1 /*
2 **
3 ** Copyright 2012, The Android Open Source Project
4 **
5 ** Licensed under the Apache License, Version 2.0 (the "License");
6 ** you may not use this file except in compliance with the License.
7 ** You may obtain a copy of the License at
8 **
9 ** http://www.apache.org/licenses/LICENSE-2.0
10 **
11 ** Unless required by applicable law or agreed to in writing, software
12 ** distributed under the License is distributed on an "AS IS" BASIS,
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 ** See the License for the specific language governing permissions and
15 ** limitations under the License.
16 */
17
18
19 #define LOG_TAG "AudioFlinger"
20 //#define LOG_NDEBUG 0
21 #define ATRACE_TAG ATRACE_TAG_AUDIO
22
23 #include "Configuration.h"
24 #include <math.h>
25 #include <fcntl.h>
26 #include <memory>
27 #include <sstream>
28 #include <string>
29 #include <linux/futex.h>
30 #include <sys/stat.h>
31 #include <sys/syscall.h>
32 #include <cutils/properties.h>
33 #include <media/AudioContainers.h>
34 #include <media/AudioDeviceTypeAddr.h>
35 #include <media/AudioParameter.h>
36 #include <media/AudioResamplerPublic.h>
37 #include <media/RecordBufferConverter.h>
38 #include <media/TypeConverter.h>
39 #include <utils/Log.h>
40 #include <utils/Trace.h>
41
42 #include <private/media/AudioTrackShared.h>
43 #include <private/android_filesystem_config.h>
44 #include <audio_utils/Balance.h>
45 #include <audio_utils/Metadata.h>
46 #include <audio_utils/channels.h>
47 #include <audio_utils/mono_blend.h>
48 #include <audio_utils/primitives.h>
49 #include <audio_utils/format.h>
50 #include <audio_utils/minifloat.h>
51 #include <audio_utils/safe_math.h>
52 #include <system/audio_effects/effect_ns.h>
53 #include <system/audio_effects/effect_aec.h>
54 #include <system/audio.h>
55
56 // NBAIO implementations
57 #include <media/nbaio/AudioStreamInSource.h>
58 #include <media/nbaio/AudioStreamOutSink.h>
59 #include <media/nbaio/MonoPipe.h>
60 #include <media/nbaio/MonoPipeReader.h>
61 #include <media/nbaio/Pipe.h>
62 #include <media/nbaio/PipeReader.h>
63 #include <media/nbaio/SourceAudioBufferProvider.h>
64 #include <mediautils/BatteryNotifier.h>
65
66 #include <audiomanager/AudioManager.h>
67 #include <powermanager/PowerManager.h>
68
69 #include <media/audiohal/EffectsFactoryHalInterface.h>
70 #include <media/audiohal/StreamHalInterface.h>
71
72 #include "AudioFlinger.h"
73 #include "FastMixer.h"
74 #include "FastCapture.h"
75 #include <mediautils/SchedulingPolicyService.h>
76 #include <mediautils/ServiceUtilities.h>
77
78 #ifdef ADD_BATTERY_DATA
79 #include <media/IMediaPlayerService.h>
80 #include <media/IMediaDeathNotifier.h>
81 #endif
82
83 #ifdef DEBUG_CPU_USAGE
84 #include <audio_utils/Statistics.h>
85 #include <cpustats/ThreadCpuUsage.h>
86 #endif
87
88 #include "AutoPark.h"
89
90 #include <pthread.h>
91 #include "TypedLogger.h"
92
93 // ----------------------------------------------------------------------------
94
95 // Note: the following macro is used for extremely verbose logging message. In
96 // order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
97 // 0; but one side effect of this is to turn all LOGV's as well. Some messages
98 // are so verbose that we want to suppress them even when we have ALOG_ASSERT
99 // turned on. Do not uncomment the #def below unless you really know what you
100 // are doing and want to see all of the extremely verbose messages.
101 //#define VERY_VERY_VERBOSE_LOGGING
102 #ifdef VERY_VERY_VERBOSE_LOGGING
103 #define ALOGVV ALOGV
104 #else
105 #define ALOGVV(a...) do { } while(0)
106 #endif
107
108 // TODO: Move these macro/inlines to a header file.
109 #define max(a, b) ((a) > (b) ? (a) : (b))
110 template <typename T>
min(const T & a,const T & b)111 static inline T min(const T& a, const T& b)
112 {
113 return a < b ? a : b;
114 }
115
116 namespace android {
117
118 // retry counts for buffer fill timeout
119 // 50 * ~20msecs = 1 second
120 static const int8_t kMaxTrackRetries = 50;
121 static const int8_t kMaxTrackStartupRetries = 50;
122 // allow less retry attempts on direct output thread.
123 // direct outputs can be a scarce resource in audio hardware and should
124 // be released as quickly as possible.
125 static const int8_t kMaxTrackRetriesDirect = 2;
126
127
128
129 // don't warn about blocked writes or record buffer overflows more often than this
130 static const nsecs_t kWarningThrottleNs = seconds(5);
131
132 // RecordThread loop sleep time upon application overrun or audio HAL read error
133 static const int kRecordThreadSleepUs = 5000;
134
135 // maximum time to wait in sendConfigEvent_l() for a status to be received
136 static const nsecs_t kConfigEventTimeoutNs = seconds(2);
137
138 // minimum sleep time for the mixer thread loop when tracks are active but in underrun
139 static const uint32_t kMinThreadSleepTimeUs = 5000;
140 // maximum divider applied to the active sleep time in the mixer thread loop
141 static const uint32_t kMaxThreadSleepTimeShift = 2;
142
143 // minimum normal sink buffer size, expressed in milliseconds rather than frames
144 // FIXME This should be based on experimentally observed scheduling jitter
145 static const uint32_t kMinNormalSinkBufferSizeMs = 20;
146 // maximum normal sink buffer size
147 static const uint32_t kMaxNormalSinkBufferSizeMs = 24;
148
149 // minimum capture buffer size in milliseconds to _not_ need a fast capture thread
150 // FIXME This should be based on experimentally observed scheduling jitter
151 static const uint32_t kMinNormalCaptureBufferSizeMs = 12;
152
153 // Offloaded output thread standby delay: allows track transition without going to standby
154 static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
155
156 // Direct output thread minimum sleep time in idle or active(underrun) state
157 static const nsecs_t kDirectMinSleepTimeUs = 10000;
158
159 // The universal constant for ubiquitous 20ms value. The value of 20ms seems to provide a good
160 // balance between power consumption and latency, and allows threads to be scheduled reliably
161 // by the CFS scheduler.
162 // FIXME Express other hardcoded references to 20ms with references to this constant and move
163 // it appropriately.
164 #define FMS_20 20
165
166 // Whether to use fast mixer
167 static const enum {
168 FastMixer_Never, // never initialize or use: for debugging only
169 FastMixer_Always, // always initialize and use, even if not needed: for debugging only
170 // normal mixer multiplier is 1
171 FastMixer_Static, // initialize if needed, then use all the time if initialized,
172 // multiplier is calculated based on min & max normal mixer buffer size
173 FastMixer_Dynamic, // initialize if needed, then use dynamically depending on track load,
174 // multiplier is calculated based on min & max normal mixer buffer size
175 // FIXME for FastMixer_Dynamic:
176 // Supporting this option will require fixing HALs that can't handle large writes.
177 // For example, one HAL implementation returns an error from a large write,
178 // and another HAL implementation corrupts memory, possibly in the sample rate converter.
179 // We could either fix the HAL implementations, or provide a wrapper that breaks
180 // up large writes into smaller ones, and the wrapper would need to deal with scheduler.
181 } kUseFastMixer = FastMixer_Static;
182
183 // Whether to use fast capture
184 static const enum {
185 FastCapture_Never, // never initialize or use: for debugging only
186 FastCapture_Always, // always initialize and use, even if not needed: for debugging only
187 FastCapture_Static, // initialize if needed, then use all the time if initialized
188 } kUseFastCapture = FastCapture_Static;
189
190 // Priorities for requestPriority
191 static const int kPriorityAudioApp = 2;
192 static const int kPriorityFastMixer = 3;
193 static const int kPriorityFastCapture = 3;
194
195 // IAudioFlinger::createTrack() has an in/out parameter 'pFrameCount' for the total size of the
196 // track buffer in shared memory. Zero on input means to use a default value. For fast tracks,
197 // AudioFlinger derives the default from HAL buffer size and 'fast track multiplier'.
198
199 // This is the default value, if not specified by property.
200 static const int kFastTrackMultiplier = 2;
201
202 // The minimum and maximum allowed values
203 static const int kFastTrackMultiplierMin = 1;
204 static const int kFastTrackMultiplierMax = 2;
205
206 // The actual value to use, which can be specified per-device via property af.fast_track_multiplier.
207 static int sFastTrackMultiplier = kFastTrackMultiplier;
208
209 // See Thread::readOnlyHeap().
210 // Initially this heap is used to allocate client buffers for "fast" AudioRecord.
211 // Eventually it will be the single buffer that FastCapture writes into via HAL read(),
212 // and that all "fast" AudioRecord clients read from. In either case, the size can be small.
213 static const size_t kRecordThreadReadOnlyHeapSize = 0xD000;
214
215 // ----------------------------------------------------------------------------
216
217 // TODO: move all toString helpers to audio.h
218 // under #ifdef __cplusplus #endif
patchSinksToString(const struct audio_patch * patch)219 static std::string patchSinksToString(const struct audio_patch *patch)
220 {
221 std::stringstream ss;
222 for (size_t i = 0; i < patch->num_sinks; ++i) {
223 if (i > 0) {
224 ss << "|";
225 }
226 ss << "(" << toString(patch->sinks[i].ext.device.type)
227 << ", " << patch->sinks[i].ext.device.address << ")";
228 }
229 return ss.str();
230 }
231
patchSourcesToString(const struct audio_patch * patch)232 static std::string patchSourcesToString(const struct audio_patch *patch)
233 {
234 std::stringstream ss;
235 for (size_t i = 0; i < patch->num_sources; ++i) {
236 if (i > 0) {
237 ss << "|";
238 }
239 ss << "(" << toString(patch->sources[i].ext.device.type)
240 << ", " << patch->sources[i].ext.device.address << ")";
241 }
242 return ss.str();
243 }
244
245 static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT;
246
sFastTrackMultiplierInit()247 static void sFastTrackMultiplierInit()
248 {
249 char value[PROPERTY_VALUE_MAX];
250 if (property_get("af.fast_track_multiplier", value, NULL) > 0) {
251 char *endptr;
252 unsigned long ul = strtoul(value, &endptr, 0);
253 if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) {
254 sFastTrackMultiplier = (int) ul;
255 }
256 }
257 }
258
259 // ----------------------------------------------------------------------------
260
261 #ifdef ADD_BATTERY_DATA
262 // To collect the amplifier usage
addBatteryData(uint32_t params)263 static void addBatteryData(uint32_t params) {
264 sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
265 if (service == NULL) {
266 // it already logged
267 return;
268 }
269
270 service->addBatteryData(params);
271 }
272 #endif
273
274 // Track the CLOCK_BOOTTIME versus CLOCK_MONOTONIC timebase offset
275 struct {
276 // call when you acquire a partial wakelock
acquireandroid::__anondc1713d70308277 void acquire(const sp<IBinder> &wakeLockToken) {
278 pthread_mutex_lock(&mLock);
279 if (wakeLockToken.get() == nullptr) {
280 adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
281 } else {
282 if (mCount == 0) {
283 adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
284 }
285 ++mCount;
286 }
287 pthread_mutex_unlock(&mLock);
288 }
289
290 // call when you release a partial wakelock.
releaseandroid::__anondc1713d70308291 void release(const sp<IBinder> &wakeLockToken) {
292 if (wakeLockToken.get() == nullptr) {
293 return;
294 }
295 pthread_mutex_lock(&mLock);
296 if (--mCount < 0) {
297 ALOGE("negative wakelock count");
298 mCount = 0;
299 }
300 pthread_mutex_unlock(&mLock);
301 }
302
303 // retrieves the boottime timebase offset from monotonic.
getBoottimeOffsetandroid::__anondc1713d70308304 int64_t getBoottimeOffset() {
305 pthread_mutex_lock(&mLock);
306 int64_t boottimeOffset = mBoottimeOffset;
307 pthread_mutex_unlock(&mLock);
308 return boottimeOffset;
309 }
310
311 // Adjusts the timebase offset between TIMEBASE_MONOTONIC
312 // and the selected timebase.
313 // Currently only TIMEBASE_BOOTTIME is allowed.
314 //
315 // This only needs to be called upon acquiring the first partial wakelock
316 // after all other partial wakelocks are released.
317 //
318 // We do an empirical measurement of the offset rather than parsing
319 // /proc/timer_list since the latter is not a formal kernel ABI.
adjustTimebaseOffsetandroid::__anondc1713d70308320 static void adjustTimebaseOffset(int64_t *offset, ExtendedTimestamp::Timebase timebase) {
321 int clockbase;
322 switch (timebase) {
323 case ExtendedTimestamp::TIMEBASE_BOOTTIME:
324 clockbase = SYSTEM_TIME_BOOTTIME;
325 break;
326 default:
327 LOG_ALWAYS_FATAL("invalid timebase %d", timebase);
328 break;
329 }
330 // try three times to get the clock offset, choose the one
331 // with the minimum gap in measurements.
332 const int tries = 3;
333 nsecs_t bestGap, measured;
334 for (int i = 0; i < tries; ++i) {
335 const nsecs_t tmono = systemTime(SYSTEM_TIME_MONOTONIC);
336 const nsecs_t tbase = systemTime(clockbase);
337 const nsecs_t tmono2 = systemTime(SYSTEM_TIME_MONOTONIC);
338 const nsecs_t gap = tmono2 - tmono;
339 if (i == 0 || gap < bestGap) {
340 bestGap = gap;
341 measured = tbase - ((tmono + tmono2) >> 1);
342 }
343 }
344
345 // to avoid micro-adjusting, we don't change the timebase
346 // unless it is significantly different.
347 //
348 // Assumption: It probably takes more than toleranceNs to
349 // suspend and resume the device.
350 static int64_t toleranceNs = 10000; // 10 us
351 if (llabs(*offset - measured) > toleranceNs) {
352 ALOGV("Adjusting timebase offset old: %lld new: %lld",
353 (long long)*offset, (long long)measured);
354 *offset = measured;
355 }
356 }
357
358 pthread_mutex_t mLock;
359 int32_t mCount;
360 int64_t mBoottimeOffset;
361 } gBoottime = { PTHREAD_MUTEX_INITIALIZER, 0, 0 }; // static, so use POD initialization
362
363 // ----------------------------------------------------------------------------
364 // CPU Stats
365 // ----------------------------------------------------------------------------
366
367 class CpuStats {
368 public:
369 CpuStats();
370 void sample(const String8 &title);
371 #ifdef DEBUG_CPU_USAGE
372 private:
373 ThreadCpuUsage mCpuUsage; // instantaneous thread CPU usage in wall clock ns
374 audio_utils::Statistics<double> mWcStats; // statistics on thread CPU usage in wall clock ns
375
376 audio_utils::Statistics<double> mHzStats; // statistics on thread CPU usage in cycles
377
378 int mCpuNum; // thread's current CPU number
379 int mCpukHz; // frequency of thread's current CPU in kHz
380 #endif
381 };
382
CpuStats()383 CpuStats::CpuStats()
384 #ifdef DEBUG_CPU_USAGE
385 : mCpuNum(-1), mCpukHz(-1)
386 #endif
387 {
388 }
389
sample(const String8 & title __unused)390 void CpuStats::sample(const String8 &title
391 #ifndef DEBUG_CPU_USAGE
392 __unused
393 #endif
394 ) {
395 #ifdef DEBUG_CPU_USAGE
396 // get current thread's delta CPU time in wall clock ns
397 double wcNs;
398 bool valid = mCpuUsage.sampleAndEnable(wcNs);
399
400 // record sample for wall clock statistics
401 if (valid) {
402 mWcStats.add(wcNs);
403 }
404
405 // get the current CPU number
406 int cpuNum = sched_getcpu();
407
408 // get the current CPU frequency in kHz
409 int cpukHz = mCpuUsage.getCpukHz(cpuNum);
410
411 // check if either CPU number or frequency changed
412 if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
413 mCpuNum = cpuNum;
414 mCpukHz = cpukHz;
415 // ignore sample for purposes of cycles
416 valid = false;
417 }
418
419 // if no change in CPU number or frequency, then record sample for cycle statistics
420 if (valid && mCpukHz > 0) {
421 const double cycles = wcNs * cpukHz * 0.000001;
422 mHzStats.add(cycles);
423 }
424
425 const unsigned n = mWcStats.getN();
426 // mCpuUsage.elapsed() is expensive, so don't call it every loop
427 if ((n & 127) == 1) {
428 const long long elapsed = mCpuUsage.elapsed();
429 if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
430 const double perLoop = elapsed / (double) n;
431 const double perLoop100 = perLoop * 0.01;
432 const double perLoop1k = perLoop * 0.001;
433 const double mean = mWcStats.getMean();
434 const double stddev = mWcStats.getStdDev();
435 const double minimum = mWcStats.getMin();
436 const double maximum = mWcStats.getMax();
437 const double meanCycles = mHzStats.getMean();
438 const double stddevCycles = mHzStats.getStdDev();
439 const double minCycles = mHzStats.getMin();
440 const double maxCycles = mHzStats.getMax();
441 mCpuUsage.resetElapsed();
442 mWcStats.reset();
443 mHzStats.reset();
444 ALOGD("CPU usage for %s over past %.1f secs\n"
445 " (%u mixer loops at %.1f mean ms per loop):\n"
446 " us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
447 " %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
448 " MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
449 title.string(),
450 elapsed * .000000001, n, perLoop * .000001,
451 mean * .001,
452 stddev * .001,
453 minimum * .001,
454 maximum * .001,
455 mean / perLoop100,
456 stddev / perLoop100,
457 minimum / perLoop100,
458 maximum / perLoop100,
459 meanCycles / perLoop1k,
460 stddevCycles / perLoop1k,
461 minCycles / perLoop1k,
462 maxCycles / perLoop1k);
463
464 }
465 }
466 #endif
467 };
468
469 // ----------------------------------------------------------------------------
470 // ThreadBase
471 // ----------------------------------------------------------------------------
472
473 // static
threadTypeToString(AudioFlinger::ThreadBase::type_t type)474 const char *AudioFlinger::ThreadBase::threadTypeToString(AudioFlinger::ThreadBase::type_t type)
475 {
476 switch (type) {
477 case MIXER:
478 return "MIXER";
479 case DIRECT:
480 return "DIRECT";
481 case DUPLICATING:
482 return "DUPLICATING";
483 case RECORD:
484 return "RECORD";
485 case OFFLOAD:
486 return "OFFLOAD";
487 case MMAP_PLAYBACK:
488 return "MMAP_PLAYBACK";
489 case MMAP_CAPTURE:
490 return "MMAP_CAPTURE";
491 default:
492 return "unknown";
493 }
494 }
495
ThreadBase(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,type_t type,bool systemReady,bool isOut)496 AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
497 type_t type, bool systemReady, bool isOut)
498 : Thread(false /*canCallJava*/),
499 mType(type),
500 mAudioFlinger(audioFlinger),
501 mThreadMetrics(std::string(AMEDIAMETRICS_KEY_PREFIX_AUDIO_THREAD) + std::to_string(id),
502 isOut),
503 mIsOut(isOut),
504 // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
505 // are set by PlaybackThread::readOutputParameters_l() or
506 // RecordThread::readInputParameters_l()
507 //FIXME: mStandby should be true here. Is this some kind of hack?
508 mStandby(false),
509 mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
510 // mName will be set by concrete (non-virtual) subclass
511 mDeathRecipient(new PMDeathRecipient(this)),
512 mSystemReady(systemReady),
513 mSignalPending(false)
514 {
515 mThreadMetrics.logConstructor(getpid(), threadTypeToString(type), id);
516 memset(&mPatch, 0, sizeof(struct audio_patch));
517 }
518
~ThreadBase()519 AudioFlinger::ThreadBase::~ThreadBase()
520 {
521 // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
522 mConfigEvents.clear();
523
524 // do not lock the mutex in destructor
525 releaseWakeLock_l();
526 if (mPowerManager != 0) {
527 sp<IBinder> binder = IInterface::asBinder(mPowerManager);
528 binder->unlinkToDeath(mDeathRecipient);
529 }
530
531 sendStatistics(true /* force */);
532 }
533
readyToRun()534 status_t AudioFlinger::ThreadBase::readyToRun()
535 {
536 status_t status = initCheck();
537 if (status == NO_ERROR) {
538 ALOGI("AudioFlinger's thread %p tid=%d ready to run", this, getTid());
539 } else {
540 ALOGE("No working audio driver found.");
541 }
542 return status;
543 }
544
exit()545 void AudioFlinger::ThreadBase::exit()
546 {
547 ALOGV("ThreadBase::exit");
548 // do any cleanup required for exit to succeed
549 preExit();
550 {
551 // This lock prevents the following race in thread (uniprocessor for illustration):
552 // if (!exitPending()) {
553 // // context switch from here to exit()
554 // // exit() calls requestExit(), what exitPending() observes
555 // // exit() calls signal(), which is dropped since no waiters
556 // // context switch back from exit() to here
557 // mWaitWorkCV.wait(...);
558 // // now thread is hung
559 // }
560 AutoMutex lock(mLock);
561 requestExit();
562 mWaitWorkCV.broadcast();
563 }
564 // When Thread::requestExitAndWait is made virtual and this method is renamed to
565 // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
566 requestExitAndWait();
567 }
568
setParameters(const String8 & keyValuePairs)569 status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
570 {
571 ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
572 Mutex::Autolock _l(mLock);
573
574 return sendSetParameterConfigEvent_l(keyValuePairs);
575 }
576
577 // sendConfigEvent_l() must be called with ThreadBase::mLock held
578 // Can temporarily release the lock if waiting for a reply from processConfigEvents_l().
sendConfigEvent_l(sp<ConfigEvent> & event)579 status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
580 {
581 status_t status = NO_ERROR;
582
583 if (event->mRequiresSystemReady && !mSystemReady) {
584 event->mWaitStatus = false;
585 mPendingConfigEvents.add(event);
586 return status;
587 }
588 mConfigEvents.add(event);
589 ALOGV("sendConfigEvent_l() num events %zu event %d", mConfigEvents.size(), event->mType);
590 mWaitWorkCV.signal();
591 mLock.unlock();
592 {
593 Mutex::Autolock _l(event->mLock);
594 while (event->mWaitStatus) {
595 if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) {
596 event->mStatus = TIMED_OUT;
597 event->mWaitStatus = false;
598 }
599 }
600 status = event->mStatus;
601 }
602 mLock.lock();
603 return status;
604 }
605
sendIoConfigEvent(audio_io_config_event event,pid_t pid,audio_port_handle_t portId)606 void AudioFlinger::ThreadBase::sendIoConfigEvent(audio_io_config_event event, pid_t pid,
607 audio_port_handle_t portId)
608 {
609 Mutex::Autolock _l(mLock);
610 sendIoConfigEvent_l(event, pid, portId);
611 }
612
613 // sendIoConfigEvent_l() must be called with ThreadBase::mLock held
sendIoConfigEvent_l(audio_io_config_event event,pid_t pid,audio_port_handle_t portId)614 void AudioFlinger::ThreadBase::sendIoConfigEvent_l(audio_io_config_event event, pid_t pid,
615 audio_port_handle_t portId)
616 {
617 // The audio statistics history is exponentially weighted to forget events
618 // about five or more seconds in the past. In order to have
619 // crisper statistics for mediametrics, we reset the statistics on
620 // an IoConfigEvent, to reflect different properties for a new device.
