogram()) {
2576 std::cout << "| c:" << std::setw(kNameBoxSize - 4) << std::left << key
2577 << " | " << std::setw(kValueBoxSize - 2) << std::right
2578 << counter->count() << " |\n";
2579 std::cout << "| t:" << std::setw(kNameBoxSize - 4) << std::left << key
2580 << " | " << std::setw(kValueBoxSize - 2) << std::right
2581 << counter->sample_total() << " |\n";
2582 } else {
2583 std::cout << "| " << std::setw(kNameBoxSize - 2) << std::left << key
2584 << " | " << std::setw(kValueBoxSize - 2) << std::right
2585 << counter->count() << " |\n";
2586 }
2587 }
2588 std::cout << "+" << std::string(kNameBoxSize, '-') << "+"
2589 << std::string(kValueBoxSize, '-') << "+\n";
2590 }
2591 }
2592
2593 delete counters_file_;
2594 delete counter_map_;
2595 }
2596
FOpen(const char * path,const char * mode)2597 static FILE* FOpen(const char* path, const char* mode) {
2598 #if defined(_MSC_VER) && (defined(_WIN32) || defined(_WIN64))
2599 FILE* result;
2600 if (fopen_s(&result, path, mode) == 0) {
2601 return result;
2602 } else {
2603 return nullptr;
2604 }
2605 #else
2606 FILE* file = fopen(path, mode);
2607 if (file == nullptr) return nullptr;
2608 struct stat file_stat;
2609 if (fstat(fileno(file), &file_stat) != 0) return nullptr;
2610 bool is_regular_file = ((file_stat.st_mode & S_IFREG) != 0);
2611 if (is_regular_file) return file;
2612 fclose(file);
2613 return nullptr;
2614 #endif
2615 }
2616
ReadChars(const char * name,int * size_out)2617 static char* ReadChars(const char* name, int* size_out) {
2618 if (Shell::options.read_from_tcp_port >= 0) {
2619 return Shell::ReadCharsFromTcpPort(name, size_out);
2620 }
2621
2622 FILE* file = FOpen(name, "rb");
2623 if (file == nullptr) return nullptr;
2624
2625 fseek(file, 0, SEEK_END);
2626 size_t size = ftell(file);
2627 rewind(file);
2628
2629 char* chars = new char[size + 1];
2630 chars[size] = '\0';
2631 for (size_t i = 0; i < size;) {
2632 i += fread(&chars[i], 1, size - i, file);
2633 if (ferror(file)) {
2634 fclose(file);
2635 delete[] chars;
2636 return nullptr;
2637 }
2638 }
2639 fclose(file);
2640 *size_out = static_cast<int>(size);
2641 return chars;
2642 }
2643
ReadBuffer(const v8::FunctionCallbackInfo<v8::Value> & args)2644 void Shell::ReadBuffer(const v8::FunctionCallbackInfo<v8::Value>& args) {
2645 static_assert(sizeof(char) == sizeof(uint8_t),
2646 "char and uint8_t should both have 1 byte");
2647 Isolate* isolate = args.GetIsolate();
2648 String::Utf8Value filename(isolate, args[0]);
2649 int length;
2650 if (*filename == nullptr) {
2651 Throw(isolate, "Error loading file");
2652 return;
2653 }
2654
2655 uint8_t* data = reinterpret_cast<uint8_t*>(ReadChars(*filename, &length));
2656 if (data == nullptr) {
2657 Throw(isolate, "Error reading file");
2658 return;
2659 }
2660 std::unique_ptr<v8::BackingStore> backing_store =
2661 ArrayBuffer::NewBackingStore(
2662 data, length,
2663 [](void* data, size_t length, void*) {
2664 delete[] reinterpret_cast<uint8_t*>(data);
2665 },
2666 nullptr);
2667 Local<v8::ArrayBuffer> buffer =
2668 ArrayBuffer::New(isolate, std::move(backing_store));
2669
2670 args.GetReturnValue().Set(buffer);
2671 }
2672
2673 // Reads a file into a v8 string.
ReadFile(Isolate * isolate,const char * name)2674 Local<String> Shell::ReadFile(Isolate* isolate, const char* name) {
2675 std::unique_ptr<base::OS::MemoryMappedFile> file(
2676 base::OS::MemoryMappedFile::open(
2677 name, base::OS::MemoryMappedFile::FileMode::kReadOnly));
2678 if (!file) return Local<String>();
2679
2680 int size = static_cast<int>(file->size());
2681 char* chars = static_cast<char*>(file->memory());
2682 Local<String> result;
2683 if (i::FLAG_use_external_strings && i::String::IsAscii(chars, size)) {
2684 String::ExternalOneByteStringResource* resource =
2685 new ExternalOwningOneByteStringResource(std::move(file));
2686 result = String::NewExternalOneByte(isolate, resource).ToLocalChecked();
2687 } else {
2688 result = String::NewFromUtf8(isolate, chars, NewStringType::kNormal, size)
2689 .ToLocalChecked();
2690 }
2691 return result;
2692 }
2693
RunShell(Isolate * isolate)2694 void Shell::RunShell(Isolate* isolate) {
2695 HandleScope outer_scope(isolate);
2696 v8::Local<v8::Context> context =
2697 v8::Local<v8::Context>::New(isolate, evaluation_context_);
2698 v8::Context::Scope context_scope(context);
2699 PerIsolateData::RealmScope realm_scope(PerIsolateData::Get(isolate));
2700 Local<String> name = String::NewFromUtf8Literal(isolate, "(d8)");
2701 printf("V8 version %s\n", V8::GetVersion());
2702 while (true) {
2703 HandleScope inner_scope(isolate);
2704 printf("d8> ");
2705 Local<String> input = Shell::ReadFromStdin(isolate);
2706 if (input.IsEmpty()) break;
2707 ExecuteString(isolate, input, name, kPrintResult, kReportExceptions,
2708 kProcessMessageQueue);
2709 }
2710 printf("\n");
2711 // We need to explicitly clean up the module embedder data for
2712 // the interative shell context.
2713 DisposeModuleEmbedderData(context);
2714 }
2715
2716 class InspectorFrontend final : public v8_inspector::V8Inspector::Channel {
2717 public:
InspectorFrontend(Local<Context> context)2718 explicit InspectorFrontend(Local<Context> context) {
2719 isolate_ = context->GetIsolate();
2720 context_.Reset(isolate_, context);
2721 }
2722 ~InspectorFrontend() override = default;
2723
2724 private:
sendResponse(int callId,std::unique_ptr<v8_inspector::StringBuffer> message)2725 void sendResponse(
2726 int callId,
2727 std::unique_ptr<v8_inspector::StringBuffer> message) override {
2728 Send(message->string());
2729 }
sendNotification(std::unique_ptr<v8_inspector::StringBuffer> message)2730 void sendNotification(
2731 std::unique_ptr<v8_inspector::StringBuffer> message) override {
2732 Send(message->string());
2733 }
flushProtocolNotifications()2734 void flushProtocolNotifications() override {}
2735
Send(const v8_inspector::StringView & string)2736 void Send(const v8_inspector::StringView& string) {
2737 v8::Isolate::AllowJavascriptExecutionScope allow_script(isolate_);
2738 v8::HandleScope handle_scope(isolate_);
2739 int length = static_cast<int>(string.length());
2740 DCHECK_LT(length, v8::String::kMaxLength);
2741 Local<String> message =
2742 (string.is8Bit()
2743 ? v8::String::NewFromOneByte(
2744 isolate_,
2745 reinterpret_cast<const uint8_t*>(string.characters8()),
2746 v8::NewStringType::kNormal, length)
2747 : v8::String::NewFromTwoByte(
2748 isolate_,
2749 reinterpret_cast<const uint16_t*>(string.characters16()),
2750 v8::NewStringType::kNormal, length))
2751 .ToLocalChecked();
2752 Local<String> callback_name = v8::String::NewFromUtf8Literal(
2753 isolate_, "receive", NewStringType::kInternalized);
2754 Local<Context> context = context_.Get(isolate_);
2755 Local<Value> callback =
2756 context->Global()->Get(context, callback_name).ToLocalChecked();
2757 if (callback->IsFunction()) {
2758 v8::TryCatch try_catch(isolate_);
2759 Local<Value> args[] = {message};
2760 USE(Local<Function>::Cast(callback)->Call(context, Undefined(isolate_), 1,
2761 args));
2762 #ifdef DEBUG
2763 if (try_catch.HasCaught()) {
2764 Local<Object> exception = Local<Object>::Cast(try_catch.Exception());
2765 Local<String> key = v8::String::NewFromUtf8Literal(
2766 isolate_, "message", NewStringType::kInternalized);
2767 Local<String> expected = v8::String::NewFromUtf8Literal(
2768 isolate_, "Maximum call stack size exceeded");
2769 Local<Value> value = exception->Get(context, key).ToLocalChecked();
2770 DCHECK(value->StrictEquals(expected));
2771 }
2772 #endif
2773 }
2774 }
2775
2776 Isolate* isolate_;
2777 Global<Context> context_;
2778 };
2779
2780 class InspectorClient : public v8_inspector::V8InspectorClient {
2781 public:
InspectorClient(Local<Context> context,bool connect)2782 InspectorClient(Local<Context> context, bool connect) {
2783 if (!connect) return;
2784 isolate_ = context->GetIsolate();
2785 channel_.reset(new InspectorFrontend(context));
2786 inspector_ = v8_inspector::V8Inspector::create(isolate_, this);
2787 session_ =
2788 inspector_->connect(1, channel_.get(), v8_inspector::StringView());
2789 context->SetAlignedPointerInEmbedderData(kInspectorClientIndex, this);
2790 inspector_->contextCreated(v8_inspector::V8ContextInfo(
2791 context, kContextGroupId, v8_inspector::StringView()));
2792
2793 Local<Value> function =
2794 FunctionTemplate::New(isolate_, SendInspectorMessage)
2795 ->GetFunction(context)
2796 .ToLocalChecked();
2797 Local<String> function_name = String::NewFromUtf8Literal(
2798 isolate_, "send", NewStringType::kInternalized);
2799 CHECK(context->Global()->Set(context, function_name, function).FromJust());
2800
2801 context_.Reset(isolate_, context);
2802 }
2803
runMessageLoopOnPause(int contextGroupId)2804 void runMessageLoopOnPause(int contextGroupId) override {
2805 v8::Isolate::AllowJavascriptExecutionScope allow_script(isolate_);
2806 v8::HandleScope handle_scope(isolate_);
2807 Local<String> callback_name = v8::String::NewFromUtf8Literal(
2808 isolate_, "handleInspectorMessage", NewStringType::kInternalized);
2809 Local<Context> context = context_.Get(isolate_);
2810 Local<Value> callback =