621 mIoJitterMs.reset();
622 mLatencyMs.reset();
623 mProcessTimeMs.reset();
624 mTimestampVerifier.discontinuity();
625
626 sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, pid, portId);
627 sendConfigEvent_l(configEvent);
628 }
629
sendPrioConfigEvent(pid_t pid,pid_t tid,int32_t prio,bool forApp)630 void AudioFlinger::ThreadBase::sendPrioConfigEvent(pid_t pid, pid_t tid, int32_t prio, bool forApp)
631 {
632 Mutex::Autolock _l(mLock);
633 sendPrioConfigEvent_l(pid, tid, prio, forApp);
634 }
635
636 // sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
sendPrioConfigEvent_l(pid_t pid,pid_t tid,int32_t prio,bool forApp)637 void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(
638 pid_t pid, pid_t tid, int32_t prio, bool forApp)
639 {
640 sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio, forApp);
641 sendConfigEvent_l(configEvent);
642 }
643
644 // sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held
sendSetParameterConfigEvent_l(const String8 & keyValuePair)645 status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
646 {
647 sp<ConfigEvent> configEvent;
648 AudioParameter param(keyValuePair);
649 int value;
650 if (param.getInt(String8(AudioParameter::keyMonoOutput), value) == NO_ERROR) {
651 setMasterMono_l(value != 0);
652 if (param.size() == 1) {
653 return NO_ERROR; // should be a solo parameter - we don't pass down
654 }
655 param.remove(String8(AudioParameter::keyMonoOutput));
656 configEvent = new SetParameterConfigEvent(param.toString());
657 } else {
658 configEvent = new SetParameterConfigEvent(keyValuePair);
659 }
660 return sendConfigEvent_l(configEvent);
661 }
662
sendCreateAudioPatchConfigEvent(const struct audio_patch * patch,audio_patch_handle_t * handle)663 status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent(
664 const struct audio_patch *patch,
665 audio_patch_handle_t *handle)
666 {
667 Mutex::Autolock _l(mLock);
668 sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle);
669 status_t status = sendConfigEvent_l(configEvent);
670 if (status == NO_ERROR) {
671 CreateAudioPatchConfigEventData *data =
672 (CreateAudioPatchConfigEventData *)configEvent->mData.get();
673 *handle = data->mHandle;
674 }
675 return status;
676 }
677
sendReleaseAudioPatchConfigEvent(const audio_patch_handle_t handle)678 status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent(
679 const audio_patch_handle_t handle)
680 {
681 Mutex::Autolock _l(mLock);
682 sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle);
683 return sendConfigEvent_l(configEvent);
684 }
685
sendUpdateOutDeviceConfigEvent(const DeviceDescriptorBaseVector & outDevices)686 status_t AudioFlinger::ThreadBase::sendUpdateOutDeviceConfigEvent(
687 const DeviceDescriptorBaseVector& outDevices)
688 {
689 if (type() != RECORD) {
690 // The update out device operation is only for record thread.
691 return INVALID_OPERATION;
692 }
693 Mutex::Autolock _l(mLock);
694 sp<ConfigEvent> configEvent = (ConfigEvent *)new UpdateOutDevicesConfigEvent(outDevices);
695 return sendConfigEvent_l(configEvent);
696 }
697
698
699 // post condition: mConfigEvents.isEmpty()
processConfigEvents_l()700 void AudioFlinger::ThreadBase::processConfigEvents_l()
701 {
702 bool configChanged = false;
703
704 while (!mConfigEvents.isEmpty()) {
705 ALOGV("processConfigEvents_l() remaining events %zu", mConfigEvents.size());
706 sp<ConfigEvent> event = mConfigEvents[0];
707 mConfigEvents.removeAt(0);
708 switch (event->mType) {
709 case CFG_EVENT_PRIO: {
710 PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
711 // FIXME Need to understand why this has to be done asynchronously
712 int err = requestPriority(data->mPid, data->mTid, data->mPrio, data->mForApp,
713 true /*asynchronous*/);
714 if (err != 0) {
715 ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
716 data->mPrio, data->mPid, data->mTid, err);
717 }
718 } break;
719 case CFG_EVENT_IO: {
720 IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
721 ioConfigChanged(data->mEvent, data->mPid, data->mPortId);
722 } break;
723 case CFG_EVENT_SET_PARAMETER: {
724 SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
725 if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
726 configChanged = true;
727 mLocalLog.log("CFG_EVENT_SET_PARAMETER: (%s) configuration changed",
728 data->mKeyValuePairs.string());
729 }
730 } break;
731 case CFG_EVENT_CREATE_AUDIO_PATCH: {
732 const DeviceTypeSet oldDevices = getDeviceTypes();
733 CreateAudioPatchConfigEventData *data =
734 (CreateAudioPatchConfigEventData *)event->mData.get();
735 event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
736 const DeviceTypeSet newDevices = getDeviceTypes();
737 mLocalLog.log("CFG_EVENT_CREATE_AUDIO_PATCH: old device %s (%s) new device %s (%s)",
738 dumpDeviceTypes(oldDevices).c_str(), toString(oldDevices).c_str(),
739 dumpDeviceTypes(newDevices).c_str(), toString(newDevices).c_str());
740 } break;
741 case CFG_EVENT_RELEASE_AUDIO_PATCH: {
742 const DeviceTypeSet oldDevices = getDeviceTypes();
743 ReleaseAudioPatchConfigEventData *data =
744 (ReleaseAudioPatchConfigEventData *)event->mData.get();
745 event->mStatus = releaseAudioPatch_l(data->mHandle);
746 const DeviceTypeSet newDevices = getDeviceTypes();
747 mLocalLog.log("CFG_EVENT_RELEASE_AUDIO_PATCH: old device %s (%s) new device %s (%s)",
748 dumpDeviceTypes(oldDevices).c_str(), toString(oldDevices).c_str(),
749 dumpDeviceTypes(newDevices).c_str(), toString(newDevices).c_str());
750 } break;
751 case CFG_EVENT_UPDATE_OUT_DEVICE: {
752 UpdateOutDevicesConfigEventData *data =
753 (UpdateOutDevicesConfigEventData *)event->mData.get();
754 updateOutDevices(data->mOutDevices);
755 } break;
756 default:
757 ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
758 break;
759 }
760 {
761 Mutex::Autolock _l(event->mLock);
762 if (event->mWaitStatus) {
763 event->mWaitStatus = false;
764 event->mCond.signal();
765 }
766 }
767 ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
768 }
769
770 if (configChanged) {
771 cacheParameters_l();
772 }
773 }
774
channelMaskToString(audio_channel_mask_t mask,bool output)775 String8 channelMaskToString(audio_channel_mask_t mask, bool output) {
776 String8 s;
777 const audio_channel_representation_t representation =
778 audio_channel_mask_get_representation(mask);
779
780 switch (representation) {
781 // Travel all single bit channel mask to convert channel mask to string.
782 case AUDIO_CHANNEL_REPRESENTATION_POSITION: {
783 if (output) {
784 if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, ");
785 if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, ");
786 if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, ");
787 if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low freq, ");
788 if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, ");
789 if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, ");
790 if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, ");
791 if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, ");
792 if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, ");
793 if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, ");
794 if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, ");
795 if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,");
796 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, ");
797 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, ");
798 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, ");
799 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, ");
800 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, " );
801 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, " );
802 if (mask & AUDIO_CHANNEL_OUT_TOP_SIDE_LEFT) s.append("top-side-left, " );
803 if (mask & AUDIO_CHANNEL_OUT_TOP_SIDE_RIGHT) s.append("top-side-right, " );
804 if (mask & AUDIO_CHANNEL_OUT_HAPTIC_B) s.append("haptic-B, " );
805 if (mask & AUDIO_CHANNEL_OUT_HAPTIC_A) s.append("haptic-A, " );
806 if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown, ");
807 } else {
808 if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, ");
809 if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, ");
810 if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, ");
811 if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, ");
812 if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, ");
813 if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, ");
814 if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, ");
815 if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, ");
816 if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, ");
817 if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, ");
818 if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, ");
819 if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, ");
820 if (mask & AUDIO_CHANNEL_IN_BACK_LEFT) s.append("back-left, ");
821 if (mask & AUDIO_CHANNEL_IN_BACK_RIGHT) s.append("back-right, ");
822 if (mask & AUDIO_CHANNEL_IN_CENTER) s.append("center, ");
823 if (mask & AUDIO_CHANNEL_IN_LOW_FREQUENCY) s.append("low freq, ");
824 if (mask & AUDIO_CHANNEL_IN_TOP_LEFT) s.append("top-left, " );
825 if (mask & AUDIO_CHANNEL_IN_TOP_RIGHT) s.append("top-right, " );
826 if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, ");
827 if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, ");
828 if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown, ");
829 }
830 const int len = s.length();
831 if (len > 2) {
832 (void) s.lockBuffer(len); // needed?
833 s.unlockBuffer(len - 2); // remove trailing ", "
834 }
835 return s;
836 }
837 case AUDIO_CHANNEL_REPRESENTATION_INDEX:
838 s.appendFormat("index mask, bits:%#x", audio_channel_mask_get_bits(mask));
839 return s;
840 default:
841 s.appendFormat("unknown mask, representation:%d bits:%#x",
842 representation, audio_channel_mask_get_bits(mask));
843 return s;
844 }
845 }
846
dump(int fd,const Vector<String16> & args)847 void AudioFlinger::ThreadBase::dump(int fd, const Vector<String16>& args)
848 {
849 dprintf(fd, "\n%s thread %p, name %s, tid %d, type %d (%s):\n", isOutput() ? "Output" : "Input",
850 this, mThreadName, getTid(), type(), threadTypeToString(type()));
851
852 bool locked = AudioFlinger::dumpTryLock(mLock);
853 if (!locked) {
854 dprintf(fd, " Thread may be deadlocked\n");
855 }
856
857 dumpBase_l(fd, args);
858 dumpInternals_l(fd, args);
859 dumpTracks_l(fd, args);
860 dumpEffectChains_l(fd, args);
861
862 if (locked) {
863 mLock.unlock();
864 }
865
866 dprintf(fd, " Local log:\n");
867 mLocalLog.dump(fd, " " /* prefix */, 40 /* lines */);
868 }
869
dumpBase_l(int fd,const Vector<String16> & args __unused)870 void AudioFlinger::ThreadBase::dumpBase_l(int fd, const Vector<String16>& args __unused)
871 {
872 dprintf(fd, " I/O handle: %d\n", mId);
873 dprintf(fd, " Standby: %s\n", mStandby ? "yes" : "no");
874 dprintf(fd, " Sample rate: %u Hz\n", mSampleRate);
875 dprintf(fd, " HAL frame count: %zu\n", mFrameCount);
876 dprintf(fd, " HAL format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat).c_str());
877 dprintf(fd, " HAL buffer size: %zu bytes\n", mBufferSize);
878 dprintf(fd, " Channel count: %u\n", mChannelCount);
879 dprintf(fd, " Channel mask: 0x%08x (%s)\n", mChannelMask,
880 channelMaskToString(mChannelMask, mType != RECORD).string());
881 dprintf(fd, " Processing format: 0x%x (%s)\n", mFormat, formatToString(mFormat).c_str());
882 dprintf(fd, " Processing frame size: %zu bytes\n", mFrameSize);
883 dprintf(fd, " Pending config events:");
884 size_t numConfig = mConfigEvents.size();
885 if (numConfig) {
886 const size_t SIZE = 256;
887 char buffer[SIZE];
888 for (size_t i = 0; i < numConfig; i++) {
889 mConfigEvents[i]->dump(buffer, SIZE);
890 dprintf(fd, "\n %s", buffer);
891 }
892 dprintf(fd, "\n");
893 } else {
894 dprintf(fd, " none\n");
895 }
896 // Note: output device may be used by capture threads for effects such as AEC.
897 dprintf(fd, " Output devices: %s (%s)\n",
898 dumpDeviceTypes(outDeviceTypes()).c_str(), toString(outDeviceTypes()).c_str());
899 dprintf(fd, " Input device: %#x (%s)\n",
900 inDeviceType(), toString(inDeviceType()).c_str());
901 dprintf(fd, " Audio source: %d (%s)\n", mAudioSource, toString(mAudioSource).c_str());
902
903 // Dump timestamp statistics for the Thread types that support it.
904 if (mType == RECORD
905 || mType == MIXER
906 || mType == DUPLICATING
907 || mType == DIRECT
908 || mType == OFFLOAD) {
909 dprintf(fd, " Timestamp stats: %s\n", mTimestampVerifier.toString().c_str());
910 dprintf(fd, " Timestamp corrected: %s\n", isTimestampCorrectionEnabled() ? "yes" : "no");
911 }
912
913 if (mLastIoBeginNs > 0) { // MMAP may not set this
914 dprintf(fd, " Last %s occurred (msecs): %lld\n",
915 isOutput() ? "write" : "read",
916 (long long) (systemTime() - mLastIoBeginNs) / NANOS_PER_MILLISECOND);
917 }
918
919 if (mProcessTimeMs.getN() > 0) {
920 dprintf(fd, " Process time ms stats: %s\n", mProcessTimeMs.toString().c_str());
921 }
922
923 if (mIoJitterMs.getN() > 0) {
924 dprintf(fd, " Hal %s jitter ms stats: %s\n",
925 isOutput() ? "write" : "read",
926 mIoJitterMs.toString().c_str());
927 }
928
929 if (mLatencyMs.getN() > 0) {
930 dprintf(fd, " Threadloop %s latency stats: %s\n",
931 isOutput() ? "write" : "read",
932 mLatencyMs.toString().c_str());
933 }
934 }
935
dumpEffectChains_l(int fd,const Vector<String16> & args)936 void AudioFlinger::ThreadBase::dumpEffectChains_l(int fd, const Vector<String16>& args)
937 {
938 const size_t SIZE = 256;
939 char buffer[SIZE];
940
941 size_t numEffectChains = mEffectChains.size();
942 snprintf(buffer, SIZE, " %zu Effect Chains\n", numEffectChains);
943 write(fd, buffer, strlen(buffer));
944
945 for (size_t i = 0; i < numEffectChains; ++i) {
946 sp<EffectChain> chain = mEffectChains[i];
947 if (chain != 0) {
948 chain->dump(fd, args);
949 }
950 }
951 }
952
acquireWakeLock()953 void AudioFlinger::ThreadBase::acquireWakeLock()
954 {
955 Mutex::Autolock _l(mLock);
956 acquireWakeLock_l();
957 }
958
getWakeLockTag()959 String16 AudioFlinger::ThreadBase::getWakeLockTag()
960 {
961 switch (mType) {
962 case MIXER:
963 return String16("AudioMix");
964 case DIRECT:
965 return String16("AudioDirectOut");
966 case DUPLICATING:
967 return String16("AudioDup");
968 case RECORD:
969 return String16("AudioIn");
970 case OFFLOAD:
971 return String16("AudioOffload");
972 case MMAP_PLAYBACK:
973 return String16("MmapPlayback");
974 case MMAP_CAPTURE:
975 return String16("MmapCapture");
976 default:
977 ALOG_ASSERT(false);
978 return String16("AudioUnknown");
979 }
980 }
981
acquireWakeLock_l()982 void AudioFlinger::ThreadBase::acquireWakeLock_l()
983 {
984 getPowerManager_l();
985 if (mPowerManager != 0) {
986 sp<IBinder> binder = new BBinder();
987 // Uses AID_AUDIOSERVER for wakelock. updateWakeLockUids_l() updates with client uids.
988 status_t status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
989 binder,
990 getWakeLockTag(),
991 String16("audioserver"),
992 true /* FIXME force oneway contrary to .aidl */);
993 if (status == NO_ERROR) {
994 mWakeLockToken = binder;
995 }
996 ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
997 }
998
999 gBoottime.acquire(mWakeLockToken);
1000 mTimestamp.mTimebaseOffset[ExtendedTimestamp::TIMEBASE_BOOTTIME] =
1001 gBoottime.getBoottimeOffset();
1002 }
1003
releaseWakeLock()1004 void AudioFlinger::ThreadBase::releaseWakeLock()
1005 {
1006 Mutex::Autolock _l(mLock);
1007 releaseWakeLock_l();
1008 }
1009
releaseWakeLock_l()1010 void AudioFlinger::ThreadBase::releaseWakeLock_l()
1011 {
1012 gBoottime.release(mWakeLockToken);
1013 if (mWakeLockToken != 0) {
1014 ALOGV("releaseWakeLock_l() %s", mThreadName);
1015 if (mPowerManager != 0) {
1016 mPowerManager->releaseWakeLock(mWakeLockToken, 0,
1017 true /* FIXME force oneway contrary to .aidl */);
1018 }
1019 mWakeLockToken.clear();
1020 }
1021 }
1022
getPowerManager_l()1023 void AudioFlinger::ThreadBase::getPowerManager_l() {
1024 if (mSystemReady && mPowerManager == 0) {
1025 // use checkService() to avoid blocking if power service is not up yet
1026 sp<IBinder> binder =
1027 defaultServiceManager()->checkService(String16("power"));
1028 if (binder == 0) {
1029 ALOGW("Thread %s cannot connect to the power manager service", mThreadName);
1030 } else {
1031 mPowerManager = interface_cast<IPowerManager>(binder);
1032 binder->linkToDeath(mDeathRecipient);
1033 }
1034 }
1035 }
1036
updateWakeLockUids_l(const SortedVector<uid_t> & uids)1037 void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<uid_t> &uids) {
1038 getPowerManager_l();
1039
1040 #if !LOG_NDEBUG
1041 std::stringstream s;
1042 for (uid_t uid : uids) {
1043 s << uid << " ";
1044 }
1045 ALOGD("updateWakeLockUids_l %s uids:%s", mThreadName, s.str().c_str());
1046 #endif
1047
1048 if (mWakeLockToken == NULL) { // token may be NULL if AudioFlinger::systemReady() not called.