2811 context->Global()->Get(context, callback_name).ToLocalChecked();
2812 if (!callback->IsFunction()) return;
2813
2814 v8::TryCatch try_catch(isolate_);
2815 try_catch.SetVerbose(true);
2816 is_paused = true;
2817
2818 while (is_paused) {
2819 USE(Local<Function>::Cast(callback)->Call(context, Undefined(isolate_), 0,
2820 {}));
2821 if (try_catch.HasCaught()) {
2822 is_paused = false;
2823 }
2824 }
2825 }
2826
quitMessageLoopOnPause()2827 void quitMessageLoopOnPause() override { is_paused = false; }
2828
2829 private:
GetSession(Local<Context> context)2830 static v8_inspector::V8InspectorSession* GetSession(Local<Context> context) {
2831 InspectorClient* inspector_client = static_cast<InspectorClient*>(
2832 context->GetAlignedPointerFromEmbedderData(kInspectorClientIndex));
2833 return inspector_client->session_.get();
2834 }
2835
ensureDefaultContextInGroup(int group_id)2836 Local<Context> ensureDefaultContextInGroup(int group_id) override {
2837 DCHECK(isolate_);
2838 DCHECK_EQ(kContextGroupId, group_id);
2839 return context_.Get(isolate_);
2840 }
2841
SendInspectorMessage(const v8::FunctionCallbackInfo<v8::Value> & args)2842 static void SendInspectorMessage(
2843 const v8::FunctionCallbackInfo<v8::Value>& args) {
2844 Isolate* isolate = args.GetIsolate();
2845 v8::HandleScope handle_scope(isolate);
2846 Local<Context> context = isolate->GetCurrentContext();
2847 args.GetReturnValue().Set(Undefined(isolate));
2848 Local<String> message = args[0]->ToString(context).ToLocalChecked();
2849 v8_inspector::V8InspectorSession* session =
2850 InspectorClient::GetSession(context);
2851 int length = message->Length();
2852 std::unique_ptr<uint16_t[]> buffer(new uint16_t[length]);
2853 message->Write(isolate, buffer.get(), 0, length);
2854 v8_inspector::StringView message_view(buffer.get(), length);
2855 {
2856 v8::SealHandleScope seal_handle_scope(isolate);
2857 session->dispatchProtocolMessage(message_view);
2858 }
2859 args.GetReturnValue().Set(True(isolate));
2860 }
2861
2862 static const int kContextGroupId = 1;
2863
2864 std::unique_ptr<v8_inspector::V8Inspector> inspector_;
2865 std::unique_ptr<v8_inspector::V8InspectorSession> session_;
2866 std::unique_ptr<v8_inspector::V8Inspector::Channel> channel_;
2867 bool is_paused = false;
2868 Global<Context> context_;
2869 Isolate* isolate_;
2870 };
2871
~SourceGroup()2872 SourceGroup::~SourceGroup() {
2873 delete thread_;
2874 thread_ = nullptr;
2875 }
2876
ends_with(const char * input,const char * suffix)2877 bool ends_with(const char* input, const char* suffix) {
2878 size_t input_length = strlen(input);
2879 size_t suffix_length = strlen(suffix);
2880 if (suffix_length <= input_length) {
2881 return strcmp(input + input_length - suffix_length, suffix) == 0;
2882 }
2883 return false;
2884 }
2885
Execute(Isolate * isolate)2886 bool SourceGroup::Execute(Isolate* isolate) {
2887 bool success = true;
2888 #ifdef V8_FUZZILLI
2889 if (fuzzilli_reprl) {
2890 HandleScope handle_scope(isolate);
2891 Local<String> file_name =
2892 String::NewFromUtf8(isolate, "fuzzcode.js", NewStringType::kNormal)
2893 .ToLocalChecked();
2894
2895 size_t script_size;
2896 CHECK_EQ(read(REPRL_CRFD, &script_size, 8), 8);
2897 char* buffer = new char[script_size + 1];
2898 char* ptr = buffer;
2899 size_t remaining = script_size;
2900 while (remaining > 0) {
2901 ssize_t rv = read(REPRL_DRFD, ptr, remaining);
2902 CHECK_GE(rv, 0);
2903 remaining -= rv;
2904 ptr += rv;
2905 }
2906 buffer[script_size] = 0;
2907
2908 Local<String> source =
2909 String::NewFromUtf8(isolate, buffer, NewStringType::kNormal)
2910 .ToLocalChecked();
2911 delete[] buffer;
2912 Shell::set_script_executed();
2913 if (!Shell::ExecuteString(isolate, source, file_name, Shell::kNoPrintResult,
2914 Shell::kReportExceptions,
2915 Shell::kNoProcessMessageQueue)) {
2916 return false;
2917 }
2918 }
2919 #endif // V8_FUZZILLI
2920 for (int i = begin_offset_; i < end_offset_; ++i) {
2921 const char* arg = argv_[i];
2922 if (strcmp(arg, "-e") == 0 && i + 1 < end_offset_) {
2923 // Execute argument given to -e option directly.
2924 HandleScope handle_scope(isolate);
2925 Local<String> file_name = String::NewFromUtf8Literal(isolate, "unnamed");
2926 Local<String> source =
2927 String::NewFromUtf8(isolate, argv_[i + 1]).ToLocalChecked();
2928 Shell::set_script_executed();
2929 if (!Shell::ExecuteString(isolate, source, file_name,
2930 Shell::kNoPrintResult, Shell::kReportExceptions,
2931 Shell::kNoProcessMessageQueue)) {
2932 success = false;
2933 break;
2934 }
2935 ++i;
2936 continue;
2937 } else if (ends_with(arg, ".mjs")) {
2938 Shell::set_script_executed();
2939 if (!Shell::ExecuteModule(isolate, arg)) {
2940 success = false;
2941 break;
2942 }
2943 continue;
2944 } else if (strcmp(arg, "--module") == 0 && i + 1 < end_offset_) {
2945 // Treat the next file as a module.
2946 arg = argv_[++i];
2947 Shell::set_script_executed();
2948 if (!Shell::ExecuteModule(isolate, arg)) {
2949 success = false;
2950 break;
2951 }
2952 continue;
2953 } else if (arg[0] == '-') {
2954 // Ignore other options. They have been parsed already.
2955 continue;
2956 }
2957
2958 // Use all other arguments as names of files to load and run.
2959 HandleScope handle_scope(isolate);
2960 Local<String> file_name =
2961 String::NewFromUtf8(isolate, arg).ToLocalChecked();
2962 Local<String> source = ReadFile(isolate, arg);
2963 if (source.IsEmpty()) {
2964 printf("Error reading '%s'\n", arg);
2965 base::OS::ExitProcess(1);
2966 }
2967 Shell::set_script_executed();
2968 if (!Shell::ExecuteString(isolate, source, file_name, Shell::kNoPrintResult,
2969 Shell::kReportExceptions,
2970 Shell::kProcessMessageQueue)) {
2971 success = false;
2972 break;
2973 }
2974 }
2975 return success;
2976 }
2977
ReadFile(Isolate * isolate,const char * name)2978 Local<String> SourceGroup::ReadFile(Isolate* isolate, const char* name) {
2979 return Shell::ReadFile(isolate, name);
2980 }
2981
IsolateThread(SourceGroup * group)2982 SourceGroup::IsolateThread::IsolateThread(SourceGroup* group)
2983 : base::Thread(GetThreadOptions("IsolateThread")), group_(group) {}
2984
ExecuteInThread()2985 void SourceGroup::ExecuteInThread() {
2986 Isolate::CreateParams create_params;
2987 create_params.array_buffer_allocator = Shell::array_buffer_allocator;
2988 Isolate* isolate = Isolate::New(create_params);
2989 Shell::SetWaitUntilDone(isolate, false);
2990 D8Console console(isolate);
2991 Shell::Initialize(isolate, &console, false);
2992
2993 for (int i = 0; i < Shell::options.stress_runs; ++i) {
2994 next_semaphore_.Wait();
2995 {
2996 Isolate::Scope iscope(isolate);
2997 PerIsolateData data(isolate);
2998 {
2999 HandleScope scope(isolate);
3000 Local<Context> context = Shell::CreateEvaluationContext(isolate);
3001 {
3002 Context::Scope cscope(context);
3003 InspectorClient inspector_client(context,
3004 Shell::options.enable_inspector);
3005 PerIsolateData::RealmScope realm_scope(PerIsolateData::Get(isolate));
3006 Execute(isolate);
3007 Shell::CompleteMessageLoop(isolate);
3008 }
3009 DisposeModuleEmbedderData(context);
3010 }
3011 Shell::CollectGarbage(isolate);
3012 }
3013 done_semaphore_.Signal();
3014 }
3015
3016 isolate->Dispose();
3017 }
3018
StartExecuteInThread()3019 void SourceGroup::StartExecuteInThread() {
3020 if (thread_ == nullptr) {
3021 thread_ = new IsolateThread(this);
3022 CHECK(thread_->Start());
3023 }
3024 next_semaphore_.Signal();
3025 }
3026
WaitForThread()3027 void SourceGroup::WaitForThread() {
3028 if (thread_ == nullptr) return;
3029 done_semaphore_.Wait();
3030 }
3031
JoinThread()3032 void SourceGroup::JoinThread() {
3033 if (thread_ == nullptr) return;
3034 thread_->Join();
3035 }
3036
Enqueue(std::unique_ptr<SerializationData> data)3037 void SerializationDataQueue::Enqueue(std::unique_ptr<SerializationData> data) {
3038 base::MutexGuard lock_guard(&mutex_);
3039 data_.push_back(std::move(data));
3040 }
3041
Dequeue(std::unique_ptr<SerializationData> * out_data)3042 bool SerializationDataQueue::Dequeue(
3043 std::unique_ptr<SerializationData>* out_data) {
3044 out_data->reset();
3045 base::MutexGuard lock_guard(&mutex_);
3046 if (data_.empty()) return false;
3047 *out_data = std::move(data_[0]);
3048 data_.erase(data_.begin());
3049 return true;
3050 }
3051
IsEmpty()3052 bool SerializationDataQueue::IsEmpty() {
3053 base::MutexGuard lock_guard(&mutex_);
3054 return data_.empty();
3055 }
3056
Clear()3057 void SerializationDataQueue::Clear() {
3058 base::MutexGuard lock_guard(&mutex_);
3059 data_.clear();
3060 }
3061
Worker(const char * script)3062 Worker::Worker(const char* script) : script_(i::StrDup(script)) {
3063 running_.store(false);
3064 }
3065
~Worker()3066 Worker::~Worker() {
3067 DCHECK_NULL(isolate_);
3068
3069 delete thread_;
3070 thread_ = nullptr;
3071 delete[] script_;
3072 script_ = nullptr;
3073 }
3074
StartWorkerThread(std::shared_ptr<Worker> worker)3075 bool Worker::StartWorkerThread(std::shared_ptr<Worker> worker) {
3076 worker->running_.store(true);
3077 auto thread = new WorkerThread(worker);
3078 worker->thread_ = thread;
3079 if (thread->Start()) {
3080 // Wait until the worker is ready to receive messages.
3081 worker->started_semaphore_.Wait();
3082 Shell::AddRunningWorker(std::move(worker));
3083 return true;
3084 }
3085 return false;
3086 }
3087
Run()3088 void Worker::WorkerThread::Run() {
3089 // Prevent a lifetime cycle from Worker -> WorkerThread -> Worker.
3090 // We must clear the worker_ field of the thread, but we keep the
3091 // worker alive via a stack root until the thread finishes execution
3092 // and removes itself from the running set. Thereafter the only
3093 // remaining reference can be from a JavaScript object via a Managed.
3094 auto worker = std::move(worker_);
3095 worker_ = nullptr;
3096 worker->ExecuteInThread();
3097 Shell::RemoveRunningWorker(worker);
3098 }
3099
3100 class ProcessMessageTask : public i::CancelableTask {
3101 public:
ProcessMessageTask(i::CancelableTaskManager * task_manager,std::shared_ptr<Worker> worker,std::unique_ptr<SerializationData> data)3102 ProcessMessageTask(i::CancelableTaskManager* task_manager,
3103 std::shared_ptr<Worker> worker,
3104 std::unique_ptr<SerializationData> data)
3105 : i::CancelableTask(task_manager),
3106 worker_(worker),
3107 data_(std::move(data)) {}
3108
RunInternal()3109 void RunInternal() override { worker_->ProcessMessage(std::move(data_)); }
3110
3111 private:
3112 std::shared_ptr<Worker> worker_;
3113 std::unique_ptr<SerializationData> data_;
3114 };
3115
PostMessage(std::unique_ptr<SerializationData> data)3116 void Worker::PostMessage(std::unique_ptr<SerializationData> data) {
3117 // Hold the worker_mutex_ so that the worker thread can't delete task_runner_
3118 // after we've checked running_.
3119 base::MutexGuard lock_guard(&worker_mutex_);
3120 if (!running_.load()) {
3121 return;
3122 }
3123 std::unique_ptr<v8::Task> task(new ProcessMessageTask(
3124 task_manager_, shared_from_this(), std::move(data)));
3125 task_runner_->PostNonNestableTask(std::move(task));
3126 }
3127
3128 class TerminateTask : public i::CancelableTask {
3129 public:
TerminateTask(i::CancelableTaskManager * task_manager,std::shared_ptr<Worker> worker)3130 TerminateTask(i::CancelableTaskManager* task_manager,
3131 std::shared_ptr<Worker> worker)
3132 : i::CancelableTask(task_manager), worker_(worker) {}
3133
RunInternal()3134 void RunInternal() override {
3135 // Make sure the worker doesn't enter the task loop after processing this
3136 // task.
3137 worker_->running_.store(false);
3138 }
3139
3140 private:
3141 std::shared_ptr<Worker> worker_;
3142 };
3143
GetMessage()3144 std::unique_ptr<SerializationData> Worker::GetMessage() {
3145 std::unique_ptr<SerializationData> result;
3146 while (!out_queue_.Dequeue(&result)) {
3147 // If the worker is no longer running, and there are no messages in the
3148 // queue, don't expect any more messages from it.
3149 if (!running_.load()) {
3150 break;
3151 }
3152 out_semaphore_.Wait();
3153 }
3154 return result;
3155 }
3156
Terminate()3157 void Worker::Terminate() {
3158 // Hold the worker_mutex_ so that the worker thread can't delete task_runner_
3159 // after we've checked running_.
3160 base::MutexGuard lock_guard(&worker_mutex_);
3161 if (!running_.load()) {
3162 return;
3163 }
3164 // Post a task to wake up the worker thread.
3165 std::unique_ptr<v8::Task> task(
3166 new TerminateTask(task_manager_, shared_from_this()));
3167 task_runner_->PostTask(std::move(task));
3168 }
3169
TerminateAndWaitForThread()3170 void Worker::TerminateAndWaitForThread() {
3171 Terminate();
3172 thread_->Join();
3173 }
3174
ProcessMessage(std::unique_ptr<SerializationData> data)3175 void Worker::ProcessMessage(std::unique_ptr<SerializationData> data) {
3176 if (!running_.load()) {
3177 return;
3178 }
3179
3180 DCHECK_NOT_NULL(isolate_);
3181 HandleScope scope(isolate_);
3182 Local<Context> context = context_.Get(isolate_);
3183 Context::Scope cscope(context);
3184 Local<Object> global = context->Global();
3185
3186 // Get the message handler.
3187 Local<Value> onmessage = global
3188 ->Get(context, String::NewFromUtf8Literal(
3189 isolate_, "onmessage",
3190 NewStringType::kInternalized))
3191 .ToLocalChecked();
3192 if (!onmessage->IsFunction()) {
3193 return;
3194 }
3195 Local<Function> onmessage_fun = Local<Function>::Cast(onmessage);
3196
3197 v8::TryCatch try_catch(isolate_);
3198 try_catch.SetVerbose(true);
3199 Local<Value> value;
3200 if (Shell::DeserializeValue(isolate_, std::move(data)).ToLocal(&value)) {
3201 Local<Value> argv[] = {value};
3202 MaybeLocal<Value> result = onmessage_fun->Call(context, global, 1, argv);
3203 USE(result);
3204 }
3205 }
3206
ProcessMessages()3207 void Worker::ProcessMessages() {
3208 i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate_);
3209 i::SaveAndSwitchContext saved_context(i_isolate, i::Context());
3210 SealHandleScope shs(isolate_);
3211 while (running_.load() && v8::platform::PumpMessageLoop(
3212 g_default_platform, isolate_,
3213 platform::MessageLoopBehavior::kWaitForWork)) {
3214 if (running_.load()) {
3215 MicrotasksScope::PerformCheckpoint(isolate_);
3216 }
3217 }
3218 }
3219
ExecuteInThread()3220 void Worker::ExecuteInThread() {
3221 Isolate::CreateParams create_params;
3222 create_params.array_buffer_allocator = Shell::array_buffer_allocator;
3223 isolate_ = Isolate::New(create_params);
3224 {
3225 base::MutexGuard lock_guard(&worker_mutex_);
3226 task_runner_ = g_default_platform->GetForegroundTaskRunner(isolate_);
3227 task_manager_ =
3228 reinterpret_cast<i::Isolate*>(isolate_)->cancelable_task_manager();
3229 }
3230 // The Worker is now ready to receive messages.
3231 started_semaphore_.Signal();
3232
3233 D8Console console(isolate_);
3234 Shell::Initialize(isolate_, &console, false);
3235 {
3236 Isolate::Scope iscope(isolate_);
3237 {
3238 HandleScope scope(isolate_);
3239 PerIsolateData data(isolate_);
3240 Local<Context> context = Shell::CreateEvaluationContext(isolate_);
3241 context_.Reset(isolate_, context);
3242 {
3243 Context::Scope cscope(context);
3244 PerIsolateData::RealmScope realm_scope(PerIsolateData::Get(isolate_));
3245
3246 Local<Object> global = context->Global();
3247 Local<Value> this_value = External::New(isolate_, this);
3248 Local<FunctionTemplate> postmessage_fun_template =
3249 FunctionTemplate::New(isolate_, PostMessageOut, this_value);
3250
3251 Local<Function> postmessage_fun;
3252 if (postmessage_fun_template->GetFunction(context).ToLocal(
3253 &postmessage_fun)) {
3254 global
3255 ->Set(context,
3256 v8::String::NewFromUtf8Literal(
3257 isolate_, "postMessage", NewStringType::kInternalized),
3258 postmessage_fun)
3259 .FromJust();
3260 }
3261
3262 // First run the script
3263 Local<String> file_name =
3264 String::NewFromUtf8Literal(isolate_, "unnamed");
3265 Local<String> source =
3266 String::NewFromUtf8(isolate_, script_).ToLocalChecked();
3267 if (Shell::ExecuteString(
3268 isolate_, source, file_name, Shell::kNoPrintResult,
3269 Shell::kReportExceptions, Shell::kProcessMessageQueue)) {
3270 // Check that there's a message handler
3271 Local<Value> onmessage =
3272 global
3273 ->Get(context, String::NewFromUtf8Literal(
3274 isolate_, "onmessage",
3275 NewStringType::kInternalized))
3276 .ToLocalChecked();
3277 if (onmessage->IsFunction()) {
3278 // Now wait for messages
3279 ProcessMessages();
3280 }
3281 }
3282 }
3283 DisposeModuleEmbedderData(context);
3284 }
3285 Shell::CollectGarbage(isolate_);
3286 }
3287 // TODO(cbruni): Check for unhandled promises here.
3288 {
3289 // Hold the mutex to ensure running_ and task_runner_ change state
3290 // atomically (see Worker::PostMessage which reads them).
3291 base::MutexGuard lock_guard(&worker_mutex_);
3292 running_.store(false);
3293 task_runner_.reset();
3294 task_manager_ = nullptr;
3295 }
3296 context_.Reset();
3297 platform::NotifyIsolateShutdown(g_default_platform, isolate_);
3298 isolate_->Dispose();
3299 isolate_ = nullptr;
3300
3301 // Post nullptr to wake the thread waiting on GetMessage() if there is one.