1049 if (mSystemReady) {
1050 ALOGE("no wake lock to update, but system ready!");
1051 } else {
1052 ALOGW("no wake lock to update, system not ready yet");
1053 }
1054 return;
1055 }
1056 if (mPowerManager != 0) {
1057 std::vector<int> uidsAsInt(uids.begin(), uids.end()); // powermanager expects uids as ints
1058 status_t status = mPowerManager->updateWakeLockUids(
1059 mWakeLockToken, uidsAsInt.size(), uidsAsInt.data(),
1060 true /* FIXME force oneway contrary to .aidl */);
1061 ALOGV("updateWakeLockUids_l() %s status %d", mThreadName, status);
1062 }
1063 }
1064
clearPowerManager()1065 void AudioFlinger::ThreadBase::clearPowerManager()
1066 {
1067 Mutex::Autolock _l(mLock);
1068 releaseWakeLock_l();
1069 mPowerManager.clear();
1070 }
1071
updateOutDevices(const DeviceDescriptorBaseVector & outDevices __unused)1072 void AudioFlinger::ThreadBase::updateOutDevices(
1073 const DeviceDescriptorBaseVector& outDevices __unused)
1074 {
1075 ALOGE("%s should only be called in RecordThread", __func__);
1076 }
1077
binderDied(const wp<IBinder> & who __unused)1078 void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused)
1079 {
1080 sp<ThreadBase> thread = mThread.promote();
1081 if (thread != 0) {
1082 thread->clearPowerManager();
1083 }
1084 ALOGW("power manager service died !!!");
1085 }
1086
setEffectSuspended_l(const effect_uuid_t * type,bool suspend,audio_session_t sessionId)1087 void AudioFlinger::ThreadBase::setEffectSuspended_l(
1088 const effect_uuid_t *type, bool suspend, audio_session_t sessionId)
1089 {
1090 sp<EffectChain> chain = getEffectChain_l(sessionId);
1091 if (chain != 0) {
1092 if (type != NULL) {
1093 chain->setEffectSuspended_l(type, suspend);
1094 } else {
1095 chain->setEffectSuspendedAll_l(suspend);
1096 }
1097 }
1098
1099 updateSuspendedSessions_l(type, suspend, sessionId);
1100 }
1101
checkSuspendOnAddEffectChain_l(const sp<EffectChain> & chain)1102 void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
1103 {
1104 ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
1105 if (index < 0) {
1106 return;
1107 }
1108
1109 const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
1110 mSuspendedSessions.valueAt(index);
1111
1112 for (size_t i = 0; i < sessionEffects.size(); i++) {
1113 const sp<SuspendedSessionDesc>& desc = sessionEffects.valueAt(i);
1114 for (int j = 0; j < desc->mRefCount; j++) {
1115 if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
1116 chain->setEffectSuspendedAll_l(true);
1117 } else {
1118 ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
1119 desc->mType.timeLow);
1120 chain->setEffectSuspended_l(&desc->mType, true);
1121 }
1122 }
1123 }
1124 }
1125
updateSuspendedSessions_l(const effect_uuid_t * type,bool suspend,audio_session_t sessionId)1126 void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
1127 bool suspend,
1128 audio_session_t sessionId)
1129 {
1130 ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
1131
1132 KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
1133
1134 if (suspend) {
1135 if (index >= 0) {
1136 sessionEffects = mSuspendedSessions.valueAt(index);
1137 } else {
1138 mSuspendedSessions.add(sessionId, sessionEffects);
1139 }
1140 } else {
1141 if (index < 0) {
1142 return;
1143 }
1144 sessionEffects = mSuspendedSessions.valueAt(index);
1145 }
1146
1147
1148 int key = EffectChain::kKeyForSuspendAll;
1149 if (type != NULL) {
1150 key = type->timeLow;
1151 }
1152 index = sessionEffects.indexOfKey(key);
1153
1154 sp<SuspendedSessionDesc> desc;
1155 if (suspend) {
1156 if (index >= 0) {
1157 desc = sessionEffects.valueAt(index);
1158 } else {
1159 desc = new SuspendedSessionDesc();
1160 if (type != NULL) {
1161 desc->mType = *type;
1162 }
1163 sessionEffects.add(key, desc);
1164 ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
1165 }
1166 desc->mRefCount++;
1167 } else {
1168 if (index < 0) {
1169 return;
1170 }
1171 desc = sessionEffects.valueAt(index);
1172 if (--desc->mRefCount == 0) {
1173 ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
1174 sessionEffects.removeItemsAt(index);
1175 if (sessionEffects.isEmpty()) {
1176 ALOGV("updateSuspendedSessions_l() restore removing session %d",
1177 sessionId);
1178 mSuspendedSessions.removeItem(sessionId);
1179 }
1180 }
1181 }
1182 if (!sessionEffects.isEmpty()) {
1183 mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
1184 }
1185 }
1186
checkSuspendOnEffectEnabled(bool enabled,audio_session_t sessionId,bool threadLocked)1187 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(bool enabled,
1188 audio_session_t sessionId,
1189 bool threadLocked) {
1190 if (!threadLocked) {
1191 mLock.lock();
1192 }
1193
1194 if (mType != RECORD) {
1195 // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
1196 // another session. This gives the priority to well behaved effect control panels
1197 // and applications not using global effects.
1198 // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
1199 // global effects
1200 if (!audio_is_global_session(sessionId)) {
1201 setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
1202 }
1203 }
1204
1205 if (!threadLocked) {
1206 mLock.unlock();
1207 }
1208 }
1209
1210 // checkEffectCompatibility_l() must be called with ThreadBase::mLock held
checkEffectCompatibility_l(const effect_descriptor_t * desc,audio_session_t sessionId)1211 status_t AudioFlinger::RecordThread::checkEffectCompatibility_l(
1212 const effect_descriptor_t *desc, audio_session_t sessionId)
1213 {
1214 // No global output effect sessions on record threads
1215 if (sessionId == AUDIO_SESSION_OUTPUT_MIX
1216 || sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
1217 ALOGW("checkEffectCompatibility_l(): global effect %s on record thread %s",
1218 desc->name, mThreadName);
1219 return BAD_VALUE;
1220 }
1221 // only pre processing effects on record thread
1222 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_PRE_PROC) {
1223 ALOGW("checkEffectCompatibility_l(): non pre processing effect %s on record thread %s",
1224 desc->name, mThreadName);
1225 return BAD_VALUE;
1226 }
1227
1228 // always allow effects without processing load or latency
1229 if ((desc->flags & EFFECT_FLAG_NO_PROCESS_MASK) == EFFECT_FLAG_NO_PROCESS) {
1230 return NO_ERROR;
1231 }
1232
1233 audio_input_flags_t flags = mInput->flags;
1234 if (hasFastCapture() || (flags & AUDIO_INPUT_FLAG_FAST)) {
1235 if (flags & AUDIO_INPUT_FLAG_RAW) {
1236 ALOGW("checkEffectCompatibility_l(): effect %s on record thread %s in raw mode",
1237 desc->name, mThreadName);
1238 return BAD_VALUE;
1239 }
1240 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1241 ALOGW("checkEffectCompatibility_l(): non HW effect %s on record thread %s in fast mode",
1242 desc->name, mThreadName);
1243 return BAD_VALUE;
1244 }
1245 }
1246 return NO_ERROR;
1247 }
1248
1249 // checkEffectCompatibility_l() must be called with ThreadBase::mLock held
checkEffectCompatibility_l(const effect_descriptor_t * desc,audio_session_t sessionId)1250 status_t AudioFlinger::PlaybackThread::checkEffectCompatibility_l(
1251 const effect_descriptor_t *desc, audio_session_t sessionId)
1252 {
1253 // no preprocessing on playback threads
1254 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC) {
1255 ALOGW("checkEffectCompatibility_l(): pre processing effect %s created on playback"
1256 " thread %s", desc->name, mThreadName);
1257 return BAD_VALUE;
1258 }
1259
1260 // always allow effects without processing load or latency
1261 if ((desc->flags & EFFECT_FLAG_NO_PROCESS_MASK) == EFFECT_FLAG_NO_PROCESS) {
1262 return NO_ERROR;
1263 }
1264
1265 switch (mType) {
1266 case MIXER: {
1267 #ifndef MULTICHANNEL_EFFECT_CHAIN
1268 // Reject any effect on mixer multichannel sinks.
1269 // TODO: fix both format and multichannel issues with effects.
1270 if (mChannelCount != FCC_2) {
1271 ALOGW("checkEffectCompatibility_l(): effect %s for multichannel(%d) on MIXER"
1272 " thread %s", desc->name, mChannelCount, mThreadName);
1273 return BAD_VALUE;
1274 }
1275 #endif
1276 audio_output_flags_t flags = mOutput->flags;
1277 if (hasFastMixer() || (flags & AUDIO_OUTPUT_FLAG_FAST)) {
1278 if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
1279 // global effects are applied only to non fast tracks if they are SW
1280 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1281 break;
1282 }
1283 } else if (sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
1284 // only post processing on output stage session
1285 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_POST_PROC) {
1286 ALOGW("checkEffectCompatibility_l(): non post processing effect %s not allowed"
1287 " on output stage session", desc->name);
1288 return BAD_VALUE;
1289 }
1290 } else if (sessionId == AUDIO_SESSION_DEVICE) {
1291 // only post processing on output stage session
1292 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_POST_PROC) {
1293 ALOGW("checkEffectCompatibility_l(): non post processing effect %s not allowed"
1294 " on device session", desc->name);
1295 return BAD_VALUE;
1296 }
1297 } else {
1298 // no restriction on effects applied on non fast tracks
1299 if ((hasAudioSession_l(sessionId) & ThreadBase::FAST_SESSION) == 0) {
1300 break;
1301 }
1302 }
1303
1304 if (flags & AUDIO_OUTPUT_FLAG_RAW) {
1305 ALOGW("checkEffectCompatibility_l(): effect %s on playback thread in raw mode",
1306 desc->name);
1307 return BAD_VALUE;
1308 }
1309 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1310 ALOGW("checkEffectCompatibility_l(): non HW effect %s on playback thread"
1311 " in fast mode", desc->name);
1312 return BAD_VALUE;
1313 }
1314 }
1315 } break;
1316 case OFFLOAD:
1317 // nothing actionable on offload threads, if the effect:
1318 // - is offloadable: the effect can be created
1319 // - is NOT offloadable: the effect should still be created, but EffectHandle::enable()
1320 // will take care of invalidating the tracks of the thread
1321 break;
1322 case DIRECT:
1323 // Reject any effect on Direct output threads for now, since the format of
1324 // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo).
1325 ALOGW("checkEffectCompatibility_l(): effect %s on DIRECT output thread %s",
1326 desc->name, mThreadName);
1327 return BAD_VALUE;
1328 case DUPLICATING:
1329 #ifndef MULTICHANNEL_EFFECT_CHAIN
1330 // Reject any effect on mixer multichannel sinks.
1331 // TODO: fix both format and multichannel issues with effects.
1332 if (mChannelCount != FCC_2) {
1333 ALOGW("checkEffectCompatibility_l(): effect %s for multichannel(%d)"
1334 " on DUPLICATING thread %s", desc->name, mChannelCount, mThreadName);
1335 return BAD_VALUE;
1336 }
1337 #endif
1338 if (audio_is_global_session(sessionId)) {
1339 ALOGW("checkEffectCompatibility_l(): global effect %s on DUPLICATING"
1340 " thread %s", desc->name, mThreadName);
1341 return BAD_VALUE;
1342 }
1343 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_POST_PROC) {
1344 ALOGW("checkEffectCompatibility_l(): post processing effect %s on"
1345 " DUPLICATING thread %s", desc->name, mThreadName);
1346 return BAD_VALUE;
1347 }
1348 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) != 0) {
1349 ALOGW("checkEffectCompatibility_l(): HW tunneled effect %s on"
1350 " DUPLICATING thread %s", desc->name, mThreadName);
1351 return BAD_VALUE;
1352 }
1353 break;
1354 default:
1355 LOG_ALWAYS_FATAL("checkEffectCompatibility_l(): wrong thread type %d", mType);
1356 }
1357
1358 return NO_ERROR;
1359 }
1360
1361 // ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
createEffect_l(const sp<AudioFlinger::Client> & client,const sp<IEffectClient> & effectClient,int32_t priority,audio_session_t sessionId,effect_descriptor_t * desc,int * enabled,status_t * status,bool pinned,bool probe)1362 sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
1363 const sp<AudioFlinger::Client>& client,
1364 const sp<IEffectClient>& effectClient,
1365 int32_t priority,
1366 audio_session_t sessionId,
1367 effect_descriptor_t *desc,
1368 int *enabled,
1369 status_t *status,
1370 bool pinned,
1371 bool probe)
1372 {
1373 sp<EffectModule> effect;
1374 sp<EffectHandle> handle;
1375 status_t lStatus;
1376 sp<EffectChain> chain;
1377 bool chainCreated = false;
1378 bool effectCreated = false;
1379 audio_unique_id_t effectId = AUDIO_UNIQUE_ID_USE_UNSPECIFIED;
1380
1381 lStatus = initCheck();
1382 if (lStatus != NO_ERROR) {
1383 ALOGW("createEffect_l() Audio driver not initialized.");
1384 goto Exit;
1385 }
1386
1387 ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
1388
1389 { // scope for mLock
1390 Mutex::Autolock _l(mLock);
1391
1392 lStatus = checkEffectCompatibility_l(desc, sessionId);
1393 if (probe || lStatus != NO_ERROR) {
1394 goto Exit;
1395 }
1396
1397 // check for existing effect chain with the requested audio session
1398 chain = getEffectChain_l(sessionId);
1399 if (chain == 0) {
1400 // create a new chain for this session
1401 ALOGV("createEffect_l() new effect chain for session %d", sessionId);
1402 chain = new EffectChain(this, sessionId);
1403 addEffectChain_l(chain);
1404 chain->setStrategy(getStrategyForSession_l(sessionId));
1405 chainCreated = true;
1406 } else {
1407 effect = chain->getEffectFromDesc_l(desc);
1408 }
1409
1410 ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
1411
1412 if (effect == 0) {
1413 effectId = mAudioFlinger->nextUniqueId(AUDIO_UNIQUE_ID_USE_EFFECT);
1414 // create a new effect module if none present in the chain
1415 lStatus = chain->createEffect_l(effect, desc, effectId, sessionId, pinned);
1416 if (lStatus != NO_ERROR) {
1417 goto Exit;
1418 }
1419 effectCreated = true;
1420
1421 // FIXME: use vector of device and address when effect interface is ready.
1422 effect->setDevices(outDeviceTypeAddrs());
1423 effect->setInputDevice(inDeviceTypeAddr());
1424 effect->setMode(mAudioFlinger->getMode());
1425 effect->setAudioSource(mAudioSource);
1426 }
1427 // create effect handle and connect it to effect module
1428 handle = new EffectHandle(effect, client, effectClient, priority);
1429 lStatus = handle->initCheck();
1430 if (lStatus == OK) {
1431 lStatus = effect->addHandle(handle.get());
1432 }
1433 if (enabled != NULL) {
1434 *enabled = (int)effect->isEnabled();
1435 }
1436 }
1437
1438 Exit:
1439 if (!probe && lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
1440 Mutex::Autolock _l(mLock);
1441 if (effectCreated) {
1442 chain->removeEffect_l(effect);
1443 }
1444 if (chainCreated) {
1445 removeEffectChain_l(chain);
1446 }
1447 // handle must be cleared by caller to avoid deadlock.
1448 }
1449
1450 *status = lStatus;
1451 return handle;
1452 }
1453
disconnectEffectHandle(EffectHandle * handle,bool unpinIfLast)1454 void AudioFlinger::ThreadBase::disconnectEffectHandle(EffectHandle *handle,
1455 bool unpinIfLast)
1456 {
1457 bool remove = false;
1458 sp<EffectModule> effect;
1459 {
1460 Mutex::Autolock _l(mLock);
1461 sp<EffectBase> effectBase = handle->effect().promote();
1462 if (effectBase == nullptr) {
1463 return;
1464 }
1465 effect = effectBase->asEffectModule();
1466 if (effect == nullptr) {
1467 return;
1468 }
1469 // restore suspended effects if the disconnected handle was enabled and the last one.
1470 remove = (effect->removeHandle(handle) == 0) && (!effect->isPinned() || unpinIfLast);
1471 if (remove) {
1472 removeEffect_l(effect, true);
1473 }
1474 }
1475 if (remove) {
1476 mAudioFlinger->updateOrphanEffectChains(effect);
1477 if (handle->enabled()) {
1478 effect->checkSuspendOnEffectEnabled(false, false /*threadLocked*/);
1479 }
1480 }
1481 }
1482
onEffectEnable(const sp<EffectModule> & effect)1483 void AudioFlinger::ThreadBase::onEffectEnable(const sp<EffectModule>& effect) {
1484 if (isOffloadOrMmap()) {
1485 Mutex::Autolock _l(mLock);
1486 broadcast_l();
1487 }
1488 if (!effect->isOffloadable()) {
1489 if (mType == ThreadBase::OFFLOAD) {
1490 PlaybackThread *t = (PlaybackThread *)this;
1491 t->invalidateTracks(AUDIO_STREAM_MUSIC);
1492 }
1493 if (effect->sessionId() == AUDIO_SESSION_OUTPUT_MIX) {
1494 mAudioFlinger->onNonOffloadableGlobalEffectEnable();
1495 }
1496 }
1497 }
1498
onEffectDisable()1499 void AudioFlinger::ThreadBase::onEffectDisable() {
1500 if (isOffloadOrMmap()) {
1501 Mutex::Autolock _l(mLock);
1502 broadcast_l();
1503 }
1504 }
1505
getEffect(audio_session_t sessionId,int effectId)1506 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(audio_session_t sessionId,
1507 int effectId)
1508 {
1509 Mutex::Autolock _l(mLock);
1510 return getEffect_l(sessionId, effectId);
1511 }
1512
getEffect_l(audio_session_t sessionId,int effectId)1513 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(audio_session_t sessionId,
1514 int effectId)
1515 {
1516 sp<EffectChain> chain = getEffectChain_l(sessionId);
1517 return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
1518 }
1519
getEffectIds_l(audio_session_t sessionId)1520 std::vector<int> AudioFlinger::ThreadBase::getEffectIds_l(audio_session_t sessionId)
1521 {
1522 sp<EffectChain> chain = getEffectChain_l(sessionId);
1523 return chain != nullptr ? chain->getEffectIds() : std::vector<int>{};
1524 }
1525
1526 // PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
1527 // PlaybackThread::mLock held
addEffect_l(const sp<EffectModule> & effect)1528 status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
1529 {
1530 // check for existing effect chain with the requested audio session
1531 audio_session_t sessionId = effect->sessionId();
1532 sp<EffectChain> chain = getEffectChain_l(sessionId);
1533 bool chainCreated = false;
1534
1535 ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
1536 "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %#x",
1537 this, effect->desc().name, effect->desc().flags);
1538
1539 if (chain == 0) {
1540 // create a new chain for this session
1541 ALOGV("addEffect_l() new effect chain for session %d", sessionId);
1542 chain = new EffectChain(this, sessionId);
1543 addEffectChain_l(chain);
1544 chain->setStrategy(getStrategyForSession_l(sessionId));
1545 chainCreated = true;
1546 }
1547 ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
1548
1549 if (chain->getEffectFromId_l(effect->id()) != 0) {
1550 ALOGW("addEffect_l() %p effect %s already present in chain %p",
1551 this, effect->desc().name, chain.get());
1552 return BAD_VALUE;
1553 }
1554
1555 effect->setOffloaded(mType == OFFLOAD, mId);
1556
1557 status_t status = chain->addEffect_l(effect);
1558 if (status != NO_ERROR) {
1559 if (chainCreated) {
1560 removeEffectChain_l(chain);
1561 }
1562 return status;
1563 }
1564
1565 effect->setDevices(outDeviceTypeAddrs());
1566 effect->setInputDevice(inDeviceTypeAddr());
1567 effect->setMode(mAudioFlinger->getMode());
1568 effect->setAudioSource(mAudioSource);
1569
1570 return NO_ERROR;
1571 }
1572
removeEffect_l(const sp<EffectModule> & effect,bool release)1573 void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect, bool release) {
1574
1575 ALOGV("%s %p effect %p", __FUNCTION__, this, effect.get());
1576 effect_descriptor_t desc = effect->desc();
1577 if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
1578 detachAuxEffect_l(effect->id());
1579 }
1580
1581 sp<EffectChain> chain = effect->callback()->chain().promote();
1582 if (chain != 0) {
1583 // remove effect chain if removing last effect
1584 if (chain->removeEffect_l(effect, release) == 0) {
1585 removeEffectChain_l(chain);
1586 }
1587 } else {
1588 ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
1589 }
1590 }
1591
lockEffectChains_l(Vector<sp<AudioFlinger::EffectChain>> & effectChains)1592 void AudioFlinger::ThreadBase::lockEffectChains_l(
1593 Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1594 {
1595 effectChains = mEffectChains;
1596 for (size_t i = 0; i < mEffectChains.size(); i++) {
1597 mEffectChains[i]->lock();
1598 }
1599 }
1600
unlockEffectChains(const Vector<sp<AudioFlinger::EffectChain>> & effectChains)1601 void AudioFlinger::ThreadBase::unlockEffectChains(
1602 const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1603 {
1604 for (size_t i = 0; i < effectChains.size(); i++) {
1605 effectChains[i]->unlock();
1606 }
1607 }
1608
getEffectChain(audio_session_t sessionId)1609 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(audio_session_t sessionId)
1610 {
1611 Mutex::Autolock _l(mLock);
1612 return getEffectChain_l(sessionId);
1613 }
1614
getEffectChain_l(audio_session_t sessionId) const1615 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(audio_session_t sessionId)
1616 const
1617 {
1618 size_t size = mEffectChains.size();
1619 for (size_t i = 0; i < size; i++) {
1620 if (mEffectChains[i]->sessionId() == sessionId) {
1621 return mEffectChains[i];
1622 }
1623 }
1624 return 0;
1625 }
1626
setMode(audio_mode_t mode)1627 void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
1628 {
1629 Mutex::Autolock _l(mLock);
1630 size_t size = mEffectChains.size();
1631 for (size_t i = 0; i < size; i++) {
1632 mEffectChains[i]->setMode_l(mode);
1633 }
1634 }
1635
toAudioPortConfig(struct audio_port_config * config)1636 void AudioFlinger::ThreadBase::toAudioPortConfig(struct audio_port_config *config)
1637 {
1638 config->type = AUDIO_PORT_TYPE_MIX;
1639 config->ext.mix.handle = mId;
1640 config->sample_rate = mSampleRate;
1641 config->format = mFormat;
1642 config->channel_mask = mChannelMask;
1643 config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK|
1644 AUDIO_PORT_CONFIG_FORMAT;
1645 }
1646
systemReady()1647 void AudioFlinger::ThreadBase::systemReady()
1648 {
1649 Mutex::Autolock _l(mLock);
1650 if (mSystemReady) {
1651 return;
1652 }
1653 mSystemReady = true;
1654
1655 for (size_t i = 0; i < mPendingConfigEvents.size(); i++) {
1656 sendConfigEvent_l(mPendingConfigEvents.editItemAt(i));
1657 }
1658 mPendingConfigEvents.clear();
1659 }
1660
1661 template <typename T>
add(const sp<T> & track)1662 ssize_t AudioFlinger::ThreadBase::ActiveTracks<T>::add(const sp<T> &track) {
1663 ssize_t index = mActiveTracks.indexOf(track);
1664 if (index >= 0) {
1665 ALOGW("ActiveTracks<T>::add track %p already there", track.get());
1666 return index;
1667 }
1668 logTrack("add", track);
1669 mActiveTracksGeneration++;
1670 mLatestActiveTrack = track;
1671 ++mBatteryCounter[track->uid()].second;
1672 mHasChanged = true;
1673 return mActiveTracks.add(track);
1674 }
1675
1676 template <typename T>
remove(const sp<T> & track)1677 ssize_t AudioFlinger::ThreadBase::ActiveTracks<T>::remove(const sp<T> &track) {
1678 ssize_t index = mActiveTracks.remove(track);
1679 if (index < 0) {
1680 ALOGW("ActiveTracks<T>::remove nonexistent track %p", track.get());
1681 return index;
1682 }
1683 logTrack("remove", track);
1684 mActiveTracksGeneration++;
1685 --mBatteryCounter[track->uid()].second;
1686 // mLatestActiveTrack is not cleared even if is the same as track.