3302 out_queue_.Enqueue(nullptr);
3303 out_semaphore_.Signal();
3304 }
3305
PostMessageOut(const v8::FunctionCallbackInfo<v8::Value> & args)3306 void Worker::PostMessageOut(const v8::FunctionCallbackInfo<v8::Value>& args) {
3307 Isolate* isolate = args.GetIsolate();
3308 HandleScope handle_scope(isolate);
3309
3310 if (args.Length() < 1) {
3311 Throw(isolate, "Invalid argument");
3312 return;
3313 }
3314
3315 Local<Value> message = args[0];
3316 Local<Value> transfer = Undefined(isolate);
3317 std::unique_ptr<SerializationData> data =
3318 Shell::SerializeValue(isolate, message, transfer);
3319 if (data) {
3320 DCHECK(args.Data()->IsExternal());
3321 Local<External> this_value = Local<External>::Cast(args.Data());
3322 Worker* worker = static_cast<Worker*>(this_value->Value());
3323 worker->out_queue_.Enqueue(std::move(data));
3324 worker->out_semaphore_.Signal();
3325 }
3326 }
3327
SetOptions(int argc,char * argv[])3328 bool Shell::SetOptions(int argc, char* argv[]) {
3329 bool logfile_per_isolate = false;
3330 bool no_always_opt = false;
3331 for (int i = 0; i < argc; i++) {
3332 if (strcmp(argv[i], "--") == 0) {
3333 argv[i] = nullptr;
3334 for (int j = i + 1; j < argc; j++) {
3335 options.arguments.push_back(argv[j]);
3336 argv[j] = nullptr;
3337 }
3338 break;
3339 } else if (strcmp(argv[i], "--no-arguments") == 0) {
3340 options.include_arguments = false;
3341 argv[i] = nullptr;
3342 } else if (strcmp(argv[i], "--stress-opt") == 0) {
3343 options.stress_opt = true;
3344 argv[i] = nullptr;
3345 } else if (strcmp(argv[i], "--nostress-opt") == 0 ||
3346 strcmp(argv[i], "--no-stress-opt") == 0) {
3347 options.stress_opt = false;
3348 argv[i] = nullptr;
3349 } else if (strcmp(argv[i], "--stress-snapshot") == 0) {
3350 options.stress_snapshot = true;
3351 // Incremental marking is incompatible with the stress_snapshot mode;
3352 // specifically, serialization may clear bytecode arrays from shared
3353 // function infos which the MarkCompactCollector (running concurrently)
3354 // may still need. See also https://crbug.com/v8/10882.
3355 //
3356 // We thus force the implication
3357 //
3358 // --stress-snapshot ~~> --no-incremental-marking
3359 //
3360 // Note: This is not an issue in production because we don't clear SFI's
3361 // there (that only happens in mksnapshot and in --stress-snapshot mode).
3362 i::FLAG_incremental_marking = false;
3363 argv[i] = nullptr;
3364 } else if (strcmp(argv[i], "--nostress-snapshot") == 0 ||
3365 strcmp(argv[i], "--no-stress-snapshot") == 0) {
3366 options.stress_snapshot = false;
3367 argv[i] = nullptr;
3368 } else if (strcmp(argv[i], "--noalways-opt") == 0 ||
3369 strcmp(argv[i], "--no-always-opt") == 0) {
3370 no_always_opt = true;
3371 } else if (strcmp(argv[i], "--fuzzing") == 0 ||
3372 strcmp(argv[i], "--no-abort-on-contradictory-flags") == 0 ||
3373 strcmp(argv[i], "--noabort-on-contradictory-flags") == 0) {
3374 check_d8_flag_contradictions = false;
3375 } else if (strcmp(argv[i], "--abort-on-contradictory-flags") == 0) {
3376 check_d8_flag_contradictions = true;
3377 } else if (strcmp(argv[i], "--logfile-per-isolate") == 0) {
3378 logfile_per_isolate = true;
3379 argv[i] = nullptr;
3380 } else if (strcmp(argv[i], "--shell") == 0) {
3381 options.interactive_shell = true;
3382 argv[i] = nullptr;
3383 } else if (strcmp(argv[i], "--test") == 0) {
3384 options.test_shell = true;
3385 argv[i] = nullptr;
3386 } else if (strcmp(argv[i], "--notest") == 0 ||
3387 strcmp(argv[i], "--no-test") == 0) {
3388 options.test_shell = false;
3389 argv[i] = nullptr;
3390 } else if (strcmp(argv[i], "--send-idle-notification") == 0) {
3391 options.send_idle_notification = true;
3392 argv[i] = nullptr;
3393 } else if (strcmp(argv[i], "--invoke-weak-callbacks") == 0) {
3394 options.invoke_weak_callbacks = true;
3395 // TODO(jochen) See issue 3351
3396 options.send_idle_notification = true;
3397 argv[i] = nullptr;
3398 } else if (strcmp(argv[i], "--omit-quit") == 0) {
3399 options.omit_quit = true;
3400 argv[i] = nullptr;
3401 } else if (strcmp(argv[i], "--no-wait-for-background-tasks") == 0) {
3402 // TODO(herhut) Remove this flag once wasm compilation is fully
3403 // isolate-independent.
3404 options.wait_for_background_tasks = false;
3405 argv[i] = nullptr;
3406 } else if (strcmp(argv[i], "-f") == 0) {
3407 // Ignore any -f flags for compatibility with other stand-alone
3408 // JavaScript engines.
3409 continue;
3410 } else if (strcmp(argv[i], "--ignore-unhandled-promises") == 0) {
3411 options.ignore_unhandled_promises = true;
3412 argv[i] = nullptr;
3413 } else if (strcmp(argv[i], "--isolate") == 0) {
3414 options.num_isolates++;
3415 } else if (strcmp(argv[i], "--throws") == 0) {
3416 options.expected_to_throw = true;
3417 argv[i] = nullptr;
3418 } else if (strncmp(argv[i], "--icu-data-file=", 16) == 0) {
3419 options.icu_data_file = argv[i] + 16;
3420 argv[i] = nullptr;
3421 } else if (strncmp(argv[i], "--icu-locale=", 13) == 0) {
3422 options.icu_locale = argv[i] + 13;
3423 argv[i] = nullptr;
3424 #ifdef V8_USE_EXTERNAL_STARTUP_DATA
3425 } else if (strncmp(argv[i], "--snapshot_blob=", 16) == 0) {
3426 options.snapshot_blob = argv[i] + 16;
3427 argv[i] = nullptr;
3428 #endif // V8_USE_EXTERNAL_STARTUP_DATA
3429 } else if (strcmp(argv[i], "--cache") == 0 ||
3430 strncmp(argv[i], "--cache=", 8) == 0) {
3431 const char* value = argv[i] + 7;
3432 if (!*value || strncmp(value, "=code", 6) == 0) {
3433 options.compile_options = v8::ScriptCompiler::kNoCompileOptions;
3434 options.code_cache_options =
3435 ShellOptions::CodeCacheOptions::kProduceCache;
3436 } else if (strncmp(value, "=none", 6) == 0) {
3437 options.compile_options = v8::ScriptCompiler::kNoCompileOptions;
3438 options.code_cache_options =
3439 ShellOptions::CodeCacheOptions::kNoProduceCache;
3440 } else if (strncmp(value, "=after-execute", 15) == 0) {
3441 options.compile_options = v8::ScriptCompiler::kNoCompileOptions;
3442 options.code_cache_options =
3443 ShellOptions::CodeCacheOptions::kProduceCacheAfterExecute;
3444 } else if (strncmp(value, "=full-code-cache", 17) == 0) {
3445 options.compile_options = v8::ScriptCompiler::kEagerCompile;
3446 options.code_cache_options =
3447 ShellOptions::CodeCacheOptions::kProduceCache;
3448 } else {
3449 printf("Unknown option to --cache.\n");
3450 return false;
3451 }
3452 argv[i] = nullptr;
3453 } else if (strcmp(argv[i], "--streaming-compile") == 0) {
3454 options.streaming_compile = true;
3455 argv[i] = nullptr;
3456 } else if ((strcmp(argv[i], "--no-streaming-compile") == 0) ||
3457 (strcmp(argv[i], "--nostreaming-compile") == 0)) {
3458 options.streaming_compile = false;
3459 argv[i] = nullptr;
3460 } else if (strcmp(argv[i], "--enable-tracing") == 0) {
3461 options.trace_enabled = true;
3462 argv[i] = nullptr;
3463 } else if (strncmp(argv[i], "--trace-path=", 13) == 0) {
3464 options.trace_path = argv[i] + 13;
3465 argv[i] = nullptr;
3466 } else if (strncmp(argv[i], "--trace-config=", 15) == 0) {
3467 options.trace_config = argv[i] + 15;
3468 argv[i] = nullptr;
3469 } else if (strcmp(argv[i], "--enable-inspector") == 0) {
3470 options.enable_inspector = true;
3471 argv[i] = nullptr;
3472 } else if (strncmp(argv[i], "--lcov=", 7) == 0) {
3473 options.lcov_file = argv[i] + 7;
3474 argv[i] = nullptr;
3475 } else if (strcmp(argv[i], "--disable-in-process-stack-traces") == 0) {
3476 options.disable_in_process_stack_traces = true;
3477 argv[i] = nullptr;
3478 #ifdef V8_OS_POSIX
3479 } else if (strncmp(argv[i], "--read-from-tcp-port=", 21) == 0) {
3480 options.read_from_tcp_port = atoi(argv[i] + 21);
3481 argv[i] = nullptr;
3482 #endif // V8_OS_POSIX
3483 } else if (strcmp(argv[i], "--enable-os-system") == 0) {
3484 options.enable_os_system = true;
3485 argv[i] = nullptr;
3486 } else if (strcmp(argv[i], "--quiet-load") == 0) {
3487 options.quiet_load = true;
3488 argv[i] = nullptr;
3489 } else if (strncmp(argv[i], "--thread-pool-size=", 19) == 0) {
3490 options.thread_pool_size = atoi(argv[i] + 19);
3491 argv[i] = nullptr;
3492 } else if (strcmp(argv[i], "--stress-delay-tasks") == 0) {
3493 // Delay execution of tasks by 0-100ms randomly (based on --random-seed).
3494 options.stress_delay_tasks = true;
3495 argv[i] = nullptr;
3496 } else if (strcmp(argv[i], "--cpu-profiler") == 0) {
3497 options.cpu_profiler = true;
3498 argv[i] = nullptr;
3499 } else if (strcmp(argv[i], "--cpu-profiler-print") == 0) {
3500 options.cpu_profiler = true;
3501 options.cpu_profiler_print = true;
3502 argv[i] = nullptr;
3503 #ifdef V8_FUZZILLI
3504 } else if (strcmp(argv[i], "--no-fuzzilli-enable-builtins-coverage") == 0) {
3505 options.fuzzilli_enable_builtins_coverage = false;
3506 argv[i] = nullptr;
3507 } else if (strcmp(argv[i], "--fuzzilli-coverage-statistics") == 0) {
3508 options.fuzzilli_coverage_statistics = true;
3509 argv[i] = nullptr;
3510 #endif
3511 } else if (strcmp(argv[i], "--fuzzy-module-file-extensions") == 0) {
3512 options.fuzzy_module_file_extensions = true;
3513 argv[i] = nullptr;
3514 }
3515 }
3516
3517 if (options.stress_opt && no_always_opt && check_d8_flag_contradictions) {
3518 FATAL("Flag --no-always-opt is incompatible with --stress-opt.");
3519 }
3520
3521 const char* usage =
3522 "Synopsis:\n"
3523 " shell [options] [--shell] [<file>...]\n"
3524 " d8 [options] [-e <string>] [--shell] [[--module] <file>...]\n\n"
3525 " -e execute a string in V8\n"
3526 " --shell run an interactive JavaScript shell\n"
3527 " --module execute a file as a JavaScript module\n\n";
3528 using HelpOptions = i::FlagList::HelpOptions;
3529 i::FLAG_abort_on_contradictory_flags = true;
3530 i::FlagList::SetFlagsFromCommandLine(&argc, argv, true,
3531 HelpOptions(HelpOptions::kExit, usage));
3532 options.mock_arraybuffer_allocator = i::FLAG_mock_arraybuffer_allocator;
3533 options.mock_arraybuffer_allocator_limit =
3534 i::FLAG_mock_arraybuffer_allocator_limit;
3535 #if V8_OS_LINUX
3536 options.multi_mapped_mock_allocator = i::FLAG_multi_mapped_mock_allocator;
3537 #endif
3538
3539 // Set up isolated source groups.
3540 options.isolate_sources = new SourceGroup[options.num_isolates];
3541 SourceGroup* current = options.isolate_sources;
3542 current->Begin(argv, 1);
3543 for (int i = 1; i < argc; i++) {
3544 const char* str = argv[i];
3545 if (strcmp(str, "--isolate") == 0) {
3546 current->End(i);
3547 current++;
3548 current->Begin(argv, i + 1);
3549 } else if (strcmp(str, "--module") == 0) {
3550 // Pass on to SourceGroup, which understands this option.
3551 } else if (strncmp(str, "--", 2) == 0) {
3552 printf("Warning: unknown flag %s.\nTry --help for options\n", str);
3553 } else if (strcmp(str, "-e") == 0 && i + 1 < argc) {
3554 set_script_executed();
3555 } else if (strncmp(str, "-", 1) != 0) {
3556 // Not a flag, so it must be a script to execute.
3557 set_script_executed();
3558 }
3559 }
3560 current->End(argc);
3561
3562 if (!logfile_per_isolate && options.num_isolates) {
3563 V8::SetFlagsFromString("--no-logfile-per-isolate");
3564 }
3565
3566 return true;
3567 }
3568
RunMain(Isolate * isolate,bool last_run)3569 int Shell::RunMain(Isolate* isolate, bool last_run) {
3570 for (int i = 1; i < options.num_isolates; ++i) {
3571 options.isolate_sources[i].StartExecuteInThread();
3572 }
3573 bool success = true;
3574 {
3575 SetWaitUntilDone(isolate, false);
3576 if (options.lcov_file) {
3577 debug::Coverage::SelectMode(isolate, debug::CoverageMode::kBlockCount);
3578 }
3579 HandleScope scope(isolate);
3580 Local<Context> context = CreateEvaluationContext(isolate);
3581 bool use_existing_context = last_run && use_interactive_shell();
3582 if (use_existing_context) {
3583 // Keep using the same context in the interactive shell.
3584 evaluation_context_.Reset(isolate, context);
3585 }
3586 {
3587 Context::Scope cscope(context);
3588 InspectorClient inspector_client(context, options.enable_inspector);
3589 PerIsolateData::RealmScope realm_scope(PerIsolateData::Get(isolate));
3590 if (!options.isolate_sources[0].Execute(isolate)) success = false;
3591 if (!CompleteMessageLoop(isolate)) success = false;
3592 }
3593 if (!use_existing_context) {
3594 DisposeModuleEmbedderData(context);
3595 }
3596 WriteLcovData(isolate, options.lcov_file);
3597 if (last_run && options.stress_snapshot) {
3598 static constexpr bool kClearRecompilableData = true;
3599 i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
3600 i::Handle<i::Context> i_context = Utils::OpenHandle(*context);
3601 // TODO(jgruber,v8:10500): Don't deoptimize once we support serialization
3602 // of optimized code.
3603 i::Deoptimizer::DeoptimizeAll(i_isolate);
3604 i::Snapshot::ClearReconstructableDataForSerialization(
3605 i_isolate, kClearRecompilableData);
3606 i::Snapshot::SerializeDeserializeAndVerifyForTesting(i_isolate,
3607 i_context);
3608 }
3609 }
3610 CollectGarbage(isolate);
3611 for (int i = 1; i < options.num_isolates; ++i) {
3612 if (last_run) {
3613 options.isolate_sources[i].JoinThread();
3614 } else {
3615 options.isolate_sources[i].WaitForThread();
3616 }
3617 }
3618 WaitForRunningWorkers();
3619 if (Shell::unhandled_promise_rejections_.load() > 0) {
3620 printf("%i pending unhandled Promise rejection(s) detected.\n",
3621 Shell::unhandled_promise_rejections_.load());
3622 success = false;
3623 // RunMain may be executed multiple times, e.g. in REPRL mode, so we have to
3624 // reset this counter.
3625 Shell::unhandled_promise_rejections_.store(0);
3626 }
3627 // In order to finish successfully, success must be != expected_to_throw.
3628 return success == Shell::options.expected_to_throw ? 1 : 0;
3629 }
3630
CollectGarbage(Isolate * isolate)3631 void Shell::CollectGarbage(Isolate* isolate) {
3632 if (options.send_idle_notification) {
3633 const double kLongIdlePauseInSeconds = 1.0;
3634 isolate->ContextDisposedNotification();
3635 isolate->IdleNotificationDeadline(
3636 g_platform->MonotonicallyIncreasingTime() + kLongIdlePauseInSeconds);
3637 }
3638 if (options.invoke_weak_callbacks) {
3639 // By sending a low memory notifications, we will try hard to collect all
3640 // garbage and will therefore also invoke all weak callbacks of actually
3641 // unreachable persistent handles.
3642 isolate->LowMemoryNotification();
3643 }
3644 }
3645
SetWaitUntilDone(Isolate * isolate,bool value)3646 void Shell::SetWaitUntilDone(Isolate* isolate, bool value) {
3647 base::MutexGuard guard(isolate_status_lock_.Pointer());
3648 isolate_status_[isolate] = value;
3649 }
3650
NotifyStartStreamingTask(Isolate * isolate)3651 void Shell::NotifyStartStreamingTask(Isolate* isolate) {
3652 DCHECK(options.streaming_compile);
3653 base::MutexGuard guard(isolate_status_lock_.Pointer());
3654 ++isolate_running_streaming_tasks_[isolate];
3655 }
3656
NotifyFinishStreamingTask(Isolate * isolate)3657 void Shell::NotifyFinishStreamingTask(Isolate* isolate) {
3658 DCHECK(options.streaming_compile);
3659 base::MutexGuard guard(isolate_status_lock_.Pointer());
3660 --isolate_running_streaming_tasks_[isolate];
3661 DCHECK_GE(isolate_running_streaming_tasks_[isolate], 0);
3662 }
3663
3664 namespace {
RunSetTimeoutCallback(Isolate * isolate,bool * did_run)3665 bool RunSetTimeoutCallback(Isolate* isolate, bool* did_run) {
3666 PerIsolateData* data = PerIsolateData::Get(isolate);
3667 HandleScope handle_scope(isolate);
3668 Local<Function> callback;
3669 if (!data->GetTimeoutCallback().ToLocal(&callback)) return true;
3670 Local<Context> context;
3671 if (!data->GetTimeoutContext().ToLocal(&context)) return true;
3672 TryCatch try_catch(isolate);
3673 try_catch.SetVerbose(true);
3674 Context::Scope context_scope(context);
3675 if (callback->Call(context, Undefined(isolate), 0, nullptr).IsEmpty()) {
3676 return false;
3677 }
3678 *did_run = true;
3679 return true;
3680 }
3681
ProcessMessages(Isolate * isolate,const std::function<platform::MessageLoopBehavior ()> & behavior)3682 bool ProcessMessages(
3683 Isolate* isolate,
3684 const std::function<platform::MessageLoopBehavior()>& behavior) {
3685 while (true) {
3686 i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
3687 i::SaveAndSwitchContext saved_context(i_isolate, i::Context());
3688 SealHandleScope shs(isolate);
3689 while (v8::platform::PumpMessageLoop(g_default_platform, isolate,
3690 behavior())) {
3691 MicrotasksScope::PerformCheckpoint(isolate);
3692
3693 if (i::FLAG_verify_predictable) {
3694 // In predictable mode we push all background tasks into the foreground
3695 // task queue of the {kProcessGlobalPredictablePlatformWorkerTaskQueue}
3696 // isolate. We execute the tasks after one foreground task has been
3697 // executed.