1687 mHasChanged = true;
1688 #ifdef TEE_SINK
1689 track->dumpTee(-1 /* fd */, "_REMOVE");
1690 #endif
1691 track->logEndInterval(); // log to MediaMetrics
1692 return index;
1693 }
1694
1695 template <typename T>
clear()1696 void AudioFlinger::ThreadBase::ActiveTracks<T>::clear() {
1697 for (const sp<T> &track : mActiveTracks) {
1698 BatteryNotifier::getInstance().noteStopAudio(track->uid());
1699 logTrack("clear", track);
1700 }
1701 mLastActiveTracksGeneration = mActiveTracksGeneration;
1702 if (!mActiveTracks.empty()) { mHasChanged = true; }
1703 mActiveTracks.clear();
1704 mLatestActiveTrack.clear();
1705 mBatteryCounter.clear();
1706 }
1707
1708 template <typename T>
updatePowerState(sp<ThreadBase> thread,bool force)1709 void AudioFlinger::ThreadBase::ActiveTracks<T>::updatePowerState(
1710 sp<ThreadBase> thread, bool force) {
1711 // Updates ActiveTracks client uids to the thread wakelock.
1712 if (mActiveTracksGeneration != mLastActiveTracksGeneration || force) {
1713 thread->updateWakeLockUids_l(getWakeLockUids());
1714 mLastActiveTracksGeneration = mActiveTracksGeneration;
1715 }
1716
1717 // Updates BatteryNotifier uids
1718 for (auto it = mBatteryCounter.begin(); it != mBatteryCounter.end();) {
1719 const uid_t uid = it->first;
1720 ssize_t &previous = it->second.first;
1721 ssize_t ¤t = it->second.second;
1722 if (current > 0) {
1723 if (previous == 0) {
1724 BatteryNotifier::getInstance().noteStartAudio(uid);
1725 }
1726 previous = current;
1727 ++it;
1728 } else if (current == 0) {
1729 if (previous > 0) {
1730 BatteryNotifier::getInstance().noteStopAudio(uid);
1731 }
1732 it = mBatteryCounter.erase(it); // std::map<> is stable on iterator erase.
1733 } else /* (current < 0) */ {
1734 LOG_ALWAYS_FATAL("negative battery count %zd", current);
1735 }
1736 }
1737 }
1738
1739 template <typename T>
readAndClearHasChanged()1740 bool AudioFlinger::ThreadBase::ActiveTracks<T>::readAndClearHasChanged() {
1741 const bool hasChanged = mHasChanged;
1742 mHasChanged = false;
1743 return hasChanged;
1744 }
1745
1746 template <typename T>
logTrack(const char * funcName,const sp<T> & track) const1747 void AudioFlinger::ThreadBase::ActiveTracks<T>::logTrack(
1748 const char *funcName, const sp<T> &track) const {
1749 if (mLocalLog != nullptr) {
1750 String8 result;
1751 track->appendDump(result, false /* active */);
1752 mLocalLog->log("AT::%-10s(%p) %s", funcName, track.get(), result.string());
1753 }
1754 }
1755
broadcast_l()1756 void AudioFlinger::ThreadBase::broadcast_l()
1757 {
1758 // Thread could be blocked waiting for async
1759 // so signal it to handle state changes immediately
1760 // If threadLoop is currently unlocked a signal of mWaitWorkCV will
1761 // be lost so we also flag to prevent it blocking on mWaitWorkCV
1762 mSignalPending = true;
1763 mWaitWorkCV.broadcast();
1764 }
1765
1766 // Call only from threadLoop() or when it is idle.
1767 // Do not call from high performance code as this may do binder rpc to the MediaMetrics service.
sendStatistics(bool force)1768 void AudioFlinger::ThreadBase::sendStatistics(bool force)
1769 {
1770 // Do not log if we have no stats.
1771 // We choose the timestamp verifier because it is the most likely item to be present.
1772 const int64_t nstats = mTimestampVerifier.getN() - mLastRecordedTimestampVerifierN;
1773 if (nstats == 0) {
1774 return;
1775 }
1776
1777 // Don't log more frequently than once per 12 hours.
1778 // We use BOOTTIME to include suspend time.
1779 const int64_t timeNs = systemTime(SYSTEM_TIME_BOOTTIME);
1780 const int64_t sinceNs = timeNs - mLastRecordedTimeNs; // ok if mLastRecordedTimeNs = 0
1781 if (!force && sinceNs <= 12 * NANOS_PER_HOUR) {
1782 return;
1783 }
1784
1785 mLastRecordedTimestampVerifierN = mTimestampVerifier.getN();
1786 mLastRecordedTimeNs = timeNs;
1787
1788 std::unique_ptr<mediametrics::Item> item(mediametrics::Item::create("audiothread"));
1789
1790 #define MM_PREFIX "android.media.audiothread." // avoid cut-n-paste errors.
1791
1792 // thread configuration
1793 item->setInt32(MM_PREFIX "id", (int32_t)mId); // IO handle
1794 // item->setInt32(MM_PREFIX "portId", (int32_t)mPortId);
1795 item->setCString(MM_PREFIX "type", threadTypeToString(mType));
1796 item->setInt32(MM_PREFIX "sampleRate", (int32_t)mSampleRate);
1797 item->setInt64(MM_PREFIX "channelMask", (int64_t)mChannelMask);
1798 item->setCString(MM_PREFIX "encoding", toString(mFormat).c_str());
1799 item->setInt32(MM_PREFIX "frameCount", (int32_t)mFrameCount);
1800 item->setCString(MM_PREFIX "outDevice", toString(outDeviceTypes()).c_str());
1801 item->setCString(MM_PREFIX "inDevice", toString(inDeviceType()).c_str());
1802
1803 // thread statistics
1804 if (mIoJitterMs.getN() > 0) {
1805 item->setDouble(MM_PREFIX "ioJitterMs.mean", mIoJitterMs.getMean());
1806 item->setDouble(MM_PREFIX "ioJitterMs.std", mIoJitterMs.getStdDev());
1807 }
1808 if (mProcessTimeMs.getN() > 0) {
1809 item->setDouble(MM_PREFIX "processTimeMs.mean", mProcessTimeMs.getMean());
1810 item->setDouble(MM_PREFIX "processTimeMs.std", mProcessTimeMs.getStdDev());
1811 }
1812 const auto tsjitter = mTimestampVerifier.getJitterMs();
1813 if (tsjitter.getN() > 0) {
1814 item->setDouble(MM_PREFIX "timestampJitterMs.mean", tsjitter.getMean());
1815 item->setDouble(MM_PREFIX "timestampJitterMs.std", tsjitter.getStdDev());
1816 }
1817 if (mLatencyMs.getN() > 0) {
1818 item->setDouble(MM_PREFIX "latencyMs.mean", mLatencyMs.getMean());
1819 item->setDouble(MM_PREFIX "latencyMs.std", mLatencyMs.getStdDev());
1820 }
1821
1822 item->selfrecord();
1823 }
1824
1825 // ----------------------------------------------------------------------------
1826 // Playback
1827 // ----------------------------------------------------------------------------
1828
PlaybackThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,type_t type,bool systemReady)1829 AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
1830 AudioStreamOut* output,
1831 audio_io_handle_t id,
1832 type_t type,
1833 bool systemReady)
1834 : ThreadBase(audioFlinger, id, type, systemReady, true /* isOut */),
1835 mNormalFrameCount(0), mSinkBuffer(NULL),
1836 mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1837 mMixerBuffer(NULL),
1838 mMixerBufferSize(0),
1839 mMixerBufferFormat(AUDIO_FORMAT_INVALID),
1840 mMixerBufferValid(false),
1841 mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1842 mEffectBuffer(NULL),
1843 mEffectBufferSize(0),
1844 mEffectBufferFormat(AUDIO_FORMAT_INVALID),
1845 mEffectBufferValid(false),
1846 mSuspended(0), mBytesWritten(0),
1847 mFramesWritten(0),
1848 mSuspendedFrames(0),
1849 mActiveTracks(&this->mLocalLog),
1850 // mStreamTypes[] initialized in constructor body
1851 mTracks(type == MIXER),
1852 mOutput(output),
1853 mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
1854 mMixerStatus(MIXER_IDLE),
1855 mMixerStatusIgnoringFastTracks(MIXER_IDLE),
1856 mStandbyDelayNs(AudioFlinger::mStandbyTimeInNsecs),
1857 mBytesRemaining(0),
1858 mCurrentWriteLength(0),
1859 mUseAsyncWrite(false),
1860 mWriteAckSequence(0),
1861 mDrainSequence(0),
1862 mScreenState(AudioFlinger::mScreenState),
1863 // index 0 is reserved for normal mixer's submix
1864 mFastTrackAvailMask(((1 << FastMixerState::sMaxFastTracks) - 1) & ~1),
1865 mHwSupportsPause(false), mHwPaused(false), mFlushPending(false),
1866 mLeftVolFloat(-1.0), mRightVolFloat(-1.0)
1867 {
1868 snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id);
1869 mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
1870
1871 // Assumes constructor is called by AudioFlinger with it's mLock held, but
1872 // it would be safer to explicitly pass initial masterVolume/masterMute as
1873 // parameter.
1874 //
1875 // If the HAL we are using has support for master volume or master mute,
1876 // then do not attenuate or mute during mixing (just leave the volume at 1.0
1877 // and the mute set to false).
1878 mMasterVolume = audioFlinger->masterVolume_l();
1879 mMasterMute = audioFlinger->masterMute_l();
1880 if (mOutput->audioHwDev) {
1881 if (mOutput->audioHwDev->canSetMasterVolume()) {
1882 mMasterVolume = 1.0;
1883 }
1884
1885 if (mOutput->audioHwDev->canSetMasterMute()) {
1886 mMasterMute = false;
1887 }
1888 mIsMsdDevice = strcmp(
1889 mOutput->audioHwDev->moduleName(), AUDIO_HARDWARE_MODULE_ID_MSD) == 0;
1890 }
1891
1892 readOutputParameters_l();
1893
1894 // TODO: We may also match on address as well as device type for
1895 // AUDIO_DEVICE_OUT_BUS, AUDIO_DEVICE_OUT_ALL_A2DP, AUDIO_DEVICE_OUT_REMOTE_SUBMIX
1896 if (type == MIXER || type == DIRECT || type == OFFLOAD) {
1897 // TODO: This property should be ensure that only contains one single device type.
1898 mTimestampCorrectedDevice = (audio_devices_t)property_get_int64(
1899 "audio.timestamp.corrected_output_device",
1900 (int64_t)(mIsMsdDevice ? AUDIO_DEVICE_OUT_BUS // turn on by default for MSD
1901 : AUDIO_DEVICE_NONE));
1902 }
1903
1904 // ++ operator does not compile
1905 for (audio_stream_type_t stream = AUDIO_STREAM_MIN; stream < AUDIO_STREAM_FOR_POLICY_CNT;
1906 stream = (audio_stream_type_t) (stream + 1)) {
1907 mStreamTypes[stream].volume = 0.0f;
1908 mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
1909 }
1910 // Audio patch and call assistant volume are always max
1911 mStreamTypes[AUDIO_STREAM_PATCH].volume = 1.0f;
1912 mStreamTypes[AUDIO_STREAM_PATCH].mute = false;
1913 mStreamTypes[AUDIO_STREAM_CALL_ASSISTANT].volume = 1.0f;
1914 mStreamTypes[AUDIO_STREAM_CALL_ASSISTANT].mute = false;
1915 }
1916
~PlaybackThread()1917 AudioFlinger::PlaybackThread::~PlaybackThread()
1918 {
1919 mAudioFlinger->unregisterWriter(mNBLogWriter);
1920 free(mSinkBuffer);
1921 free(mMixerBuffer);
1922 free(mEffectBuffer);
1923 }
1924
1925 // Thread virtuals
1926
onFirstRef()1927 void AudioFlinger::PlaybackThread::onFirstRef()
1928 {
1929 if (mOutput == nullptr || mOutput->stream == nullptr) {
1930 ALOGE("The stream is not open yet"); // This should not happen.
1931 } else {
1932 // setEventCallback will need a strong pointer as a parameter. Calling it
1933 // here instead of constructor of PlaybackThread so that the onFirstRef
1934 // callback would not be made on an incompletely constructed object.
1935 if (mOutput->stream->setEventCallback(this) != OK) {
1936 ALOGE("Failed to add event callback");
1937 }
1938 }
1939 run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
1940 }
1941
1942 // ThreadBase virtuals
preExit()1943 void AudioFlinger::PlaybackThread::preExit()
1944 {
1945 ALOGV(" preExit()");
1946 // FIXME this is using hard-coded strings but in the future, this functionality will be
1947 // converted to use audio HAL extensions required to support tunneling
1948 status_t result = mOutput->stream->setParameters(String8("exiting=1"));
1949 ALOGE_IF(result != OK, "Error when setting parameters on exit: %d", result);
1950 }
1951
dumpTracks_l(int fd,const Vector<String16> & args __unused)1952 void AudioFlinger::PlaybackThread::dumpTracks_l(int fd, const Vector<String16>& args __unused)
1953 {
1954 String8 result;
1955
1956 result.appendFormat(" Stream volumes in dB: ");
1957 for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
1958 const stream_type_t *st = &mStreamTypes[i];
1959 if (i > 0) {
1960 result.appendFormat(", ");
1961 }
1962 result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
1963 if (st->mute) {
1964 result.append("M");
1965 }
1966 }
1967 result.append("\n");
1968 write(fd, result.string(), result.length());
1969 result.clear();
1970
1971 // These values are "raw"; they will wrap around. See prepareTracks_l() for a better way.
1972 FastTrackUnderruns underruns = getFastTrackUnderruns(0);
1973 dprintf(fd, " Normal mixer raw underrun counters: partial=%u empty=%u\n",
1974 underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
1975
1976 size_t numtracks = mTracks.size();
1977 size_t numactive = mActiveTracks.size();
1978 dprintf(fd, " %zu Tracks", numtracks);
1979 size_t numactiveseen = 0;
1980 const char *prefix = " ";
1981 if (numtracks) {
1982 dprintf(fd, " of which %zu are active\n", numactive);
1983 result.append(prefix);
1984 mTracks[0]->appendDumpHeader(result);
1985 for (size_t i = 0; i < numtracks; ++i) {
1986 sp<Track> track = mTracks[i];
1987 if (track != 0) {
1988 bool active = mActiveTracks.indexOf(track) >= 0;
1989 if (active) {
1990 numactiveseen++;
1991 }
1992 result.append(prefix);
1993 track->appendDump(result, active);
1994 }
1995 }
1996 } else {
1997 result.append("\n");
1998 }
1999 if (numactiveseen != numactive) {
2000 // some tracks in the active list were not in the tracks list
2001 result.append(" The following tracks are in the active list but"
2002 " not in the track list\n");
2003 result.append(prefix);
2004 mActiveTracks[0]->appendDumpHeader(result);
2005 for (size_t i = 0; i < numactive; ++i) {
2006 sp<Track> track = mActiveTracks[i];
2007 if (mTracks.indexOf(track) < 0) {
2008 result.append(prefix);
2009 track->appendDump(result, true /* active */);
2010 }
2011 }
2012 }
2013
2014 write(fd, result.string(), result.size());
2015 }
2016
dumpInternals_l(int fd,const Vector<String16> & args __unused)2017 void AudioFlinger::PlaybackThread::dumpInternals_l(int fd, const Vector<String16>& args __unused)
2018 {
2019 dprintf(fd, " Master volume: %f\n", mMasterVolume);
2020 dprintf(fd, " Master mute: %s\n", mMasterMute ? "on" : "off");
2021 if (mHapticChannelMask != AUDIO_CHANNEL_NONE) {
2022 dprintf(fd, " Haptic channel mask: %#x (%s)\n", mHapticChannelMask,
2023 channelMaskToString(mHapticChannelMask, true /* output */).c_str());
2024 }
2025 dprintf(fd, " Normal frame count: %zu\n", mNormalFrameCount);
2026 dprintf(fd, " Total writes: %d\n", mNumWrites);
2027 dprintf(fd, " Delayed writes: %d\n", mNumDelayedWrites);
2028 dprintf(fd, " Blocked in write: %s\n", mInWrite ? "yes" : "no");
2029 dprintf(fd, " Suspend count: %d\n", mSuspended);
2030 dprintf(fd, " Sink buffer : %p\n", mSinkBuffer);
2031 dprintf(fd, " Mixer buffer: %p\n", mMixerBuffer);
2032 dprintf(fd, " Effect buffer: %p\n", mEffectBuffer);
2033 dprintf(fd, " Fast track availMask=%#x\n", mFastTrackAvailMask);
2034 dprintf(fd, " Standby delay ns=%lld\n", (long long)mStandbyDelayNs);
2035 AudioStreamOut *output = mOutput;
2036 audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE;
2037 dprintf(fd, " AudioStreamOut: %p flags %#x (%s)\n",
2038 output, flags, toString(flags).c_str());
2039 dprintf(fd, " Frames written: %lld\n", (long long)mFramesWritten);
2040 dprintf(fd, " Suspended frames: %lld\n", (long long)mSuspendedFrames);
2041 if (mPipeSink.get() != nullptr) {
2042 dprintf(fd, " PipeSink frames written: %lld\n", (long long)mPipeSink->framesWritten());
2043 }
2044 if (output != nullptr) {
2045 dprintf(fd, " Hal stream dump:\n");
2046 (void)output->stream->dump(fd);
2047 }
2048 }
2049
2050 // PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
createTrack_l(const sp<AudioFlinger::Client> & client,audio_stream_type_t streamType,const audio_attributes_t & attr,uint32_t * pSampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t * pFrameCount,size_t * pNotificationFrameCount,uint32_t notificationsPerBuffer,float speed,const sp<IMemory> & sharedBuffer,audio_session_t sessionId,audio_output_flags_t * flags,pid_t creatorPid,pid_t tid,uid_t uid,status_t * status,audio_port_handle_t portId,const sp<media::IAudioTrackCallback> & callback,const std::string & opPackageName)2051 sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
2052 const sp<AudioFlinger::Client>& client,
2053 audio_stream_type_t streamType,
2054 const audio_attributes_t& attr,
2055 uint32_t *pSampleRate,
2056 audio_format_t format,
2057 audio_channel_mask_t channelMask,
2058 size_t *pFrameCount,
2059 size_t *pNotificationFrameCount,
2060 uint32_t notificationsPerBuffer,
2061 float speed,
2062 const sp<IMemory>& sharedBuffer,
2063 audio_session_t sessionId,
2064 audio_output_flags_t *flags,
2065 pid_t creatorPid,
2066 pid_t tid,
2067 uid_t uid,
2068 status_t *status,
2069 audio_port_handle_t portId,
2070 const sp<media::IAudioTrackCallback>& callback,
2071 const std::string& opPackageName)
2072 {
2073 size_t frameCount = *pFrameCount;
2074 size_t notificationFrameCount = *pNotificationFrameCount;
2075 sp<Track> track;
2076 status_t lStatus;
2077 audio_output_flags_t outputFlags = mOutput->flags;
2078 audio_output_flags_t requestedFlags = *flags;
2079 uint32_t sampleRate;
2080
2081 if (sharedBuffer != 0 && checkIMemory(sharedBuffer) != NO_ERROR) {
2082 lStatus = BAD_VALUE;
2083 goto Exit;
2084 }
2085
2086 if (*pSampleRate == 0) {
2087 *pSampleRate = mSampleRate;
2088 }
2089 sampleRate = *pSampleRate;
2090
2091 // special case for FAST flag considered OK if fast mixer is present
2092 if (hasFastMixer()) {
2093 outputFlags = (audio_output_flags_t)(outputFlags | AUDIO_OUTPUT_FLAG_FAST);
2094 }
2095
2096 // Check if requested flags are compatible with output stream flags
2097 if ((*flags & outputFlags) != *flags) {
2098 ALOGW("createTrack_l(): mismatch between requested flags (%08x) and output flags (%08x)",
2099 *flags, outputFlags);
2100 *flags = (audio_output_flags_t)(*flags & outputFlags);
2101 }
2102
2103 // client expresses a preference for FAST, but we get the final say
2104 if (*flags & AUDIO_OUTPUT_FLAG_FAST) {
2105 if (
2106 // PCM data
2107 audio_is_linear_pcm(format) &&
2108 // TODO: extract as a data library function that checks that a computationally
2109 // expensive downmixer is not required: isFastOutputChannelConversion()
2110 (channelMask == (mChannelMask | mHapticChannelMask) ||
2111 mChannelMask != AUDIO_CHANNEL_OUT_STEREO ||
2112 (channelMask == AUDIO_CHANNEL_OUT_MONO
2113 /* && mChannelMask == AUDIO_CHANNEL_OUT_STEREO */)) &&
2114 // hardware sample rate
2115 (sampleRate == mSampleRate) &&
2116 // normal mixer has an associated fast mixer
2117 hasFastMixer() &&
2118 // there are sufficient fast track slots available
2119 (mFastTrackAvailMask != 0)
2120 // FIXME test that MixerThread for this fast track has a capable output HAL
2121 // FIXME add a permission test also?
2122 ) {
2123 // static tracks can have any nonzero framecount, streaming tracks check against minimum.
2124 if (sharedBuffer == 0) {
2125 // read the fast track multiplier property the first time it is needed
2126 int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit);
2127 if (ok != 0) {
2128 ALOGE("%s pthread_once failed: %d", __func__, ok);
2129 }
2130 frameCount = max(frameCount, mFrameCount * sFastTrackMultiplier); // incl framecount 0
2131 }
2132
2133 // check compatibility with audio effects.
2134 { // scope for mLock
2135 Mutex::Autolock _l(mLock);
2136 for (audio_session_t session : {
2137 AUDIO_SESSION_DEVICE,
2138 AUDIO_SESSION_OUTPUT_STAGE,
2139 AUDIO_SESSION_OUTPUT_MIX,
2140 sessionId,
2141 }) {
2142 sp<EffectChain> chain = getEffectChain_l(session);
2143 if (chain.get() != nullptr) {
2144 audio_output_flags_t old = *flags;
2145 chain->checkOutputFlagCompatibility(flags);
2146 if (old != *flags) {
2147 ALOGV("AUDIO_OUTPUT_FLAGS denied by effect, session=%d old=%#x new=%#x",
2148 (int)session, (int)old, (int)*flags);
2149 }
2150 }
2151 }
2152 }
2153 ALOGV_IF((*flags & AUDIO_OUTPUT_FLAG_FAST) != 0,
2154 "AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
2155 frameCount, mFrameCount);
2156 } else {
2157 ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: sharedBuffer=%p frameCount=%zu "
2158 "mFrameCount=%zu format=%#x mFormat=%#x isLinear=%d channelMask=%#x "
2159 "sampleRate=%u mSampleRate=%u "
2160 "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
2161 sharedBuffer.get(), frameCount, mFrameCount, format, mFormat,
2162 audio_is_linear_pcm(format),
2163 channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
2164 *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_FAST);
2165 }
2166 }
2167
2168 if (!audio_has_proportional_frames(format)) {
2169 if (sharedBuffer != 0) {
2170 // Same comment as below about ignoring frameCount parameter for set()
2171 frameCount = sharedBuffer->size();
2172 } else if (frameCount == 0) {
2173 frameCount = mNormalFrameCount;
2174 }
2175 if (notificationFrameCount != frameCount) {
2176 notificationFrameCount = frameCount;
2177 }
2178 } else if (sharedBuffer != 0) {
2179 // FIXME: Ensure client side memory buffers need
2180 // not have additional alignment beyond sample
2181 // (e.g. 16 bit stereo accessed as 32 bit frame).
2182 size_t alignment = audio_bytes_per_sample(format);
2183 if (alignment & 1) {
2184 // for AUDIO_FORMAT_PCM_24_BIT_PACKED (not exposed through Java).
2185 alignment = 1;
2186 }
2187 uint32_t channelCount = audio_channel_count_from_out_mask(channelMask);
2188 size_t frameSize = channelCount * audio_bytes_per_sample(format);
2189 if (channelCount > 1) {
2190 // More than 2 channels does not require stronger alignment than stereo
2191 alignment <<= 1;
2192 }
2193 if (((uintptr_t)sharedBuffer->unsecurePointer() & (alignment - 1)) != 0) {
2194 ALOGE("Invalid buffer alignment: address %p, channel count %u",
2195 sharedBuffer->unsecurePointer(), channelCount);
2196 lStatus = BAD_VALUE;
2197 goto Exit;
2198 }
2199
2200 // When initializing a shared buffer AudioTrack via constructors,
2201 // there's no frameCount parameter.
2202 // But when initializing a shared buffer AudioTrack via set(),
2203 // there _is_ a frameCount parameter. We silently ignore it.
2204 frameCount = sharedBuffer->size() / frameSize;
2205 } else {
2206 size_t minFrameCount = 0;
2207 // For fast tracks we try to respect the application's request for notifications per buffer.
2208 if (*flags & AUDIO_OUTPUT_FLAG_FAST) {
2209 if (notificationsPerBuffer > 0) {
2210 // Avoid possible arithmetic overflow during multiplication.
2211 if (notificationsPerBuffer > SIZE_MAX / mFrameCount) {
2212 ALOGE("Requested notificationPerBuffer=%u ignored for HAL frameCount=%zu",
2213 notificationsPerBuffer, mFrameCount);
2214 } else {
2215 minFrameCount = mFrameCount * notificationsPerBuffer;
2216 }
2217 }
2218 } else {
2219 // For normal PCM streaming tracks, update minimum frame count.
2220 // Buffer depth is forced to be at least 2 x the normal mixer frame count and
2221 // cover audio hardware latency.
2222 // This is probably too conservative, but legacy application code may depend on it.
2223 // If you change this calculation, also review the start threshold which is related.
2224 uint32_t latencyMs = latency_l();
2225 if (latencyMs == 0) {
2226 ALOGE("Error when retrieving output stream latency");
2227 lStatus = UNKNOWN_ERROR;
2228 goto Exit;
2229 }
2230
2231 minFrameCount = AudioSystem::calculateMinFrameCount(latencyMs, mNormalFrameCount,
2232 mSampleRate, sampleRate, speed /*, 0 mNotificationsPerBufferReq*/);
2233
2234 }
2235 if (frameCount < minFrameCount) {
2236 frameCount = minFrameCount;
2237 }
2238 }
2239
2240 // Make sure that application is notified with sufficient margin before underrun.
2241 // The client can divide the AudioTrack buffer into sub-buffers,
2242 // and expresses its desire to server as the notification frame count.
2243 if (sharedBuffer == 0 && audio_is_linear_pcm(format)) {
2244 size_t maxNotificationFrames;
2245 if (*flags & AUDIO_OUTPUT_FLAG_FAST) {
2246 // notify every HAL buffer, regardless of the size of the track buffer
2247 maxNotificationFrames = mFrameCount;
2248 } else {
2249 // Triple buffer the notification period for a triple buffered mixer period;
2250 // otherwise, double buffering for the notification period is fine.
2251 //
2252 // TODO: This should be moved to AudioTrack to modify the notification period
2253 // on AudioTrack::setBufferSizeInFrames() changes.
2254 const int nBuffering =
2255 (uint64_t{frameCount} * mSampleRate)
2256 / (uint64_t{mNormalFrameCount} * sampleRate) == 3 ? 3 : 2;
2257
2258 maxNotificationFrames = frameCount / nBuffering;
2259 // If client requested a fast track but this was denied, then use the smaller maximum.
2260 if (requestedFlags & AUDIO_OUTPUT_FLAG_FAST) {
2261 size_t maxNotificationFramesFastDenied = FMS_20 * sampleRate / 1000;
2262 if (maxNotificationFrames > maxNotificationFramesFastDenied) {
2263 maxNotificationFrames = maxNotificationFramesFastDenied;
2264 }
2265 }
2266 }
2267 if (notificationFrameCount == 0 || notificationFrameCount > maxNotificationFrames) {
2268 if (notificationFrameCount == 0) {
2269 ALOGD("Client defaulted notificationFrames to %zu for frameCount %zu",
2270 maxNotificationFrames, frameCount);
2271 } else {
2272 ALOGW("Client adjusted notificationFrames from %zu to %zu for frameCount %zu",
2273 notificationFrameCount, maxNotificationFrames, frameCount);
2274 }
2275 notificationFrameCount = maxNotificationFrames;
2276 }
2277 }
2278
2279 *pFrameCount = frameCount;
2280 *pNotificationFrameCount = notificationFrameCount;
2281
2282 switch (mType) {
2283
2284 case DIRECT:
2285 if (audio_is_linear_pcm(format)) { // TODO maybe use audio_has_proportional_frames()?
2286 if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
2287 ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x "
2288 "for output %p with format %#x",
2289 sampleRate, format, channelMask, mOutput, mFormat);
2290 lStatus = BAD_VALUE;
2291 goto Exit;
2292 }
2293 }
2294 break;
2295
2296 case OFFLOAD:
2297 if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
2298 ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \""
2299 "for output %p with format %#x",
2300 sampleRate, format, channelMask, mOutput, mFormat);
2301 lStatus = BAD_VALUE;
2302 goto Exit;
2303 }
2304 break;
2305
2306 default:
2307 if (!audio_is_linear_pcm(format)) {
2308 ALOGE("createTrack_l() Bad parameter: format %#x \""
2309 "for output %p with format %#x",
2310 format, mOutput, mFormat);
2311 lStatus = BAD_VALUE;
2312 goto Exit;
2313 }
2314 if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
2315 ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
2316 lStatus = BAD_VALUE;
2317 goto Exit;
2318 }
2319 break;
2320
2321 }
2322
2323 lStatus = initCheck();
2324 if (lStatus != NO_ERROR) {
2325 ALOGE("createTrack_l() audio driver not initialized");
2326 goto Exit;
2327 }
2328
2329 { // scope for mLock
2330 Mutex::Autolock _l(mLock);
2331
2332 // all tracks in same audio session must share the same routing strategy otherwise
2333 // conflicts will happen when tracks are moved from one output to another by audio policy
2334 // manager
2335 uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
2336 for (size_t i = 0; i < mTracks.size(); ++i) {
2337 sp<Track> t = mTracks[i];
2338 if (t != 0 && t->isExternalTrack()) {
2339 uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
2340 if (sessionId == t->sessionId() && strategy != actual) {
2341 ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
2342 strategy, actual);
2343 lStatus = BAD_VALUE;
2344 goto Exit;
2345 }
2346 }
2347 }
2348
2349 track = new Track(this, client, streamType, attr, sampleRate, format,
2350 channelMask, frameCount,
2351 nullptr /* buffer */, (size_t)0 /* bufferSize */, sharedBuffer,
2352 sessionId, creatorPid, uid, *flags, TrackBase::TYPE_DEFAULT, portId,
2353 SIZE_MAX /*frameCountToBeReady*/, opPackageName);
2354
2355 lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY;
2356 if (lStatus != NO_ERROR) {
2357 ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus);
2358 // track must be cleared from the caller as the caller has the AF lock
2359 goto Exit;
2360 }
2361 mTracks.add(track);
2362 {
2363 Mutex::Autolock _atCbL(mAudioTrackCbLock);
2364 if (callback.get() != nullptr) {
2365 mAudioTrackCallbacks.emplace(track, callback);
2366 }
2367 }
2368
2369 sp<EffectChain> chain = getEffectChain_l(sessionId);
2370 if (chain != 0) {
2371 ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
2372 track->setMainBuffer(chain->inBuffer());
2373 chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
2374 chain->incTrackCnt();
2375 }
2376
2377 if ((*flags & AUDIO_OUTPUT_FLAG_FAST) && (tid != -1)) {
2378 pid_t callingPid = IPCThreadState::self()->getCallingPid();
2379 // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
2380 // so ask activity manager to do this on our behalf
2381 sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp, true /*forApp*/);
2382 }
2383 }
2384
2385 lStatus = NO_ERROR;
2386
2387 Exit:
2388 *status = lStatus;
2389 return track;
2390 }
2391
2392 template<typename T>
remove(const sp<T> & track)2393 ssize_t AudioFlinger::PlaybackThread::Tracks<T>::remove(const sp<T> &track)
2394 {
2395 const int trackId = track->id();
2396 const ssize_t index = mTracks.remove(track);
2397 if (index >= 0) {
2398 if (mSaveDeletedTrackIds) {
2399 // We can't directly access mAudioMixer since the caller may be outside of threadLoop.
2400 // Instead, we add to mDeletedTrackIds which is solely used for mAudioMixer update,
2401 // to be handled when MixerThread::prepareTracks_l() next changes mAudioMixer.
2402 mDeletedTrackIds.emplace(trackId);
2403 }
2404 }
2405 return index;
2406 }
2407
correctLatency_l(uint32_t latency) const2408 uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
2409 {
2410 return latency;
2411 }
2412
latency() const2413 uint32_t AudioFlinger::PlaybackThread::latency() const
2414 {
2415 Mutex::Autolock _l(mLock);
2416 return latency_l();
2417 }
latency_l() const2418 uint32_t AudioFlinger::PlaybackThread::latency_l() const
2419 {
2420 uint32_t latency;
2421 if (initCheck() == NO_ERROR && mOutput->stream->getLatency(&latency) == OK) {
2422 return correctLatency_l(latency);
2423 }
2424 return 0;
2425 }
2426
setMasterVolume(float value)2427 void AudioFlinger::PlaybackThread::setMasterVolume(float value)
2428 {
2429 Mutex::Autolock _l(mLock);
2430 // Don't apply master volume in SW if our HAL can do it for us.
2431 if (mOutput && mOutput->audioHwDev &&
2432 mOutput->audioHwDev->canSetMasterVolume()) {
2433 mMasterVolume = 1.0;
2434 } else {
2435 mMasterVolume = value;
2436 }
2437 }
2438
setMasterBalance(float balance)2439 void AudioFlinger::PlaybackThread::setMasterBalance(float balance)
2440 {
2441 mMasterBalance.store(balance);
2442 }
2443
setMasterMute(bool muted)2444 void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
2445 {
2446 if (isDuplicating()) {
2447 return;
2448 }
2449 Mutex::Autolock _l(mLock);
2450 // Don't apply master mute in SW if our HAL can do it for us.
2451 if (mOutput && mOutput->audioHwDev &&
2452 mOutput->audioHwDev->canSetMasterMute()) {
2453 mMasterMute = false;
2454 } else {
2455 mMasterMute = muted;
2456 }
2457 }
2458
setStreamVolume(audio_stream_type_t stream,float value)2459 void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
2460 {
2461 Mutex::Autolock _l(mLock);
2462 mStreamTypes[stream].volume = value;
2463 broadcast_l();
2464 }
2465
setStreamMute(audio_stream_type_t stream,bool muted)2466 void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
2467 {
2468 Mutex::Autolock _l(mLock);
2469 mStreamTypes[stream].mute = muted;
2470 broadcast_l();
2471 }
2472
streamVolume(audio_stream_type_t stream) const2473 float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
2474 {
2475 Mutex::Autolock _l(mLock);
2476 return mStreamTypes[stream].volume;
2477 }
2478
setVolumeForOutput_l(float left,float right) const2479 void AudioFlinger::PlaybackThread::setVolumeForOutput_l(float left, float right) const
2480 {
2481 mOutput->stream->setVolume(left, right);
2482 }
2483
2484 // addTrack_l() must be called with ThreadBase::mLock held
addTrack_l(const sp<Track> & track)2485 status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
2486 {
2487 status_t status = ALREADY_EXISTS;
2488
2489 if (mActiveTracks.indexOf(track) < 0) {
2490 // the track is newly added, make sure it fills up all its
2491 // buffers before playing. This is to ensure the client will
2492 // effectively get the latency it requested.
2493 if (track->isExternalTrack()) {
2494 TrackBase::track_state state = track->mState;
2495 mLock.unlock();
2496 status = AudioSystem::startOutput(track->portId());
2497 mLock.lock();
2498 // abort track was stopped/paused while we released the lock
2499 if (state != track->mState) {
2500 if (status == NO_ERROR) {
2501 mLock.unlock();
2502 AudioSystem::stopOutput(track->portId());
2503 mLock.lock();
2504 }
2505 return INVALID_OPERATION;
2506 }
2507 // abort if start is rejected by audio policy manager
2508 if (status != NO_ERROR) {
2509 return PERMISSION_DENIED;
2510 }
2511 #ifdef ADD_BATTERY_DATA
2512 // to track the speaker usage
2513 addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
2514 #endif
2515 sendIoConfigEvent_l(AUDIO_CLIENT_STARTED, track->creatorPid(), track->portId());
2516 }
2517
2518 // set retry count for buffer fill
2519 if (track->isOffloaded()) {
2520 if (track->isStopping_1()) {
2521 track->mRetryCount = kMaxTrackStopRetriesOffload;
2522 } else {
2523 track->mRetryCount = kMaxTrackStartupRetriesOffload;
2524 }
2525 track->mFillingUpStatus = mStandby ? Track::FS_FILLING : Track::FS_FILLED;
2526 } else {
2527 track->mRetryCount = kMaxTrackStartupRetries;
2528 track->mFillingUpStatus =
2529 track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
2530 }
2531
2532 if ((track->channelMask() & AUDIO_CHANNEL_HAPTIC_ALL) != AUDIO_CHANNEL_NONE
2533 && mHapticChannelMask != AUDIO_CHANNEL_NONE) {
2534 // Unlock due to VibratorService will lock for this call and will
2535 // call Tracks.mute/unmute which also require thread's lock.
2536 mLock.unlock();
2537 const int intensity = AudioFlinger::onExternalVibrationStart(
2538 track->getExternalVibration());
2539 mLock.lock();
2540 track->setHapticIntensity(static_cast<AudioMixer::haptic_intensity_t>(intensity));
2541 // Haptic playback should be enabled by vibrator service.
2542 if (track->getHapticPlaybackEnabled()) {
2543 // Disable haptic playback of all active track to ensure only
2544 // one track playing haptic if current track should play haptic.
2545 for (const auto &t : mActiveTracks) {
2546 t->setHapticPlaybackEnabled(false);
2547 }
2548 }
2549 }
2550
2551 track->mResetDone = false;
2552 track->mPresentationCompleteFrames = 0;
2553 mActiveTracks.add(track);
2554 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2555 if (chain != 0) {
2556 ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
2557 track->sessionId());
2558 chain->incActiveTrackCnt();
2559 }
2560
2561 track->logBeginInterval(patchSinksToString(&mPatch)); // log to MediaMetrics
2562 status = NO_ERROR;
2563 }
2564
2565 onAddNewTrack_l();
2566 return status;
2567 }
2568
destroyTrack_l(const sp<Track> & track)2569 bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
2570 {
2571 track->terminate();
2572 // active tracks are removed by threadLoop()
2573 bool trackActive = (mActiveTracks.indexOf(track) >= 0);
2574 track->mState = TrackBase::STOPPED;
2575 if (!trackActive) {
2576 removeTrack_l(track);
2577 } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) {
2578 track->mState = TrackBase::STOPPING_1;
2579 }
2580
2581 return trackActive;
2582 }
2583
removeTrack_l(const sp<Track> & track)2584 void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
2585 {
2586 track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
2587
2588 String8 result;
2589 track->appendDump(result, false /* active */);
2590 mLocalLog.log("removeTrack_l (%p) %s", track.get(), result.string());
2591
2592 mTracks.remove(track);
2593 {
2594 Mutex::Autolock _atCbL(mAudioTrackCbLock);
2595 mAudioTrackCallbacks.erase(track);
2596 }
2597 if (track->isFastTrack()) {
2598 int index = track->mFastIndex;
2599 ALOG_ASSERT(0 < index && index < (int)FastMixerState::sMaxFastTracks);
2600 ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
2601 mFastTrackAvailMask |= 1 << index;
2602 // redundant as track is about to be destroyed, for dumpsys only
2603 track->mFastIndex = -1;
2604 }
2605 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2606 if (chain != 0) {
2607 chain->decTrackCnt();
2608 }
2609 }
2610
getParameters(const String8 & keys)2611 String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
2612 {
2613 Mutex::Autolock _l(mLock);
2614 String8 out_s8;
2615 if (initCheck() == NO_ERROR && mOutput->stream->getParameters(keys, &out_s8) == OK) {
2616 return out_s8;
2617 }
2618 return String8();
2619 }
2620
selectPresentation(int presentationId,int programId)2621 status_t AudioFlinger::DirectOutputThread::selectPresentation(int presentationId, int programId) {
2622 Mutex::Autolock _l(mLock);
2623 if (mOutput == nullptr || mOutput->stream == nullptr) {
2624 return NO_INIT;
2625 }
2626 return mOutput->stream->selectPresentation(presentationId, programId);
2627 }
2628
ioConfigChanged(audio_io_config_event event,pid_t pid,audio_port_handle_t portId)2629 void AudioFlinger::PlaybackThread::ioConfigChanged(audio_io_config_event event, pid_t pid,
2630 audio_port_handle_t portId) {
2631 sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
2632 ALOGV("PlaybackThread::ioConfigChanged, thread %p, event %d", this, event);
2633
2634 desc->mIoHandle = mId;
2635
2636 switch (event) {
2637 case AUDIO_OUTPUT_OPENED:
2638 case AUDIO_OUTPUT_REGISTERED:
2639 case AUDIO_OUTPUT_CONFIG_CHANGED:
2640 desc->mPatch = mPatch;
2641 desc->mChannelMask = mChannelMask;
2642 desc->mSamplingRate = mSampleRate;
2643 desc->mFormat = mFormat;
2644 desc->mFrameCount = mNormalFrameCount; // FIXME see
2645 // AudioFlinger::frameCount(audio_io_handle_t)
2646 desc->mFrameCountHAL = mFrameCount;
2647 desc->mLatency = latency_l();
2648 break;
2649 case AUDIO_CLIENT_STARTED:
2650 desc->mPatch = mPatch;
2651 desc->mPortId = portId;
2652 break;
2653 case AUDIO_OUTPUT_CLOSED:
2654 default:
2655 break;
2656 }
2657 mAudioFlinger->ioConfigChanged(event, desc, pid);
2658 }
2659
onWriteReady()2660 void AudioFlinger::PlaybackThread::onWriteReady()
2661 {
2662 mCallbackThread->resetWriteBlocked();
2663 }
2664
onDrainReady()2665 void AudioFlinger::PlaybackThread::onDrainReady()
2666 {
2667 mCallbackThread->resetDraining();
2668 }
2669
onError()2670 void AudioFlinger::PlaybackThread::onError()
2671 {
2672 mCallbackThread->setAsyncError();
2673 }
2674
onCodecFormatChanged(const std::basic_string<uint8_t> & metadataBs)2675 void AudioFlinger::PlaybackThread::onCodecFormatChanged(
2676 const std::basic_string<uint8_t>& metadataBs)
2677 {
2678 std::thread([this, metadataBs]() {
2679 audio_utils::metadata::Data metadata =
2680 audio_utils::metadata::dataFromByteString(metadataBs);
2681 if (metadata.empty()) {
2682 ALOGW("Can not transform the buffer to audio metadata, %s, %d",
2683 reinterpret_cast<char*>(const_cast<uint8_t*>(metadataBs.data())),
2684 (int)metadataBs.size());
2685 return;
2686 }
2687
2688 audio_utils::metadata::ByteString metaDataStr =
2689 audio_utils::metadata::byteStringFromData(metadata);
2690 std::vector metadataVec(metaDataStr.begin(), metaDataStr.end());
2691 Mutex::Autolock _l(mAudioTrackCbLock);
2692 for (const auto& callbackPair : mAudioTrackCallbacks) {
2693 callbackPair.second->onCodecFormatChanged(metadataVec);
2694 }
2695 }).detach();
2696 }
2697
resetWriteBlocked(uint32_t sequence)2698 void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
2699 {
2700 Mutex::Autolock _l(mLock);
2701 // reject out of sequence requests
2702 if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
2703 mWriteAckSequence &= ~1;
2704 mWaitWorkCV.signal();
2705 }
2706 }
2707
resetDraining(uint32_t sequence)2708 void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
2709 {
2710 Mutex::Autolock _l(mLock);
2711 // reject out of sequence requests
2712 if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
2713 // Register discontinuity when HW drain is completed because that can cause
2714 // the timestamp frame position to reset to 0 for direct and offload threads.