3698 while (v8::platform::PumpMessageLoop(
3699 g_default_platform,
3700 kProcessGlobalPredictablePlatformWorkerTaskQueue, behavior())) {
3701 }
3702 }
3703 }
3704 if (g_default_platform->IdleTasksEnabled(isolate)) {
3705 v8::platform::RunIdleTasks(g_default_platform, isolate,
3706 50.0 / base::Time::kMillisecondsPerSecond);
3707 }
3708 bool ran_set_timeout = false;
3709 if (!RunSetTimeoutCallback(isolate, &ran_set_timeout)) {
3710 return false;
3711 }
3712
3713 if (!ran_set_timeout) return true;
3714 }
3715 return true;
3716 }
3717 } // anonymous namespace
3718
CompleteMessageLoop(Isolate * isolate)3719 bool Shell::CompleteMessageLoop(Isolate* isolate) {
3720 auto get_waiting_behaviour = [isolate]() {
3721 base::MutexGuard guard(isolate_status_lock_.Pointer());
3722 DCHECK_GT(isolate_status_.count(isolate), 0);
3723 bool should_wait = (options.wait_for_background_tasks &&
3724 isolate->HasPendingBackgroundTasks()) ||
3725 isolate_status_[isolate] ||
3726 isolate_running_streaming_tasks_[isolate] > 0;
3727 return should_wait ? platform::MessageLoopBehavior::kWaitForWork
3728 : platform::MessageLoopBehavior::kDoNotWait;
3729 };
3730 return ProcessMessages(isolate, get_waiting_behaviour);
3731 }
3732
EmptyMessageQueues(Isolate * isolate)3733 bool Shell::EmptyMessageQueues(Isolate* isolate) {
3734 return ProcessMessages(
3735 isolate, []() { return platform::MessageLoopBehavior::kDoNotWait; });
3736 }
3737
PostForegroundTask(Isolate * isolate,std::unique_ptr<Task> task)3738 void Shell::PostForegroundTask(Isolate* isolate, std::unique_ptr<Task> task) {
3739 g_default_platform->GetForegroundTaskRunner(isolate)->PostTask(
3740 std::move(task));
3741 }
3742
PostBlockingBackgroundTask(std::unique_ptr<Task> task)3743 void Shell::PostBlockingBackgroundTask(std::unique_ptr<Task> task) {
3744 g_default_platform->CallBlockingTaskOnWorkerThread(std::move(task));
3745 }
3746
HandleUnhandledPromiseRejections(Isolate * isolate)3747 bool Shell::HandleUnhandledPromiseRejections(Isolate* isolate) {
3748 if (options.ignore_unhandled_promises) return true;
3749 PerIsolateData* data = PerIsolateData::Get(isolate);
3750 int count = data->HandleUnhandledPromiseRejections();
3751 Shell::unhandled_promise_rejections_.store(
3752 Shell::unhandled_promise_rejections_.load() + count);
3753 return count == 0;
3754 }
3755
3756 class Serializer : public ValueSerializer::Delegate {
3757 public:
Serializer(Isolate * isolate)3758 explicit Serializer(Isolate* isolate)
3759 : isolate_(isolate),
3760 serializer_(isolate, this),
3761 current_memory_usage_(0) {}
3762
WriteValue(Local<Context> context,Local<Value> value,Local<Value> transfer)3763 Maybe<bool> WriteValue(Local<Context> context, Local<Value> value,
3764 Local<Value> transfer) {
3765 bool ok;
3766 DCHECK(!data_);
3767 data_.reset(new SerializationData);
3768 if (!PrepareTransfer(context, transfer).To(&ok)) {
3769 return Nothing<bool>();
3770 }
3771 serializer_.WriteHeader();
3772
3773 if (!serializer_.WriteValue(context, value).To(&ok)) {
3774 data_.reset();
3775 return Nothing<bool>();
3776 }
3777
3778 if (!FinalizeTransfer().To(&ok)) {
3779 return Nothing<bool>();
3780 }
3781
3782 std::pair<uint8_t*, size_t> pair = serializer_.Release();
3783 data_->data_.reset(pair.first);
3784 data_->size_ = pair.second;
3785 return Just(true);
3786 }
3787
Release()3788 std::unique_ptr<SerializationData> Release() { return std::move(data_); }
3789
AppendBackingStoresTo(std::vector<std::shared_ptr<BackingStore>> * to)3790 void AppendBackingStoresTo(std::vector<std::shared_ptr<BackingStore>>* to) {
3791 to->insert(to->end(), std::make_move_iterator(backing_stores_.begin()),
3792 std::make_move_iterator(backing_stores_.end()));
3793 backing_stores_.clear();
3794 }
3795
3796 protected:
3797 // Implements ValueSerializer::Delegate.
ThrowDataCloneError(Local<String> message)3798 void ThrowDataCloneError(Local<String> message) override {
3799 isolate_->ThrowException(Exception::Error(message));
3800 }
3801
GetSharedArrayBufferId(Isolate * isolate,Local<SharedArrayBuffer> shared_array_buffer)3802 Maybe<uint32_t> GetSharedArrayBufferId(
3803 Isolate* isolate, Local<SharedArrayBuffer> shared_array_buffer) override {
3804 DCHECK_NOT_NULL(data_);
3805 for (size_t index = 0; index < shared_array_buffers_.size(); ++index) {
3806 if (shared_array_buffers_[index] == shared_array_buffer) {
3807 return Just<uint32_t>(static_cast<uint32_t>(index));
3808 }
3809 }
3810
3811 size_t index = shared_array_buffers_.size();
3812 shared_array_buffers_.emplace_back(isolate_, shared_array_buffer);
3813 data_->sab_backing_stores_.push_back(
3814 shared_array_buffer->GetBackingStore());
3815 return Just<uint32_t>(static_cast<uint32_t>(index));
3816 }
3817
GetWasmModuleTransferId(Isolate * isolate,Local<WasmModuleObject> module)3818 Maybe<uint32_t> GetWasmModuleTransferId(
3819 Isolate* isolate, Local<WasmModuleObject> module) override {
3820 DCHECK_NOT_NULL(data_);
3821 for (size_t index = 0; index < wasm_modules_.size(); ++index) {
3822 if (wasm_modules_[index] == module) {
3823 return Just<uint32_t>(static_cast<uint32_t>(index));
3824 }
3825 }
3826
3827 size_t index = wasm_modules_.size();
3828 wasm_modules_.emplace_back(isolate_, module);
3829 data_->compiled_wasm_modules_.push_back(module->GetCompiledModule());
3830 return Just<uint32_t>(static_cast<uint32_t>(index));
3831 }
3832
ReallocateBufferMemory(void * old_buffer,size_t size,size_t * actual_size)3833 void* ReallocateBufferMemory(void* old_buffer, size_t size,
3834 size_t* actual_size) override {
3835 // Not accurate, because we don't take into account reallocated buffers,
3836 // but this is fine for testing.
3837 current_memory_usage_ += size;
3838 if (current_memory_usage_ > kMaxSerializerMemoryUsage) return nullptr;
3839
3840 void* result = realloc(old_buffer, size);
3841 *actual_size = result ? size : 0;
3842 return result;
3843 }
3844
FreeBufferMemory(void * buffer)3845 void FreeBufferMemory(void* buffer) override { free(buffer); }
3846
3847 private:
PrepareTransfer(Local<Context> context,Local<Value> transfer)3848 Maybe<bool> PrepareTransfer(Local<Context> context, Local<Value> transfer) {
3849 if (transfer->IsArray()) {
3850 Local<Array> transfer_array = Local<Array>::Cast(transfer);
3851 uint32_t length = transfer_array->Length();
3852 for (uint32_t i = 0; i < length; ++i) {
3853 Local<Value> element;
3854 if (transfer_array->Get(context, i).ToLocal(&element)) {
3855 if (!element->IsArrayBuffer()) {
3856 Throw(isolate_, "Transfer array elements must be an ArrayBuffer");
3857 return Nothing<bool>();
3858 }
3859
3860 Local<ArrayBuffer> array_buffer = Local<ArrayBuffer>::Cast(element);
3861
3862 if (std::find(array_buffers_.begin(), array_buffers_.end(),
3863 array_buffer) != array_buffers_.end()) {
3864 Throw(isolate_,
3865 "ArrayBuffer occurs in the transfer array more than once");
3866 return Nothing<bool>();
3867 }
3868
3869 serializer_.TransferArrayBuffer(
3870 static_cast<uint32_t>(array_buffers_.size()), array_buffer);
3871 array_buffers_.emplace_back(isolate_, array_buffer);
3872 } else {
3873 return Nothing<bool>();
3874 }
3875 }
3876 return Just(true);
3877 } else if (transfer->IsUndefined()) {
3878 return Just(true);
3879 } else {
3880 Throw(isolate_, "Transfer list must be an Array or undefined");
3881 return Nothing<bool>();
3882 }
3883 }
3884
FinalizeTransfer()3885 Maybe<bool> FinalizeTransfer() {
3886 for (const auto& global_array_buffer : array_buffers_) {
3887 Local<ArrayBuffer> array_buffer =
3888 Local<ArrayBuffer>::New(isolate_, global_array_buffer);
3889 if (!array_buffer->IsDetachable()) {
3890 Throw(isolate_, "ArrayBuffer could not be transferred");
3891 return Nothing<bool>();
3892 }
3893
3894 auto backing_store = array_buffer->GetBackingStore();
3895 data_->backing_stores_.push_back(std::move(backing_store));
3896 array_buffer->Detach();
3897 }
3898
3899 return Just(true);
3900 }
3901
3902 Isolate* isolate_;
3903 ValueSerializer serializer_;
3904 std::unique_ptr<SerializationData> data_;
3905 std::vector<Global<ArrayBuffer>> array_buffers_;
3906 std::vector<Global<SharedArrayBuffer>> shared_array_buffers_;
3907 std::vector<Global<WasmModuleObject>> wasm_modules_;
3908 std::vector<std::shared_ptr<v8::BackingStore>> backing_stores_;
3909 size_t current_memory_usage_;
3910
3911 DISALLOW_COPY_AND_ASSIGN(Serializer);
3912 };
3913
3914 class Deserializer : public ValueDeserializer::Delegate {
3915 public:
Deserializer(Isolate * isolate,std::unique_ptr<SerializationData> data)3916 Deserializer(Isolate* isolate, std::unique_ptr<SerializationData> data)
3917 : isolate_(isolate),
3918 deserializer_(isolate, data->data(), data->size(), this),
3919 data_(std::move(data)) {
3920 deserializer_.SetSupportsLegacyWireFormat(true);
3921 }
3922
ReadValue(Local<Context> context)3923 MaybeLocal<Value> ReadValue(Local<Context> context) {
3924 bool read_header;
3925 if (!deserializer_.ReadHeader(context).To(&read_header)) {
3926 return MaybeLocal<Value>();
3927 }
3928
3929 uint32_t index = 0;
3930 for (const auto& backing_store : data_->backing_stores()) {
3931 Local<ArrayBuffer> array_buffer =
3932 ArrayBuffer::New(isolate_, std::move(backing_store));
3933 deserializer_.TransferArrayBuffer(index++, array_buffer);
3934 }
3935
3936 return deserializer_.ReadValue(context);
3937 }
3938
GetSharedArrayBufferFromId(Isolate * isolate,uint32_t clone_id)3939 MaybeLocal<SharedArrayBuffer> GetSharedArrayBufferFromId(
3940 Isolate* isolate, uint32_t clone_id) override {
3941 DCHECK_NOT_NULL(data_);
3942 if (clone_id < data_->sab_backing_stores().size()) {
3943 return SharedArrayBuffer::New(
3944 isolate_, std::move(data_->sab_backing_stores().at(clone_id)));
3945 }
3946 return MaybeLocal<SharedArrayBuffer>();
3947 }
3948
GetWasmModuleFromId(Isolate * isolate,uint32_t transfer_id)3949 MaybeLocal<WasmModuleObject> GetWasmModuleFromId(
3950 Isolate* isolate, uint32_t transfer_id) override {
3951 DCHECK_NOT_NULL(data_);
3952 if (transfer_id >= data_->compiled_wasm_modules().size()) return {};
3953 return WasmModuleObject::FromCompiledModule(
3954 isolate_, data_->compiled_wasm_modules().at(transfer_id));
3955 }
3956
3957 private:
3958 Isolate* isolate_;
3959 ValueDeserializer deserializer_;
3960 std::unique_ptr<SerializationData> data_;
3961
3962 DISALLOW_COPY_AND_ASSIGN(Deserializer);
3963 };
3964
3965 class D8Testing {
3966 public:
3967 /**
3968 * Get the number of runs of a given test that is required to get the full
3969 * stress coverage.
3970 */
GetStressRuns()3971 static int GetStressRuns() {
3972 if (internal::FLAG_stress_runs != 0) return internal::FLAG_stress_runs;
3973 #ifdef DEBUG
3974 // In debug mode the code runs much slower so stressing will only make two
3975 // runs.
3976 return 2;
3977 #else
3978 return 5;
3979 #endif
3980 }
3981
3982 /**
3983 * Indicate the number of the run which is about to start. The value of run
3984 * should be between 0 and one less than the result from GetStressRuns()
3985 */
PrepareStressRun(int run)3986 static void PrepareStressRun(int run) {
3987 static const char* kLazyOptimizations =
3988 "--prepare-always-opt "
3989 "--max-inlined-bytecode-size=999999 "
3990 "--max-inlined-bytecode-size-cumulative=999999 "
3991 "--noalways-opt";
3992
3993 if (run == 0) {
3994 V8::SetFlagsFromString(kLazyOptimizations);
3995 } else if (run == GetStressRuns() - 1) {
3996 i::FLAG_always_opt = true;
3997 }
3998 }
3999
4000 /**
4001 * Force deoptimization of all functions.
4002 */
DeoptimizeAll(Isolate * isolate)4003 static void DeoptimizeAll(Isolate* isolate) {
4004 i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
4005 i::HandleScope scope(i_isolate);
4006 i::Deoptimizer::DeoptimizeAll(i_isolate);
4007 }
4008 };
4009
SerializeValue(Isolate * isolate,Local<Value> value,Local<Value> transfer)4010 std::unique_ptr<SerializationData> Shell::SerializeValue(
4011 Isolate* isolate, Local<Value> value, Local<Value> transfer) {
4012 bool ok;
4013 Local<Context> context = isolate->GetCurrentContext();
4014 Serializer serializer(isolate);
4015 std::unique_ptr<SerializationData> data;
4016 if (serializer.WriteValue(context, value, transfer).To(&ok)) {
4017 data = serializer.Release();
4018 }
4019 return data;
4020 }
4021
DeserializeValue(Isolate * isolate,std::unique_ptr<SerializationData> data)4022 MaybeLocal<Value> Shell::DeserializeValue(
4023 Isolate* isolate, std::unique_ptr<SerializationData> data) {
4024 Local<Value> value;
4025 Local<Context> context = isolate->GetCurrentContext();
4026 Deserializer deserializer(isolate, std::move(data));
4027 return deserializer.ReadValue(context);
4028 }
4029
AddRunningWorker(std::shared_ptr<Worker> worker)4030 void Shell::AddRunningWorker(std::shared_ptr<Worker> worker) {
4031 workers_mutex_.Pointer()->AssertHeld(); // caller should hold the mutex.
4032 running_workers_.insert(worker);
4033 }
4034
RemoveRunningWorker(const std::shared_ptr<Worker> & worker)4035 void Shell::RemoveRunningWorker(const std::shared_ptr<Worker>& worker) {
4036 base::MutexGuard lock_guard(workers_mutex_.Pointer());
4037 auto it = running_workers_.find(worker);
4038 if (it != running_workers_.end()) running_workers_.erase(it);
4039 }
4040
WaitForRunningWorkers()4041 void Shell::WaitForRunningWorkers() {
4042 // Make a copy of running_workers_, because we don't want to call
4043 // Worker::Terminate while holding the workers_mutex_ lock. Otherwise, if a
4044 // worker is about to create a new Worker, it would deadlock.
4045 std::unordered_set<std::shared_ptr<Worker>> workers_copy;
4046 {
4047 base::MutexGuard lock_guard(workers_mutex_.Pointer());
4048 allow_new_workers_ = false;
4049 workers_copy.swap(running_workers_);
4050 }
4051
4052 for (auto& worker : workers_copy) {
4053 worker->TerminateAndWaitForThread();
4054 }
4055
4056 // Now that all workers are terminated, we can re-enable Worker creation.
4057 base::MutexGuard lock_guard(workers_mutex_.Pointer());
4058 DCHECK(running_workers_.empty());
4059 allow_new_workers_ = true;
4060 }
4061
Main(int argc,char * argv[])4062 int Shell::Main(int argc, char* argv[]) {
4063 v8::base::EnsureConsoleOutput();
4064 if (!SetOptions(argc, argv)) return 1;
4065
4066 v8::V8::InitializeICUDefaultLocation(argv[0], options.icu_data_file);
4067
4068 #ifdef V8_INTL_SUPPORT
4069 if (options.icu_locale != nullptr) {
4070 icu::Locale locale(options.icu_locale);
4071 UErrorCode error_code = U_ZERO_ERROR;
4072 icu::Locale::setDefault(locale, error_code);
4073 }
4074 #endif // V8_INTL_SUPPORT
4075
4076 v8::platform::InProcessStackDumping in_process_stack_dumping =
4077 options.disable_in_process_stack_traces
4078 ? v8::platform::InProcessStackDumping::kDisabled
4079 : v8::platform::InProcessStackDumping::kEnabled;
4080
4081 std::unique_ptr<platform::tracing::TracingController> tracing;
4082 std::ofstream trace_file;
4083 if (options.trace_enabled && !i::FLAG_verify_predictable) {
4084 tracing = std::make_unique<platform::tracing::TracingController>();
4085 const char* trace_path =
4086 options.trace_path ? options.trace_path : "v8_trace.json";
4087 trace_file.open(trace_path);
4088 if (!trace_file.good()) {
4089 printf("Cannot open trace file '%s' for writing: %s.\n", trace_path,
4090 strerror(errno));
4091 return 1;
4092 }
4093
4094 #ifdef V8_USE_PERFETTO
4095 // Set up the in-process backend that the tracing controller will connect
4096 // to.
4097 perfetto::TracingInitArgs init_args;
4098 init_args.backends = perfetto::BackendType::kInProcessBackend;
4099 perfetto::Tracing::Initialize(init_args);
4100
4101 tracing->InitializeForPerfetto(&trace_file);
4102 #else
4103 platform::tracing::TraceBuffer* trace_buffer =
4104 platform::tracing::TraceBuffer::CreateTraceBufferRingBuffer(
4105 platform::tracing::TraceBuffer::kRingBufferChunks,
4106 platform::tracing::TraceWriter::CreateJSONTraceWriter(trace_file));
4107 tracing->Initialize(trace_buffer);
4108 #endif // V8_USE_PERFETTO
4109 }
4110
4111 platform::tracing::TracingController* tracing_controller = tracing.get();
4112 g_platform = v8::platform::NewDefaultPlatform(
4113 options.thread_pool_size, v8::platform::IdleTaskSupport::kEnabled,
4114 in_process_stack_dumping, std::move(tracing));
4115 g_default_platform = g_platform.get();
4116 if (i::FLAG_verify_predictable) {
4117 g_platform = MakePredictablePlatform(std::move(g_platform));
4118 }
4119 if (options.stress_delay_tasks) {
4120 int64_t random_seed = i::FLAG_fuzzer_random_seed;
4121 if (!random_seed) random_seed = i::FLAG_random_seed;
4122 // If random_seed is still 0 here, the {DelayedTasksPlatform} will choose a
4123 // random seed.