2715 // (Out of sequence requests are ignored, since the discontinuity would be handled
2716 // elsewhere, e.g. in flush).
2717 mTimestampVerifier.discontinuity();
2718 mDrainSequence &= ~1;
2719 mWaitWorkCV.signal();
2720 }
2721 }
2722
readOutputParameters_l()2723 void AudioFlinger::PlaybackThread::readOutputParameters_l()
2724 {
2725 // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL
2726 mSampleRate = mOutput->getSampleRate();
2727 mChannelMask = mOutput->getChannelMask();
2728 if (!audio_is_output_channel(mChannelMask)) {
2729 LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
2730 }
2731 if ((mType == MIXER || mType == DUPLICATING)
2732 && !isValidPcmSinkChannelMask(mChannelMask)) {
2733 LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output",
2734 mChannelMask);
2735 }
2736 mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
2737 mBalance.setChannelMask(mChannelMask);
2738
2739 // Get actual HAL format.
2740 status_t result = mOutput->stream->getFormat(&mHALFormat);
2741 LOG_ALWAYS_FATAL_IF(result != OK, "Error when retrieving output stream format: %d", result);
2742 // Get format from the shim, which will be different than the HAL format
2743 // if playing compressed audio over HDMI passthrough.
2744 mFormat = mOutput->getFormat();
2745 if (!audio_is_valid_format(mFormat)) {
2746 LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat);
2747 }
2748 if ((mType == MIXER || mType == DUPLICATING)
2749 && !isValidPcmSinkFormat(mFormat)) {
2750 LOG_FATAL("HAL format %#x not supported for mixed output",
2751 mFormat);
2752 }
2753 mFrameSize = mOutput->getFrameSize();
2754 result = mOutput->stream->getBufferSize(&mBufferSize);
2755 LOG_ALWAYS_FATAL_IF(result != OK,
2756 "Error when retrieving output stream buffer size: %d", result);
2757 mFrameCount = mBufferSize / mFrameSize;
2758 if ((mType == MIXER || mType == DUPLICATING) && (mFrameCount & 15)) {
2759 ALOGW("HAL output buffer size is %zu frames but AudioMixer requires multiples of 16 frames",
2760 mFrameCount);
2761 }
2762
2763 if (mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) {
2764 if (mOutput->stream->setCallback(this) == OK) {
2765 mUseAsyncWrite = true;
2766 mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
2767 }
2768 }
2769
2770 mHwSupportsPause = false;
2771 if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) {
2772 bool supportsPause = false, supportsResume = false;
2773 if (mOutput->stream->supportsPauseAndResume(&supportsPause, &supportsResume) == OK) {
2774 if (supportsPause && supportsResume) {
2775 mHwSupportsPause = true;
2776 } else if (supportsPause) {
2777 ALOGW("direct output implements pause but not resume");
2778 } else if (supportsResume) {
2779 ALOGW("direct output implements resume but not pause");
2780 }
2781 }
2782 }
2783 if (!mHwSupportsPause && mOutput->flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) {
2784 LOG_ALWAYS_FATAL("HW_AV_SYNC requested but HAL does not implement pause and resume");
2785 }
2786
2787 if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) {
2788 // For best precision, we use float instead of the associated output
2789 // device format (typically PCM 16 bit).
2790
2791 mFormat = AUDIO_FORMAT_PCM_FLOAT;
2792 mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
2793 mBufferSize = mFrameSize * mFrameCount;
2794
2795 // TODO: We currently use the associated output device channel mask and sample rate.
2796 // (1) Perhaps use the ORed channel mask of all downstream MixerThreads
2797 // (if a valid mask) to avoid premature downmix.
2798 // (2) Perhaps use the maximum sample rate of all downstream MixerThreads
2799 // instead of the output device sample rate to avoid loss of high frequency information.
2800 // This may need to be updated as MixerThread/OutputTracks are added and not here.
2801 }
2802
2803 // Calculate size of normal sink buffer relative to the HAL output buffer size
2804 double multiplier = 1.0;
2805 if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
2806 kUseFastMixer == FastMixer_Dynamic)) {
2807 size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000;
2808 size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000;
2809
2810 // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
2811 minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
2812 maxNormalFrameCount = maxNormalFrameCount & ~15;
2813 if (maxNormalFrameCount < minNormalFrameCount) {
2814 maxNormalFrameCount = minNormalFrameCount;
2815 }
2816 multiplier = (double) minNormalFrameCount / (double) mFrameCount;
2817 if (multiplier <= 1.0) {
2818 multiplier = 1.0;
2819 } else if (multiplier <= 2.0) {
2820 if (2 * mFrameCount <= maxNormalFrameCount) {
2821 multiplier = 2.0;
2822 } else {
2823 multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
2824 }
2825 } else {
2826 multiplier = floor(multiplier);
2827 }
2828 }
2829 mNormalFrameCount = multiplier * mFrameCount;
2830 // round up to nearest 16 frames to satisfy AudioMixer
2831 if (mType == MIXER || mType == DUPLICATING) {
2832 mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
2833 }
2834 ALOGI("HAL output buffer size %zu frames, normal sink buffer size %zu frames", mFrameCount,
2835 mNormalFrameCount);
2836
2837 // Check if we want to throttle the processing to no more than 2x normal rate
2838 mThreadThrottle = property_get_bool("af.thread.throttle", true /* default_value */);
2839 mThreadThrottleTimeMs = 0;
2840 mThreadThrottleEndMs = 0;
2841 mHalfBufferMs = mNormalFrameCount * 1000 / (2 * mSampleRate);
2842
2843 // mSinkBuffer is the sink buffer. Size is always multiple-of-16 frames.
2844 // Originally this was int16_t[] array, need to remove legacy implications.
2845 free(mSinkBuffer);
2846 mSinkBuffer = NULL;
2847 // For sink buffer size, we use the frame size from the downstream sink to avoid problems
2848 // with non PCM formats for compressed music, e.g. AAC, and Offload threads.
2849 const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
2850 (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
2851
2852 // We resize the mMixerBuffer according to the requirements of the sink buffer which
2853 // drives the output.
2854 free(mMixerBuffer);
2855 mMixerBuffer = NULL;
2856 if (mMixerBufferEnabled) {
2857 mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // no longer valid: AUDIO_FORMAT_PCM_16_BIT.
2858 mMixerBufferSize = mNormalFrameCount * mChannelCount
2859 * audio_bytes_per_sample(mMixerBufferFormat);
2860 (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize);
2861 }
2862 free(mEffectBuffer);
2863 mEffectBuffer = NULL;
2864 if (mEffectBufferEnabled) {
2865 mEffectBufferFormat = EFFECT_BUFFER_FORMAT;
2866 mEffectBufferSize = mNormalFrameCount * mChannelCount
2867 * audio_bytes_per_sample(mEffectBufferFormat);
2868 (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize);
2869 }
2870
2871 mHapticChannelMask = mChannelMask & AUDIO_CHANNEL_HAPTIC_ALL;
2872 mChannelMask &= ~mHapticChannelMask;
2873 mHapticChannelCount = audio_channel_count_from_out_mask(mHapticChannelMask);
2874 mChannelCount -= mHapticChannelCount;
2875
2876 // force reconfiguration of effect chains and engines to take new buffer size and audio
2877 // parameters into account
2878 // Note that mLock is not held when readOutputParameters_l() is called from the constructor
2879 // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
2880 // matter.
2881 // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
2882 Vector< sp<EffectChain> > effectChains = mEffectChains;
2883 for (size_t i = 0; i < effectChains.size(); i ++) {
2884 mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(),
2885 this/* srcThread */, this/* dstThread */);
2886 }
2887
2888 audio_output_flags_t flags = mOutput->flags;
2889 mediametrics::LogItem item(mThreadMetrics.getMetricsId()); // TODO: method in ThreadMetrics?
2890 item.set(AMEDIAMETRICS_PROP_EVENT, AMEDIAMETRICS_PROP_EVENT_VALUE_READPARAMETERS)
2891 .set(AMEDIAMETRICS_PROP_ENCODING, formatToString(mFormat).c_str())
2892 .set(AMEDIAMETRICS_PROP_SAMPLERATE, (int32_t)mSampleRate)
2893 .set(AMEDIAMETRICS_PROP_CHANNELMASK, (int32_t)mChannelMask)
2894 .set(AMEDIAMETRICS_PROP_CHANNELCOUNT, (int32_t)mChannelCount)
2895 .set(AMEDIAMETRICS_PROP_FRAMECOUNT, (int32_t)mNormalFrameCount)
2896 .set(AMEDIAMETRICS_PROP_FLAGS, toString(flags).c_str())
2897 .set(AMEDIAMETRICS_PROP_PREFIX_HAPTIC AMEDIAMETRICS_PROP_CHANNELMASK,
2898 (int32_t)mHapticChannelMask)
2899 .set(AMEDIAMETRICS_PROP_PREFIX_HAPTIC AMEDIAMETRICS_PROP_CHANNELCOUNT,
2900 (int32_t)mHapticChannelCount)
2901 .set(AMEDIAMETRICS_PROP_PREFIX_HAL AMEDIAMETRICS_PROP_ENCODING,
2902 formatToString(mHALFormat).c_str())
2903 .set(AMEDIAMETRICS_PROP_PREFIX_HAL AMEDIAMETRICS_PROP_FRAMECOUNT,
2904 (int32_t)mFrameCount) // sic - added HAL
2905 ;
2906 uint32_t latencyMs;
2907 if (mOutput->stream->getLatency(&latencyMs) == NO_ERROR) {
2908 item.set(AMEDIAMETRICS_PROP_PREFIX_HAL AMEDIAMETRICS_PROP_LATENCYMS, (double)latencyMs);
2909 }
2910 item.record();
2911 }
2912
updateMetadata_l()2913 void AudioFlinger::PlaybackThread::updateMetadata_l()
2914 {
2915 if (mOutput == nullptr || mOutput->stream == nullptr ) {
2916 return; // That should not happen
2917 }
2918 bool hasChanged = mActiveTracks.readAndClearHasChanged();
2919 for (const sp<Track> &track : mActiveTracks) {
2920 // Do not short-circuit as all hasChanged states must be reset
2921 // as all the metadata are going to be sent
2922 hasChanged |= track->readAndClearHasChanged();
2923 }
2924 if (!hasChanged) {
2925 return; // nothing to do
2926 }
2927 StreamOutHalInterface::SourceMetadata metadata;
2928 auto backInserter = std::back_inserter(metadata.tracks);
2929 for (const sp<Track> &track : mActiveTracks) {
2930 // No track is invalid as this is called after prepareTrack_l in the same critical section
2931 track->copyMetadataTo(backInserter);
2932 }
2933 sendMetadataToBackend_l(metadata);
2934 }
2935
sendMetadataToBackend_l(const StreamOutHalInterface::SourceMetadata & metadata)2936 void AudioFlinger::PlaybackThread::sendMetadataToBackend_l(
2937 const StreamOutHalInterface::SourceMetadata& metadata)
2938 {
2939 mOutput->stream->updateSourceMetadata(metadata);
2940 };
2941
getRenderPosition(uint32_t * halFrames,uint32_t * dspFrames)2942 status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames)
2943 {
2944 if (halFrames == NULL || dspFrames == NULL) {
2945 return BAD_VALUE;
2946 }
2947 Mutex::Autolock _l(mLock);
2948 if (initCheck() != NO_ERROR) {
2949 return INVALID_OPERATION;
2950 }
2951 int64_t framesWritten = mBytesWritten / mFrameSize;
2952 *halFrames = framesWritten;
2953
2954 if (isSuspended()) {
2955 // return an estimation of rendered frames when the output is suspended
2956 size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
2957 *dspFrames = (uint32_t)
2958 (framesWritten >= (int64_t)latencyFrames ? framesWritten - latencyFrames : 0);
2959 return NO_ERROR;
2960 } else {
2961 status_t status;
2962 uint32_t frames;
2963 status = mOutput->getRenderPosition(&frames);
2964 *dspFrames = (size_t)frames;
2965 return status;
2966 }
2967 }
2968
getStrategyForSession_l(audio_session_t sessionId)2969 uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(audio_session_t sessionId)
2970 {
2971 // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
2972 // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
2973 if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
2974 return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2975 }
2976 for (size_t i = 0; i < mTracks.size(); i++) {
2977 sp<Track> track = mTracks[i];
2978 if (sessionId == track->sessionId() && !track->isInvalid()) {
2979 return AudioSystem::getStrategyForStream(track->streamType());
2980 }
2981 }
2982 return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2983 }
2984
2985
getOutput() const2986 AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
2987 {
2988 Mutex::Autolock _l(mLock);
2989 return mOutput;
2990 }
2991
clearOutput()2992 AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
2993 {
2994 Mutex::Autolock _l(mLock);
2995 AudioStreamOut *output = mOutput;
2996 mOutput = NULL;
2997 // FIXME FastMixer might also have a raw ptr to mOutputSink;
2998 // must push a NULL and wait for ack
2999 mOutputSink.clear();
3000 mPipeSink.clear();
3001 mNormalSink.clear();
3002 return output;
3003 }
3004
3005 // this method must always be called either with ThreadBase mLock held or inside the thread loop
stream() const3006 sp<StreamHalInterface> AudioFlinger::PlaybackThread::stream() const
3007 {
3008 if (mOutput == NULL) {
3009 return NULL;
3010 }
3011 return mOutput->stream;
3012 }
3013
activeSleepTimeUs() const3014 uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
3015 {
3016 return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
3017 }
3018
setSyncEvent(const sp<SyncEvent> & event)3019 status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
3020 {
3021 if (!isValidSyncEvent(event)) {
3022 return BAD_VALUE;
3023 }
3024
3025 Mutex::Autolock _l(mLock);
3026
3027 for (size_t i = 0; i < mTracks.size(); ++i) {
3028 sp<Track> track = mTracks[i];
3029 if (event->triggerSession() == track->sessionId()) {
3030 (void) track->setSyncEvent(event);
3031 return NO_ERROR;
3032 }
3033 }
3034
3035 return NAME_NOT_FOUND;
3036 }
3037
isValidSyncEvent(const sp<SyncEvent> & event) const3038 bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
3039 {
3040 return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
3041 }
3042
threadLoop_removeTracks(const Vector<sp<Track>> & tracksToRemove)3043 void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
3044 const Vector< sp<Track> >& tracksToRemove)
3045 {
3046 // Miscellaneous track cleanup when removed from the active list,
3047 // called without Thread lock but synchronized with threadLoop processing.
3048 #ifdef ADD_BATTERY_DATA
3049 for (const auto& track : tracksToRemove) {
3050 if (track->isExternalTrack()) {
3051 // to track the speaker usage
3052 addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
3053 }
3054 }
3055 #else
3056 (void)tracksToRemove; // suppress unused warning
3057 #endif
3058 }
3059
checkSilentMode_l()3060 void AudioFlinger::PlaybackThread::checkSilentMode_l()
3061 {
3062 if (!mMasterMute) {
3063 char value[PROPERTY_VALUE_MAX];
3064 if (mOutDeviceTypeAddrs.empty()) {
3065 ALOGD("ro.audio.silent is ignored since no output device is set");
3066 return;
3067 }
3068 if (isSingleDeviceType(outDeviceTypes(), AUDIO_DEVICE_OUT_REMOTE_SUBMIX)) {
3069 ALOGD("ro.audio.silent will be ignored for threads on AUDIO_DEVICE_OUT_REMOTE_SUBMIX");
3070 return;
3071 }
3072 if (property_get("ro.audio.silent", value, "0") > 0) {
3073 char *endptr;
3074 unsigned long ul = strtoul(value, &endptr, 0);
3075 if (*endptr == '\0' && ul != 0) {
3076 ALOGD("Silence is golden");
3077 // The setprop command will not allow a property to be changed after
3078 // the first time it is set, so we don't have to worry about un-muting.
3079 setMasterMute_l(true);
3080 }
3081 }
3082 }
3083 }
3084
3085 // shared by MIXER and DIRECT, overridden by DUPLICATING
threadLoop_write()3086 ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
3087 {
3088 LOG_HIST_TS();
3089 mInWrite = true;
3090 ssize_t bytesWritten;
3091 const size_t offset = mCurrentWriteLength - mBytesRemaining;
3092
3093 // If an NBAIO sink is present, use it to write the normal mixer's submix
3094 if (mNormalSink != 0) {
3095
3096 const size_t count = mBytesRemaining / mFrameSize;
3097
3098 ATRACE_BEGIN("write");
3099 // update the setpoint when AudioFlinger::mScreenState changes
3100 uint32_t screenState = AudioFlinger::mScreenState;
3101 if (screenState != mScreenState) {
3102 mScreenState = screenState;
3103 MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
3104 if (pipe != NULL) {
3105 pipe->setAvgFrames((mScreenState & 1) ?
3106 (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
3107 }
3108 }
3109 ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
3110 ATRACE_END();
3111 if (framesWritten > 0) {
3112 bytesWritten = framesWritten * mFrameSize;
3113 #ifdef TEE_SINK
3114 mTee.write((char *)mSinkBuffer + offset, framesWritten);
3115 #endif
3116 } else {
3117 bytesWritten = framesWritten;
3118 }
3119 // otherwise use the HAL / AudioStreamOut directly
3120 } else {
3121 // Direct output and offload threads
3122
3123 if (mUseAsyncWrite) {
3124 ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
3125 mWriteAckSequence += 2;
3126 mWriteAckSequence |= 1;
3127 ALOG_ASSERT(mCallbackThread != 0);
3128 mCallbackThread->setWriteBlocked(mWriteAckSequence);
3129 }
3130 ATRACE_BEGIN("write");
3131 // FIXME We should have an implementation of timestamps for direct output threads.
3132 // They are used e.g for multichannel PCM playback over HDMI.
3133 bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining);
3134 ATRACE_END();
3135
3136 if (mUseAsyncWrite &&
3137 ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
3138 // do not wait for async callback in case of error of full write
3139 mWriteAckSequence &= ~1;
3140 ALOG_ASSERT(mCallbackThread != 0);
3141 mCallbackThread->setWriteBlocked(mWriteAckSequence);
3142 }
3143 }
3144
3145 mNumWrites++;
3146 mInWrite = false;
3147 if (mStandby) {
3148 mThreadMetrics.logBeginInterval();
3149 mStandby = false;
3150 }
3151 return bytesWritten;
3152 }
3153
threadLoop_drain()3154 void AudioFlinger::PlaybackThread::threadLoop_drain()
3155 {
3156 bool supportsDrain = false;
3157 if (mOutput->stream->supportsDrain(&supportsDrain) == OK && supportsDrain) {
3158 ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
3159 if (mUseAsyncWrite) {
3160 ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
3161 mDrainSequence |= 1;
3162 ALOG_ASSERT(mCallbackThread != 0);
3163 mCallbackThread->setDraining(mDrainSequence);
3164 }
3165 status_t result = mOutput->stream->drain(mMixerStatus == MIXER_DRAIN_TRACK);
3166 ALOGE_IF(result != OK, "Error when draining stream: %d", result);
3167 }
3168 }
3169
threadLoop_exit()3170 void AudioFlinger::PlaybackThread::threadLoop_exit()
3171 {
3172 {
3173 Mutex::Autolock _l(mLock);
3174 for (size_t i = 0; i < mTracks.size(); i++) {
3175 sp<Track> track = mTracks[i];
3176 track->invalidate();
3177 }
3178 // Clear ActiveTracks to update BatteryNotifier in case active tracks remain.
3179 // After we exit there are no more track changes sent to BatteryNotifier
3180 // because that requires an active threadLoop.
3181 // TODO: should we decActiveTrackCnt() of the cleared track effect chain?
3182 mActiveTracks.clear();
3183 }
3184 }
3185
3186 /*
3187 The derived values that are cached:
3188 - mSinkBufferSize from frame count * frame size
3189 - mActiveSleepTimeUs from activeSleepTimeUs()
3190 - mIdleSleepTimeUs from idleSleepTimeUs()
3191 - mStandbyDelayNs from mActiveSleepTimeUs (DIRECT only) or forced to at least
3192 kDefaultStandbyTimeInNsecs when connected to an A2DP device.
3193 - maxPeriod from frame count and sample rate (MIXER only)
3194
3195 The parameters that affect these derived values are:
3196 - frame count
3197 - frame size
3198 - sample rate
3199 - device type: A2DP or not
3200 - device latency
3201 - format: PCM or not
3202 - active sleep time
3203 - idle sleep time
3204 */
3205
cacheParameters_l()3206 void AudioFlinger::PlaybackThread::cacheParameters_l()
3207 {
3208 mSinkBufferSize = mNormalFrameCount * mFrameSize;
3209 mActiveSleepTimeUs = activeSleepTimeUs();
3210 mIdleSleepTimeUs = idleSleepTimeUs();
3211
3212 // make sure standby delay is not too short when connected to an A2DP sink to avoid
3213 // truncating audio when going to standby.
3214 mStandbyDelayNs = AudioFlinger::mStandbyTimeInNsecs;
3215 if (!Intersection(outDeviceTypes(), getAudioDeviceOutAllA2dpSet()).empty()) {
3216 if (mStandbyDelayNs < kDefaultStandbyTimeInNsecs) {
3217 mStandbyDelayNs = kDefaultStandbyTimeInNsecs;
3218 }
3219 }
3220 }
3221
invalidateTracks_l(audio_stream_type_t streamType)3222 bool AudioFlinger::PlaybackThread::invalidateTracks_l(audio_stream_type_t streamType)
3223 {
3224 ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %zu",
3225 this, streamType, mTracks.size());
3226 bool trackMatch = false;
3227 size_t size = mTracks.size();
3228 for (size_t i = 0; i < size; i++) {
3229 sp<Track> t = mTracks[i];
3230 if (t->streamType() == streamType && t->isExternalTrack()) {
3231 t->invalidate();
3232 trackMatch = true;
3233 }
3234 }
3235 return trackMatch;
3236 }
3237
invalidateTracks(audio_stream_type_t streamType)3238 void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
3239 {
3240 Mutex::Autolock _l(mLock);
3241 invalidateTracks_l(streamType);
3242 }
3243
addEffectChain_l(const sp<EffectChain> & chain)3244 status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
3245 {
3246 audio_session_t session = chain->sessionId();
3247 sp<EffectBufferHalInterface> halInBuffer, halOutBuffer;
3248 status_t result = mAudioFlinger->mEffectsFactoryHal->mirrorBuffer(
3249 mEffectBufferEnabled ? mEffectBuffer : mSinkBuffer,
3250 mEffectBufferEnabled ? mEffectBufferSize : mSinkBufferSize,
3251 &halInBuffer);
3252 if (result != OK) return result;
3253 halOutBuffer = halInBuffer;
3254 effect_buffer_t *buffer = reinterpret_cast<effect_buffer_t*>(halInBuffer->externalData());
3255 ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
3256 if (!audio_is_global_session(session)) {
3257 // Only one effect chain can be present in direct output thread and it uses
3258 // the sink buffer as input
3259 if (mType != DIRECT) {
3260 size_t numSamples = mNormalFrameCount * (mChannelCount + mHapticChannelCount);
3261 status_t result = mAudioFlinger->mEffectsFactoryHal->allocateBuffer(
3262 numSamples * sizeof(effect_buffer_t),
3263 &halInBuffer);
3264 if (result != OK) return result;
3265 #ifdef FLOAT_EFFECT_CHAIN
3266 buffer = halInBuffer->audioBuffer()->f32;
3267 #else
3268 buffer = halInBuffer->audioBuffer()->s16;
3269 #endif
3270 ALOGV("addEffectChain_l() creating new input buffer %p session %d",
3271 buffer, session);
3272 }
3273
3274 // Attach all tracks with same session ID to this chain.
3275 for (size_t i = 0; i < mTracks.size(); ++i) {
3276 sp<Track> track = mTracks[i];
3277 if (session == track->sessionId()) {
3278 ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
3279 buffer);
3280 track->setMainBuffer(buffer);
3281 chain->incTrackCnt();
3282 }
3283 }
3284
3285 // indicate all active tracks in the chain
3286 for (const sp<Track> &track : mActiveTracks) {
3287 if (session == track->sessionId()) {
3288 ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
3289 chain->incActiveTrackCnt();
3290 }
3291 }
3292 }
3293 chain->setThread(this);
3294 chain->setInBuffer(halInBuffer);
3295 chain->setOutBuffer(halOutBuffer);
3296 // Effect chain for session AUDIO_SESSION_DEVICE is inserted at end of effect
3297 // chains list in order to be processed last as it contains output device effects.
3298 // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted just before to apply post
3299 // processing effects specific to an output stream before effects applied to all streams
3300 // routed to a given device.
3301 // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
3302 // session AUDIO_SESSION_OUTPUT_STAGE to be processed
3303 // after track specific effects and before output stage.
3304 // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
3305 // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX.
3306 // Effect chain for other sessions are inserted at beginning of effect
3307 // chains list to be processed before output mix effects. Relative order between other
3308 // sessions is not important.
3309 static_assert(AUDIO_SESSION_OUTPUT_MIX == 0 &&
3310 AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX &&
3311 AUDIO_SESSION_DEVICE < AUDIO_SESSION_OUTPUT_STAGE,
3312 "audio_session_t constants misdefined");
3313 size_t size = mEffectChains.size();
3314 size_t i = 0;
3315 for (i = 0; i < size; i++) {
3316 if (mEffectChains[i]->sessionId() < session) {
3317 break;
3318 }
3319 }
3320 mEffectChains.insertAt(chain, i);
3321 checkSuspendOnAddEffectChain_l(chain);
3322
3323 return NO_ERROR;
3324 }
3325
removeEffectChain_l(const sp<EffectChain> & chain)3326 size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
3327 {
3328 audio_session_t session = chain->sessionId();
3329
3330 ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
3331
3332 for (size_t i = 0; i < mEffectChains.size(); i++) {
3333 if (chain == mEffectChains[i]) {
3334 mEffectChains.removeAt(i);
3335 // detach all active tracks from the chain
3336 for (const sp<Track> &track : mActiveTracks) {
3337 if (session == track->sessionId()) {
3338 ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
3339 chain.get(), session);
3340 chain->decActiveTrackCnt();
3341 }
3342 }
3343
3344 // detach all tracks with same session ID from this chain
3345 for (size_t i = 0; i < mTracks.size(); ++i) {
3346 sp<Track> track = mTracks[i];
3347 if (session == track->sessionId()) {
3348 track->setMainBuffer(reinterpret_cast<effect_buffer_t*>(mSinkBuffer));
3349 chain->decTrackCnt();
3350 }
3351 }
3352 break;
3353 }
3354 }
3355 return mEffectChains.size();
3356 }
3357
attachAuxEffect(const sp<AudioFlinger::PlaybackThread::Track> & track,int EffectId)3358 status_t AudioFlinger::PlaybackThread::attachAuxEffect(
3359 const sp<AudioFlinger::PlaybackThread::Track>& track, int EffectId)
3360 {
3361 Mutex::Autolock _l(mLock);
3362 return attachAuxEffect_l(track, EffectId);
3363 }
3364
attachAuxEffect_l(const sp<AudioFlinger::PlaybackThread::Track> & track,int EffectId)3365 status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
3366 const sp<AudioFlinger::PlaybackThread::Track>& track, int EffectId)
3367 {
3368 status_t status = NO_ERROR;
3369
3370 if (EffectId == 0) {
3371 track->setAuxBuffer(0, NULL);
3372 } else {
3373 // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
3374 sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
3375 if (effect != 0) {
3376 if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
3377 track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
3378 } else {
3379 status = INVALID_OPERATION;
3380 }
3381 } else {
3382 status = BAD_VALUE;
3383 }
3384 }
3385 return status;
3386 }
3387
detachAuxEffect_l(int effectId)3388 void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
3389 {
3390 for (size_t i = 0; i < mTracks.size(); ++i) {
3391 sp<Track> track = mTracks[i];
3392 if (track->auxEffectId() == effectId) {
3393 attachAuxEffect_l(track, 0);
3394 }
3395 }
3396 }
3397
threadLoop()3398 bool AudioFlinger::PlaybackThread::threadLoop()
3399 {
3400 tlNBLogWriter = mNBLogWriter.get();
3401
3402 Vector< sp<Track> > tracksToRemove;
3403
3404 mStandbyTimeNs = systemTime();
3405 int64_t lastLoopCountWritten = -2; // never matches "previous" loop, when loopCount = 0.
3406 int64_t lastFramesWritten = -1; // track changes in timestamp server frames written
3407
3408 // MIXER
3409 nsecs_t lastWarning = 0;
3410
3411 // DUPLICATING
3412 // FIXME could this be made local to while loop?
3413 writeFrames = 0;
3414
3415 cacheParameters_l();
3416 mSleepTimeUs = mIdleSleepTimeUs;
3417
3418 if (mType == MIXER) {
3419 sleepTimeShift = 0;
3420 }
3421
3422 CpuStats cpuStats;
3423 const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
3424
3425 acquireWakeLock();
3426
3427 // mNBLogWriter logging APIs can only be called by a single thread, typically the
3428 // thread associated with this PlaybackThread.
3429 // If you want to share the mNBLogWriter with other threads (for example, binder threads)
3430 // then all such threads must agree to hold a common mutex before logging.
3431 // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
3432 // and then that string will be logged at the next convenient opportunity.
3433 // See reference to logString below.
3434 const char *logString = NULL;
3435
3436 // Estimated time for next buffer to be written to hal. This is used only on
3437 // suspended mode (for now) to help schedule the wait time until next iteration.
3438 nsecs_t timeLoopNextNs = 0;
3439
3440 checkSilentMode_l();
3441
3442 // DIRECT and OFFLOAD threads should reset frame count to zero on stop/flush
3443 // TODO: add confirmation checks:
3444 // 1) DIRECT threads and linear PCM format really resets to 0?
3445 // 2) Is frame count really valid if not linear pcm?
3446 // 3) Are all 64 bits of position returned, not just lowest 32 bits?
3447 if (mType == OFFLOAD || mType == DIRECT) {
3448 mTimestampVerifier.setDiscontinuityMode(mTimestampVerifier.DISCONTINUITY_MODE_ZERO);
3449 }
3450 audio_patch_handle_t lastDownstreamPatchHandle = AUDIO_PATCH_HANDLE_NONE;
3451
3452 // loopCount is used for statistics and diagnostics.
3453 for (int64_t loopCount = 0; !exitPending(); ++loopCount)
3454 {
3455 // Log merge requests are performed during AudioFlinger binder transactions, but
3456 // that does not cover audio playback. It's requested here for that reason.
3457 mAudioFlinger->requestLogMerge();
3458
3459 cpuStats.sample(myName);
3460
3461 Vector< sp<EffectChain> > effectChains;
3462 audio_session_t activeHapticSessionId = AUDIO_SESSION_NONE;
3463 std::vector<sp<Track>> activeTracks;
3464
3465 // If the device is AUDIO_DEVICE_OUT_BUS, check for downstream latency.
3466 //
3467 // Note: we access outDeviceTypes() outside of mLock.
3468 if (isMsdDevice() && outDeviceTypes().count(AUDIO_DEVICE_OUT_BUS) != 0) {
3469 // Here, we try for the AF lock, but do not block on it as the latency
3470 // is more informational.
3471 if (mAudioFlinger->mLock.tryLock() == NO_ERROR) {
3472 std::vector<PatchPanel::SoftwarePatch> swPatches;
3473 double latencyMs;
3474 status_t status = INVALID_OPERATION;
3475 audio_patch_handle_t downstreamPatchHandle = AUDIO_PATCH_HANDLE_NONE;
3476 if (mAudioFlinger->mPatchPanel.getDownstreamSoftwarePatches(id(), &swPatches) == OK
3477 && swPatches.size() > 0) {
3478 status = swPatches[0].getLatencyMs_l(&latencyMs);
3479 downstreamPatchHandle = swPatches[0].getPatchHandle();
3480 }
3481 if (downstreamPatchHandle != lastDownstreamPatchHandle) {
3482 mDownstreamLatencyStatMs.reset();
3483 lastDownstreamPatchHandle = downstreamPatchHandle;
3484 }
3485 if (status == OK) {
3486 // verify downstream latency (we assume a max reasonable
3487 // latency of 5 seconds).
3488 const double minLatency = 0., maxLatency = 5000.;
3489 if (latencyMs >= minLatency && latencyMs <= maxLatency) {
3490 ALOGV("new downstream latency %lf ms", latencyMs);
3491 } else {
3492 ALOGD("out of range downstream latency %lf ms", latencyMs);
3493 if (latencyMs < minLatency) latencyMs = minLatency;
3494 else if (latencyMs > maxLatency) latencyMs = maxLatency;
3495 }
3496 mDownstreamLatencyStatMs.add(latencyMs);
3497 }
3498 mAudioFlinger->mLock.unlock();
3499 }
3500 } else {
3501 if (lastDownstreamPatchHandle != AUDIO_PATCH_HANDLE_NONE) {
3502 // our device is no longer AUDIO_DEVICE_OUT_BUS, reset patch handle and stats.
3503 mDownstreamLatencyStatMs.reset();
3504 lastDownstreamPatchHandle = AUDIO_PATCH_HANDLE_NONE;
3505 }
3506 }
3507
3508 { // scope for mLock
3509
3510 Mutex::Autolock _l(mLock);
3511
3512 processConfigEvents_l();
3513
3514 // See comment at declaration of logString for why this is done under mLock
3515 if (logString != NULL) {
3516 mNBLogWriter->logTimestamp();
3517 mNBLogWriter->log(logString);
3518 logString = NULL;
3519 }
3520
3521 // Collect timestamp statistics for the Playback Thread types that support it.
3522 if (mType == MIXER
3523 || mType == DUPLICATING
3524 || mType == DIRECT
3525 || mType == OFFLOAD) { // no indentation
3526 // Gather the framesReleased counters for all active tracks,
3527 // and associate with the sink frames written out. We need
3528 // this to convert the sink timestamp to the track timestamp.
3529 bool kernelLocationUpdate = false;
3530 ExtendedTimestamp timestamp; // use private copy to fetch
3531 if (mStandby) {
3532 mTimestampVerifier.discontinuity();
3533 } else if (threadloop_getHalTimestamp_l(×tamp) == OK) {
3534 mTimestampVerifier.add(timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL],
3535 timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL],
3536 mSampleRate);
3537
3538 if (isTimestampCorrectionEnabled()) {
3539 ALOGV("TS_BEFORE: %d %lld %lld", id(),
3540 (long long)timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL],
3541 (long long)timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]);
3542 auto correctedTimestamp = mTimestampVerifier.getLastCorrectedTimestamp();
3543 timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]
3544 = correctedTimestamp.mFrames;
3545 timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL]
3546 = correctedTimestamp.mTimeNs;
3547 ALOGV("TS_AFTER: %d %lld %lld", id(),
3548 (long long)timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL],
3549 (long long)timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]);
3550
3551 // Note: Downstream latency only added if timestamp correction enabled.
3552 if (mDownstreamLatencyStatMs.getN() > 0) { // we have latency info.
3553 const int64_t newPosition =
3554 timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]
3555 - int64_t(mDownstreamLatencyStatMs.getMean() * mSampleRate * 1e-3);
3556 // prevent retrograde
3557 timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = max(
3558 newPosition,
3559 (mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]
3560 - mSuspendedFrames));
3561 }
3562 }
3563
3564 // We always fetch the timestamp here because often the downstream
3565 // sink will block while writing.
3566
3567 // We keep track of the last valid kernel position in case we are in underrun
3568 // and the normal mixer period is the same as the fast mixer period, or there
3569 // is some error from the HAL.
3570 if (mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) {
3571 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] =
3572 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL];
3573 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] =
3574 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
3575
3576 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] =
3577 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER];
3578 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] =
3579 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER];
3580 }
3581
3582 if (timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) {
3583 kernelLocationUpdate = true;
3584 } else {
3585 ALOGVV("getTimestamp error - no valid kernel position");
3586 }
3587
3588 // copy over kernel info
3589 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] =
3590 timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]
3591 + mSuspendedFrames; // add frames discarded when suspended
3592 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] =
3593 timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
3594 } else {
3595 mTimestampVerifier.error();
3596 }
3597
3598 // mFramesWritten for non-offloaded tracks are contiguous
3599 // even after standby() is called. This is useful for the track frame
3600 // to sink frame mapping.
3601 bool serverLocationUpdate = false;
3602 if (mFramesWritten != lastFramesWritten) {
3603 serverLocationUpdate = true;
3604 lastFramesWritten = mFramesWritten;
3605 }
3606 // Only update timestamps if there is a meaningful change.
3607 // Either the kernel timestamp must be valid or we have written something.
3608 if (kernelLocationUpdate || serverLocationUpdate) {
3609 if (serverLocationUpdate) {
3610 // use the time before we called the HAL write - it is a bit more accurate
3611 // to when the server last read data than the current time here.
3612 //
3613 // If we haven't written anything, mLastIoBeginNs will be -1
3614 // and we use systemTime().
3615 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] = mFramesWritten;
3616 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = mLastIoBeginNs == -1
3617 ? systemTime() : mLastIoBeginNs;
3618 }
3619
3620 for (const sp<Track> &t : mActiveTracks) {
3621 if (!t->isFastTrack()) {
3622 t->updateTrackFrameInfo(
3623 t->mAudioTrackServerProxy->framesReleased(),
3624 mFramesWritten,
3625 mSampleRate,
3626 mTimestamp);
3627 }
3628 }
3629 }
3630
3631 if (audio_has_proportional_frames(mFormat)) {
3632 const double latencyMs = mTimestamp.getOutputServerLatencyMs(mSampleRate);
3633 if (latencyMs != 0.) { // note 0. means timestamp is empty.
3634 mLatencyMs.add(latencyMs);
3635 }
3636 }
3637
3638 } // if (mType ... ) { // no indentation
3639 #if 0
3640 // logFormat example
3641 if (z % 100 == 0) {
3642 timespec ts;
3643 clock_gettime(CLOCK_MONOTONIC, &ts);
3644 LOGT("This is an integer %d, this is a float %f, this is my "
3645 "pid %p %% %s %t", 42, 3.14, "and this is a timestamp", ts);
3646 LOGT("A deceptive null-terminated string %\0");
3647 }
3648 ++z;
3649 #endif
3650 saveOutputTracks();
3651 if (mSignalPending) {
3652 // A signal was raised while we were unlocked
3653 mSignalPending = false;
3654 } else if (waitingAsyncCallback_l()) {
3655 if (exitPending()) {
3656 break;
3657 }
3658 bool released = false;
3659 if (!keepWakeLock()) {
3660 releaseWakeLock_l();
3661 released = true;
3662 }
3663
3664 const int64_t waitNs = computeWaitTimeNs_l();
3665 ALOGV("wait async completion (wait time: %lld)", (long long)waitNs);
3666 status_t status = mWaitWorkCV.waitRelative(mLock, waitNs);
3667 if (status == TIMED_OUT) {
3668 mSignalPending = true; // if timeout recheck everything
3669 }
3670 ALOGV("async completion/wake");
3671 if (released) {
3672 acquireWakeLock_l();
3673 }
3674 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3675 mSleepTimeUs = 0;
3676
3677 continue;
3678 }
3679 if ((mActiveTracks.isEmpty() && systemTime() > mStandbyTimeNs) ||
3680 isSuspended()) {
3681 // put audio hardware into standby after short delay
3682 if (shouldStandby_l()) {
3683
3684 threadLoop_standby();
3685
3686 // This is where we go into standby
3687 if (!mStandby) {
3688 LOG_AUDIO_STATE();
3689 mThreadMetrics.logEndInterval();
3690 mStandby = true;
3691 }
3692 sendStatistics(false /* force */);
3693 }
3694
3695 if (mActiveTracks.isEmpty() && mConfigEvents.isEmpty()) {
3696 // we're about to wait, flush the binder command buffer
3697 IPCThreadState::self()->flushCommands();
3698
3699 clearOutputTracks();
3700
3701 if (exitPending()) {
3702 break;
3703 }
3704
3705 releaseWakeLock_l();
3706 // wait until we have something to do...
3707 ALOGV("%s going to sleep", myName.string());
3708 mWaitWorkCV.wait(mLock);
3709 ALOGV("%s waking up", myName.string());
3710 acquireWakeLock_l();
3711
3712 mMixerStatus = MIXER_IDLE;
3713 mMixerStatusIgnoringFastTracks = MIXER_IDLE;
3714 mBytesWritten = 0;
3715 mBytesRemaining = 0;
3716 checkSilentMode_l();
3717
3718 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3719 mSleepTimeUs = mIdleSleepTimeUs;
3720 if (mType == MIXER) {
3721 sleepTimeShift = 0;
3722 }
3723
3724 continue;
3725 }
3726 }
3727 // mMixerStatusIgnoringFastTracks is also updated internally
3728 mMixerStatus = prepareTracks_l(&tracksToRemove);
3729
3730 mActiveTracks.updatePowerState(this);
3731
3732 updateMetadata_l();
3733
3734 // prevent any changes in effect chain list and in each effect chain
3735 // during mixing and effect process as the audio buffers could be deleted
3736 // or modified if an effect is created or deleted
3737 lockEffectChains_l(effectChains);
3738
3739 // Determine which session to pick up haptic data.
3740 // This must be done under the same lock as prepareTracks_l().
3741 // TODO: Write haptic data directly to sink buffer when mixing.
3742 if (mHapticChannelCount > 0 && effectChains.size() > 0) {
3743 for (const auto& track : mActiveTracks) {
3744 if (track->getHapticPlaybackEnabled()) {
3745 activeHapticSessionId = track->sessionId();
3746 break;
3747 }
3748 }
3749 }
3750
3751 // Acquire a local copy of active tracks with lock (release w/o lock).
3752 //
3753 // Control methods on the track acquire the ThreadBase lock (e.g. start()
3754 // stop(), pause(), etc.), but the threadLoop is entitled to call audio
3755 // data / buffer methods on tracks from activeTracks without the ThreadBase lock.