4124 g_platform = MakeDelayedTasksPlatform(std::move(g_platform), random_seed);
4125 }
4126
4127 if (i::FLAG_trace_turbo_cfg_file == nullptr) {
4128 V8::SetFlagsFromString("--trace-turbo-cfg-file=turbo.cfg");
4129 }
4130 if (i::FLAG_redirect_code_traces_to == nullptr) {
4131 V8::SetFlagsFromString("--redirect-code-traces-to=code.asm");
4132 }
4133 v8::V8::InitializePlatform(g_platform.get());
4134 v8::V8::Initialize();
4135 if (options.snapshot_blob) {
4136 v8::V8::InitializeExternalStartupDataFromFile(options.snapshot_blob);
4137 } else {
4138 v8::V8::InitializeExternalStartupData(argv[0]);
4139 }
4140 int result = 0;
4141 Isolate::CreateParams create_params;
4142 ShellArrayBufferAllocator shell_array_buffer_allocator;
4143 MockArrayBufferAllocator mock_arraybuffer_allocator;
4144 const size_t memory_limit =
4145 options.mock_arraybuffer_allocator_limit * options.num_isolates;
4146 MockArrayBufferAllocatiorWithLimit mock_arraybuffer_allocator_with_limit(
4147 memory_limit >= options.mock_arraybuffer_allocator_limit
4148 ? memory_limit
4149 : std::numeric_limits<size_t>::max());
4150 #if V8_OS_LINUX
4151 MultiMappedAllocator multi_mapped_mock_allocator;
4152 #endif // V8_OS_LINUX
4153 if (options.mock_arraybuffer_allocator) {
4154 if (memory_limit) {
4155 Shell::array_buffer_allocator = &mock_arraybuffer_allocator_with_limit;
4156 } else {
4157 Shell::array_buffer_allocator = &mock_arraybuffer_allocator;
4158 }
4159 #if V8_OS_LINUX
4160 } else if (options.multi_mapped_mock_allocator) {
4161 Shell::array_buffer_allocator = &multi_mapped_mock_allocator;
4162 #endif // V8_OS_LINUX
4163 } else {
4164 Shell::array_buffer_allocator = &shell_array_buffer_allocator;
4165 }
4166 create_params.array_buffer_allocator = Shell::array_buffer_allocator;
4167 #ifdef ENABLE_VTUNE_JIT_INTERFACE
4168 create_params.code_event_handler = vTune::GetVtuneCodeEventHandler();
4169 #endif
4170 create_params.constraints.ConfigureDefaults(
4171 base::SysInfo::AmountOfPhysicalMemory(),
4172 base::SysInfo::AmountOfVirtualMemory());
4173
4174 Shell::counter_map_ = new CounterMap();
4175 if (i::FLAG_dump_counters || i::FLAG_dump_counters_nvp ||
4176 i::TracingFlags::is_gc_stats_enabled()) {
4177 create_params.counter_lookup_callback = LookupCounter;
4178 create_params.create_histogram_callback = CreateHistogram;
4179 create_params.add_histogram_sample_callback = AddHistogramSample;
4180 }
4181
4182 if (V8_TRAP_HANDLER_SUPPORTED && i::FLAG_wasm_trap_handler) {
4183 constexpr bool use_default_trap_handler = true;
4184 if (!v8::V8::EnableWebAssemblyTrapHandler(use_default_trap_handler)) {
4185 FATAL("Could not register trap handler");
4186 }
4187 }
4188
4189 Isolate* isolate = Isolate::New(create_params);
4190
4191 {
4192 D8Console console(isolate);
4193 Isolate::Scope scope(isolate);
4194 Initialize(isolate, &console);
4195 PerIsolateData data(isolate);
4196
4197 // Fuzzilli REPRL = read-eval-print-loop
4198 do {
4199 #ifdef V8_FUZZILLI
4200 if (fuzzilli_reprl) {
4201 unsigned action = 0;
4202 ssize_t nread = read(REPRL_CRFD, &action, 4);
4203 if (nread != 4 || action != 'cexe') {
4204 fprintf(stderr, "Unknown action: %u\n", action);
4205 _exit(-1);
4206 }
4207 }
4208 #endif // V8_FUZZILLI
4209
4210 result = 0;
4211
4212 if (options.trace_enabled) {
4213 platform::tracing::TraceConfig* trace_config;
4214 if (options.trace_config) {
4215 int size = 0;
4216 char* trace_config_json_str = ReadChars(options.trace_config, &size);
4217 trace_config = tracing::CreateTraceConfigFromJSON(
4218 isolate, trace_config_json_str);
4219 delete[] trace_config_json_str;
4220 } else {
4221 trace_config =
4222 platform::tracing::TraceConfig::CreateDefaultTraceConfig();
4223 }
4224 tracing_controller->StartTracing(trace_config);
4225 }
4226
4227 CpuProfiler* cpu_profiler;
4228 if (options.cpu_profiler) {
4229 cpu_profiler = CpuProfiler::New(isolate);
4230 CpuProfilingOptions profile_options;
4231 cpu_profiler->StartProfiling(String::Empty(isolate), profile_options);
4232 }
4233
4234 if (options.stress_opt) {
4235 options.stress_runs = D8Testing::GetStressRuns();
4236 for (int i = 0; i < options.stress_runs && result == 0; i++) {
4237 printf("============ Stress %d/%d ============\n", i + 1,
4238 options.stress_runs.get());
4239 D8Testing::PrepareStressRun(i);
4240 bool last_run = i == options.stress_runs - 1;
4241 result = RunMain(isolate, last_run);
4242 }
4243 printf("======== Full Deoptimization =======\n");
4244 D8Testing::DeoptimizeAll(isolate);
4245 } else if (i::FLAG_stress_runs > 0) {
4246 options.stress_runs = i::FLAG_stress_runs;
4247 for (int i = 0; i < options.stress_runs && result == 0; i++) {
4248 printf("============ Run %d/%d ============\n", i + 1,
4249 options.stress_runs.get());
4250 bool last_run = i == options.stress_runs - 1;
4251 result = RunMain(isolate, last_run);
4252 }
4253 } else if (options.code_cache_options !=
4254 ShellOptions::CodeCacheOptions::kNoProduceCache) {
4255 printf("============ Run: Produce code cache ============\n");
4256 // First run to produce the cache
4257 Isolate::CreateParams create_params;
4258 create_params.array_buffer_allocator = Shell::array_buffer_allocator;
4259 i::FLAG_hash_seed ^= 1337; // Use a different hash seed.
4260 Isolate* isolate2 = Isolate::New(create_params);
4261 i::FLAG_hash_seed ^= 1337; // Restore old hash seed.
4262 {
4263 D8Console console(isolate2);
4264 Initialize(isolate2, &console);
4265 PerIsolateData data(isolate2);
4266 Isolate::Scope isolate_scope(isolate2);
4267
4268 result = RunMain(isolate2, false);
4269 }
4270 isolate2->Dispose();
4271
4272 // Change the options to consume cache
4273 DCHECK(options.compile_options == v8::ScriptCompiler::kEagerCompile ||
4274 options.compile_options ==
4275 v8::ScriptCompiler::kNoCompileOptions);
4276 options.compile_options.Overwrite(
4277 v8::ScriptCompiler::kConsumeCodeCache);
4278 options.code_cache_options.Overwrite(
4279 ShellOptions::CodeCacheOptions::kNoProduceCache);
4280
4281 printf("============ Run: Consume code cache ============\n");
4282 // Second run to consume the cache in current isolate
4283 result = RunMain(isolate, true);
4284 options.compile_options.Overwrite(
4285 v8::ScriptCompiler::kNoCompileOptions);
4286 } else {
4287 bool last_run = true;
4288 result = RunMain(isolate, last_run);
4289 }
4290
4291 // Run interactive shell if explicitly requested or if no script has been
4292 // executed, but never on --test
4293 if (use_interactive_shell()) {
4294 RunShell(isolate);
4295 }
4296
4297 if (i::FLAG_trace_ignition_dispatches &&
4298 i::FLAG_trace_ignition_dispatches_output_file != nullptr) {
4299 WriteIgnitionDispatchCountersFile(isolate);
4300 }
4301
4302 if (options.cpu_profiler) {
4303 CpuProfile* profile =
4304 cpu_profiler->StopProfiling(String::Empty(isolate));
4305 if (options.cpu_profiler_print) {
4306 const internal::ProfileNode* root =
4307 reinterpret_cast<const internal::ProfileNode*>(
4308 profile->GetTopDownRoot());
4309 root->Print(0);
4310 }
4311 profile->Delete();
4312 cpu_profiler->Dispose();
4313 }
4314
4315 // Shut down contexts and collect garbage.
4316 cached_code_map_.clear();
4317 evaluation_context_.Reset();
4318 stringify_function_.Reset();
4319 CollectGarbage(isolate);
4320 #ifdef V8_FUZZILLI
4321 // Send result to parent (fuzzilli) and reset edge guards.
4322 if (fuzzilli_reprl) {
4323 int status = result << 8;
4324 std::vector<bool> bitmap;
4325 if (options.fuzzilli_enable_builtins_coverage) {
4326 bitmap = i::BasicBlockProfiler::Get()->GetCoverageBitmap(
4327 reinterpret_cast<i::Isolate*>(isolate));
4328 cov_update_builtins_basic_block_coverage(bitmap);
4329 }
4330 if (options.fuzzilli_coverage_statistics) {
4331 int tot = 0;
4332 for (bool b : bitmap) {
4333 if (b) tot++;
4334 }
4335 static int iteration_counter = 0;
4336 std::ofstream covlog("covlog.txt", std::ios::app);
4337 covlog << iteration_counter << "\t" << tot << "\t"
4338 << sanitizer_cov_count_discovered_edges() << "\t"
4339 << bitmap.size() << std::endl;
4340 iteration_counter++;
4341 }
4342 // In REPRL mode, stdout and stderr can be regular files, so they need
4343 // to be flushed after every execution
4344 fflush(stdout);
4345 fflush(stderr);
4346 CHECK_EQ(write(REPRL_CWFD, &status, 4), 4);
4347 sanitizer_cov_reset_edgeguards();
4348 if (options.fuzzilli_enable_builtins_coverage) {
4349 i::BasicBlockProfiler::Get()->ResetCounts(
4350 reinterpret_cast<i::Isolate*>(isolate));
4351 }
4352 }
4353 #endif // V8_FUZZILLI
4354 } while (fuzzilli_reprl);
4355 }
4356 OnExit(isolate);
4357
4358 V8::Dispose();
4359 V8::ShutdownPlatform();
4360
4361 // Delete the platform explicitly here to write the tracing output to the
4362 // tracing file.
4363 if (options.trace_enabled) {
4364 tracing_controller->StopTracing();
4365 }
4366 g_platform.reset();
4367 return result;
4368 }
4369
4370 } // namespace v8
4371
4372 #ifndef GOOGLE3
main(int argc,char * argv[])4373 int main(int argc, char* argv[]) { return v8::Shell::Main(argc, argv); }
4374 #endif
4375
4376 #undef CHECK
4377 #undef DCHECK
4378 #undef TRACE_BS
4379