3756 activeTracks.insert(activeTracks.end(), mActiveTracks.begin(), mActiveTracks.end());
3757 } // mLock scope ends
3758
3759 if (mBytesRemaining == 0) {
3760 mCurrentWriteLength = 0;
3761 if (mMixerStatus == MIXER_TRACKS_READY) {
3762 // threadLoop_mix() sets mCurrentWriteLength
3763 threadLoop_mix();
3764 } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
3765 && (mMixerStatus != MIXER_DRAIN_ALL)) {
3766 // threadLoop_sleepTime sets mSleepTimeUs to 0 if data
3767 // must be written to HAL
3768 threadLoop_sleepTime();
3769 if (mSleepTimeUs == 0) {
3770 mCurrentWriteLength = mSinkBufferSize;
3771
3772 // Tally underrun frames as we are inserting 0s here.
3773 for (const auto& track : activeTracks) {
3774 if (track->mFillingUpStatus == Track::FS_ACTIVE
3775 && !track->isStopped()
3776 && !track->isPaused()
3777 && !track->isTerminated()) {
3778 ALOGV("%s: track(%d) %s underrun due to thread sleep of %zu frames",
3779 __func__, track->id(), track->getTrackStateAsString(),
3780 mNormalFrameCount);
3781 track->mAudioTrackServerProxy->tallyUnderrunFrames(mNormalFrameCount);
3782 }
3783 }
3784 }
3785 }
3786 // Either threadLoop_mix() or threadLoop_sleepTime() should have set
3787 // mMixerBuffer with data if mMixerBufferValid is true and mSleepTimeUs == 0.
3788 // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid)
3789 // or mSinkBuffer (if there are no effects).
3790 //
3791 // This is done pre-effects computation; if effects change to
3792 // support higher precision, this needs to move.
3793 //
3794 // mMixerBufferValid is only set true by MixerThread::prepareTracks_l().
3795 // TODO use mSleepTimeUs == 0 as an additional condition.
3796 if (mMixerBufferValid) {
3797 void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer;
3798 audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat;
3799
3800 // mono blend occurs for mixer threads only (not direct or offloaded)
3801 // and is handled here if we're going directly to the sink.
3802 if (requireMonoBlend() && !mEffectBufferValid) {
3803 mono_blend(mMixerBuffer, mMixerBufferFormat, mChannelCount, mNormalFrameCount,
3804 true /*limit*/);
3805 }
3806
3807 if (!hasFastMixer()) {
3808 // Balance must take effect after mono conversion.
3809 // We do it here if there is no FastMixer.
3810 // mBalance detects zero balance within the class for speed (not needed here).
3811 mBalance.setBalance(mMasterBalance.load());
3812 mBalance.process((float *)mMixerBuffer, mNormalFrameCount);
3813 }
3814
3815 memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat,
3816 mNormalFrameCount * (mChannelCount + mHapticChannelCount));
3817
3818 // If we're going directly to the sink and there are haptic channels,
3819 // we should adjust channels as the sample data is partially interleaved
3820 // in this case.
3821 if (!mEffectBufferValid && mHapticChannelCount > 0) {
3822 adjust_channels_non_destructive(buffer, mChannelCount, buffer,
3823 mChannelCount + mHapticChannelCount,
3824 audio_bytes_per_sample(format),
3825 audio_bytes_per_frame(mChannelCount, format) * mNormalFrameCount);
3826 }
3827 }
3828
3829 mBytesRemaining = mCurrentWriteLength;
3830 if (isSuspended()) {
3831 // Simulate write to HAL when suspended (e.g. BT SCO phone call).
3832 mSleepTimeUs = suspendSleepTimeUs(); // assumes full buffer.
3833 const size_t framesRemaining = mBytesRemaining / mFrameSize;
3834 mBytesWritten += mBytesRemaining;
3835 mFramesWritten += framesRemaining;
3836 mSuspendedFrames += framesRemaining; // to adjust kernel HAL position
3837 mBytesRemaining = 0;
3838 }
3839
3840 // only process effects if we're going to write
3841 if (mSleepTimeUs == 0 && mType != OFFLOAD) {
3842 for (size_t i = 0; i < effectChains.size(); i ++) {
3843 effectChains[i]->process_l();
3844 // TODO: Write haptic data directly to sink buffer when mixing.
3845 if (activeHapticSessionId != AUDIO_SESSION_NONE
3846 && activeHapticSessionId == effectChains[i]->sessionId()) {
3847 // Haptic data is active in this case, copy it directly from
3848 // in buffer to out buffer.
3849 const size_t audioBufferSize = mNormalFrameCount
3850 * audio_bytes_per_frame(mChannelCount, EFFECT_BUFFER_FORMAT);
3851 memcpy_by_audio_format(
3852 (uint8_t*)effectChains[i]->outBuffer() + audioBufferSize,
3853 EFFECT_BUFFER_FORMAT,
3854 (const uint8_t*)effectChains[i]->inBuffer() + audioBufferSize,
3855 EFFECT_BUFFER_FORMAT, mNormalFrameCount * mHapticChannelCount);
3856 }
3857 }
3858 }
3859 }
3860 // Process effect chains for offloaded thread even if no audio
3861 // was read from audio track: process only updates effect state
3862 // and thus does have to be synchronized with audio writes but may have
3863 // to be called while waiting for async write callback
3864 if (mType == OFFLOAD) {
3865 for (size_t i = 0; i < effectChains.size(); i ++) {
3866 effectChains[i]->process_l();
3867 }
3868 }
3869
3870 // Only if the Effects buffer is enabled and there is data in the
3871 // Effects buffer (buffer valid), we need to
3872 // copy into the sink buffer.
3873 // TODO use mSleepTimeUs == 0 as an additional condition.
3874 if (mEffectBufferValid) {
3875 //ALOGV("writing effect buffer to sink buffer format %#x", mFormat);
3876
3877 if (requireMonoBlend()) {
3878 mono_blend(mEffectBuffer, mEffectBufferFormat, mChannelCount, mNormalFrameCount,
3879 true /*limit*/);
3880 }
3881
3882 if (!hasFastMixer()) {
3883 // Balance must take effect after mono conversion.
3884 // We do it here if there is no FastMixer.
3885 // mBalance detects zero balance within the class for speed (not needed here).
3886 mBalance.setBalance(mMasterBalance.load());
3887 mBalance.process((float *)mEffectBuffer, mNormalFrameCount);
3888 }
3889
3890 memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat,
3891 mNormalFrameCount * (mChannelCount + mHapticChannelCount));
3892 // The sample data is partially interleaved when haptic channels exist,
3893 // we need to adjust channels here.
3894 if (mHapticChannelCount > 0) {
3895 adjust_channels_non_destructive(mSinkBuffer, mChannelCount, mSinkBuffer,
3896 mChannelCount + mHapticChannelCount,
3897 audio_bytes_per_sample(mFormat),
3898 audio_bytes_per_frame(mChannelCount, mFormat) * mNormalFrameCount);
3899 }
3900 }
3901
3902 // enable changes in effect chain
3903 unlockEffectChains(effectChains);
3904
3905 if (!waitingAsyncCallback()) {
3906 // mSleepTimeUs == 0 means we must write to audio hardware
3907 if (mSleepTimeUs == 0) {
3908 ssize_t ret = 0;
3909 // writePeriodNs is updated >= 0 when ret > 0.
3910 int64_t writePeriodNs = -1;
3911 if (mBytesRemaining) {
3912 // FIXME rewrite to reduce number of system calls
3913 const int64_t lastIoBeginNs = systemTime();
3914 ret = threadLoop_write();
3915 const int64_t lastIoEndNs = systemTime();
3916 if (ret < 0) {
3917 mBytesRemaining = 0;
3918 } else if (ret > 0) {
3919 mBytesWritten += ret;
3920 mBytesRemaining -= ret;
3921 const int64_t frames = ret / mFrameSize;
3922 mFramesWritten += frames;
3923
3924 writePeriodNs = lastIoEndNs - mLastIoEndNs;
3925 // process information relating to write time.
3926 if (audio_has_proportional_frames(mFormat)) {
3927 // we are in a continuous mixing cycle
3928 if (mMixerStatus == MIXER_TRACKS_READY &&
3929 loopCount == lastLoopCountWritten + 1) {
3930
3931 const double jitterMs =
3932 TimestampVerifier<int64_t, int64_t>::computeJitterMs(
3933 {frames, writePeriodNs},
3934 {0, 0} /* lastTimestamp */, mSampleRate);
3935 const double processMs =
3936 (lastIoBeginNs - mLastIoEndNs) * 1e-6;
3937
3938 Mutex::Autolock _l(mLock);
3939 mIoJitterMs.add(jitterMs);
3940 mProcessTimeMs.add(processMs);
3941 }
3942
3943 // write blocked detection
3944 const int64_t deltaWriteNs = lastIoEndNs - lastIoBeginNs;
3945 if (mType == MIXER && deltaWriteNs > maxPeriod) {
3946 mNumDelayedWrites++;
3947 if ((lastIoEndNs - lastWarning) > kWarningThrottleNs) {
3948 ATRACE_NAME("underrun");
3949 ALOGW("write blocked for %lld msecs, "
3950 "%d delayed writes, thread %d",
3951 (long long)deltaWriteNs / NANOS_PER_MILLISECOND,
3952 mNumDelayedWrites, mId);
3953 lastWarning = lastIoEndNs;
3954 }
3955 }
3956 }
3957 // update timing info.
3958 mLastIoBeginNs = lastIoBeginNs;
3959 mLastIoEndNs = lastIoEndNs;
3960 lastLoopCountWritten = loopCount;
3961 }
3962 } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
3963 (mMixerStatus == MIXER_DRAIN_ALL)) {
3964 threadLoop_drain();
3965 }
3966 if (mType == MIXER && !mStandby) {
3967
3968 if (mThreadThrottle
3969 && mMixerStatus == MIXER_TRACKS_READY // we are mixing (active tracks)
3970 && writePeriodNs > 0) { // we have write period info
3971 // Limit MixerThread data processing to no more than twice the
3972 // expected processing rate.
3973 //
3974 // This helps prevent underruns with NuPlayer and other applications
3975 // which may set up buffers that are close to the minimum size, or use
3976 // deep buffers, and rely on a double-buffering sleep strategy to fill.
3977 //
3978 // The throttle smooths out sudden large data drains from the device,
3979 // e.g. when it comes out of standby, which often causes problems with
3980 // (1) mixer threads without a fast mixer (which has its own warm-up)
3981 // (2) minimum buffer sized tracks (even if the track is full,
3982 // the app won't fill fast enough to handle the sudden draw).
3983 //
3984 // Total time spent in last processing cycle equals time spent in
3985 // 1. threadLoop_write, as well as time spent in
3986 // 2. threadLoop_mix (significant for heavy mixing, especially
3987 // on low tier processors)
3988
3989 // it's OK if deltaMs is an overestimate.
3990
3991 const int32_t deltaMs = writePeriodNs / NANOS_PER_MILLISECOND;
3992
3993 const int32_t throttleMs = (int32_t)mHalfBufferMs - deltaMs;
3994 if ((signed)mHalfBufferMs >= throttleMs && throttleMs > 0) {
3995 mThreadMetrics.logThrottleMs((double)throttleMs);
3996
3997 usleep(throttleMs * 1000);
3998 // notify of throttle start on verbose log
3999 ALOGV_IF(mThreadThrottleEndMs == mThreadThrottleTimeMs,
4000 "mixer(%p) throttle begin:"
4001 " ret(%zd) deltaMs(%d) requires sleep %d ms",
4002 this, ret, deltaMs, throttleMs);
4003 mThreadThrottleTimeMs += throttleMs;
4004 // Throttle must be attributed to the previous mixer loop's write time
4005 // to allow back-to-back throttling.
4006 // This also ensures proper timing statistics.
4007 mLastIoEndNs = systemTime(); // we fetch the write end time again.
4008 } else {
4009 uint32_t diff = mThreadThrottleTimeMs - mThreadThrottleEndMs;
4010 if (diff > 0) {
4011 // notify of throttle end on debug log
4012 // but prevent spamming for bluetooth
4013 ALOGD_IF(!isSingleDeviceType(
4014 outDeviceTypes(), audio_is_a2dp_out_device) &&
4015 !isSingleDeviceType(
4016 outDeviceTypes(), audio_is_hearing_aid_out_device),
4017 "mixer(%p) throttle end: throttle time(%u)", this, diff);
4018 mThreadThrottleEndMs = mThreadThrottleTimeMs;
4019 }
4020 }
4021 }
4022 }
4023
4024 } else {
4025 ATRACE_BEGIN("sleep");
4026 Mutex::Autolock _l(mLock);
4027 // suspended requires accurate metering of sleep time.
4028 if (isSuspended()) {
4029 // advance by expected sleepTime
4030 timeLoopNextNs += microseconds((nsecs_t)mSleepTimeUs);
4031 const nsecs_t nowNs = systemTime();
4032
4033 // compute expected next time vs current time.
4034 // (negative deltas are treated as delays).
4035 nsecs_t deltaNs = timeLoopNextNs - nowNs;
4036 if (deltaNs < -kMaxNextBufferDelayNs) {
4037 // Delays longer than the max allowed trigger a reset.
4038 ALOGV("DelayNs: %lld, resetting timeLoopNextNs", (long long) deltaNs);
4039 deltaNs = microseconds((nsecs_t)mSleepTimeUs);
4040 timeLoopNextNs = nowNs + deltaNs;
4041 } else if (deltaNs < 0) {
4042 // Delays within the max delay allowed: zero the delta/sleepTime
4043 // to help the system catch up in the next iteration(s)
4044 ALOGV("DelayNs: %lld, catching-up", (long long) deltaNs);
4045 deltaNs = 0;
4046 }
4047 // update sleep time (which is >= 0)
4048 mSleepTimeUs = deltaNs / 1000;
4049 }
4050 if (!mSignalPending && mConfigEvents.isEmpty() && !exitPending()) {
4051 mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)mSleepTimeUs));
4052 }
4053 ATRACE_END();
4054 }
4055 }
4056
4057 // Finally let go of removed track(s), without the lock held
4058 // since we can't guarantee the destructors won't acquire that
4059 // same lock. This will also mutate and push a new fast mixer state.
4060 threadLoop_removeTracks(tracksToRemove);
4061 tracksToRemove.clear();
4062
4063 // FIXME I don't understand the need for this here;
4064 // it was in the original code but maybe the
4065 // assignment in saveOutputTracks() makes this unnecessary?
4066 clearOutputTracks();
4067
4068 // Effect chains will be actually deleted here if they were removed from
4069 // mEffectChains list during mixing or effects processing
4070 effectChains.clear();
4071
4072 // FIXME Note that the above .clear() is no longer necessary since effectChains
4073 // is now local to this block, but will keep it for now (at least until merge done).
4074 }
4075
4076 threadLoop_exit();
4077
4078 if (!mStandby) {
4079 threadLoop_standby();
4080 mStandby = true;
4081 }
4082
4083 releaseWakeLock();
4084
4085 ALOGV("Thread %p type %d exiting", this, mType);
4086 return false;
4087 }
4088
4089 // removeTracks_l() must be called with ThreadBase::mLock held
removeTracks_l(const Vector<sp<Track>> & tracksToRemove)4090 void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
4091 {
4092 for (const auto& track : tracksToRemove) {
4093 mActiveTracks.remove(track);
4094 ALOGV("%s(%d): removing track on session %d", __func__, track->id(), track->sessionId());
4095 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
4096 if (chain != 0) {
4097 ALOGV("%s(%d): stopping track on chain %p for session Id: %d",
4098 __func__, track->id(), chain.get(), track->sessionId());
4099 chain->decActiveTrackCnt();
4100 }
4101 // If an external client track, inform APM we're no longer active, and remove if needed.
4102 // We do this under lock so that the state is consistent if the Track is destroyed.
4103 if (track->isExternalTrack()) {
4104 AudioSystem::stopOutput(track->portId());
4105 if (track->isTerminated()) {
4106 AudioSystem::releaseOutput(track->portId());
4107 }
4108 }
4109 if (track->isTerminated()) {
4110 // remove from our tracks vector
4111 removeTrack_l(track);
4112 }
4113 if ((track->channelMask() & AUDIO_CHANNEL_HAPTIC_ALL) != AUDIO_CHANNEL_NONE
4114 && mHapticChannelCount > 0) {
4115 mLock.unlock();
4116 // Unlock due to VibratorService will lock for this call and will
4117 // call Tracks.mute/unmute which also require thread's lock.
4118 AudioFlinger::onExternalVibrationStop(track->getExternalVibration());
4119 mLock.lock();
4120 }
4121 }
4122 }
4123
getTimestamp_l(AudioTimestamp & timestamp)4124 status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
4125 {
4126 if (mNormalSink != 0) {
4127 ExtendedTimestamp ets;
4128 status_t status = mNormalSink->getTimestamp(ets);
4129 if (status == NO_ERROR) {
4130 status = ets.getBestTimestamp(×tamp);
4131 }
4132 return status;
4133 }
4134 if ((mType == OFFLOAD || mType == DIRECT) && mOutput != NULL) {
4135 uint64_t position64;
4136 if (mOutput->getPresentationPosition(&position64, ×tamp.mTime) == OK) {
4137 timestamp.mPosition = (uint32_t)position64;
4138 if (mDownstreamLatencyStatMs.getN() > 0) {
4139 const uint32_t positionOffset =
4140 (uint32_t)(mDownstreamLatencyStatMs.getMean() * mSampleRate * 1e-3);
4141 if (positionOffset > timestamp.mPosition) {
4142 timestamp.mPosition = 0;
4143 } else {
4144 timestamp.mPosition -= positionOffset;
4145 }
4146 }
4147 return NO_ERROR;
4148 }
4149 }
4150 return INVALID_OPERATION;
4151 }
4152
4153 // For dedicated VoIP outputs, let the HAL apply the stream volume. Track volume is
4154 // still applied by the mixer.
4155 // All tracks attached to a mixer with flag VOIP_RX are tied to the same
4156 // stream type STREAM_VOICE_CALL so this will only change the HAL volume once even
4157 // if more than one track are active
handleVoipVolume_l(float * volume)4158 status_t AudioFlinger::PlaybackThread::handleVoipVolume_l(float *volume)
4159 {
4160 status_t result = NO_ERROR;
4161 if ((mOutput->flags & AUDIO_OUTPUT_FLAG_VOIP_RX) != 0) {
4162 if (*volume != mLeftVolFloat) {
4163 result = mOutput->stream->setVolume(*volume, *volume);
4164 ALOGE_IF(result != OK,
4165 "Error when setting output stream volume: %d", result);
4166 if (result == NO_ERROR) {
4167 mLeftVolFloat = *volume;
4168 }
4169 }
4170 // if stream volume was successfully sent to the HAL, mLeftVolFloat == v here and we
4171 // remove stream volume contribution from software volume.
4172 if (mLeftVolFloat == *volume) {
4173 *volume = 1.0f;
4174 }
4175 }
4176 return result;
4177 }
4178
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)4179 status_t AudioFlinger::MixerThread::createAudioPatch_l(const struct audio_patch *patch,
4180 audio_patch_handle_t *handle)
4181 {
4182 status_t status;
4183 if (property_get_bool("af.patch_park", false /* default_value */)) {
4184 // Park FastMixer to avoid potential DOS issues with writing to the HAL
4185 // or if HAL does not properly lock against access.
4186 AutoPark<FastMixer> park(mFastMixer);
4187 status = PlaybackThread::createAudioPatch_l(patch, handle);
4188 } else {
4189 status = PlaybackThread::createAudioPatch_l(patch, handle);
4190 }
4191 return status;
4192 }
4193
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)4194 status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch,
4195 audio_patch_handle_t *handle)
4196 {
4197 status_t status = NO_ERROR;
4198
4199 // store new device and send to effects
4200 audio_devices_t type = AUDIO_DEVICE_NONE;
4201 AudioDeviceTypeAddrVector deviceTypeAddrs;
4202 for (unsigned int i = 0; i < patch->num_sinks; i++) {
4203 LOG_ALWAYS_FATAL_IF(popcount(patch->sinks[i].ext.device.type) > 1
4204 && !mOutput->audioHwDev->supportsAudioPatches(),
4205 "Enumerated device type(%#x) must not be used "
4206 "as it does not support audio patches",
4207 patch->sinks[i].ext.device.type);
4208 type |= patch->sinks[i].ext.device.type;
4209 deviceTypeAddrs.push_back(AudioDeviceTypeAddr(patch->sinks[i].ext.device.type,
4210 patch->sinks[i].ext.device.address));
4211 }
4212
4213 audio_port_handle_t sinkPortId = patch->sinks[0].id;
4214 #ifdef ADD_BATTERY_DATA
4215 // when changing the audio output device, call addBatteryData to notify
4216 // the change
4217 if (outDeviceTypes() != deviceTypes) {
4218 uint32_t params = 0;
4219 // check whether speaker is on
4220 if (deviceTypes.count(AUDIO_DEVICE_OUT_SPEAKER) > 0) {
4221 params |= IMediaPlayerService::kBatteryDataSpeakerOn;
4222 }
4223
4224 // check if any other device (except speaker) is on
4225 if (!isSingleDeviceType(deviceTypes, AUDIO_DEVICE_OUT_SPEAKER)) {
4226 params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
4227 }
4228
4229 if (params != 0) {
4230 addBatteryData(params);
4231 }
4232 }
4233 #endif
4234
4235 for (size_t i = 0; i < mEffectChains.size(); i++) {
4236 mEffectChains[i]->setDevices_l(deviceTypeAddrs);
4237 }
4238
4239 // mPatch.num_sinks is not set when the thread is created so that
4240 // the first patch creation triggers an ioConfigChanged callback
4241 bool configChanged = (mPatch.num_sinks == 0) ||
4242 (mPatch.sinks[0].id != sinkPortId);
4243 mPatch = *patch;
4244 mOutDeviceTypeAddrs = deviceTypeAddrs;
4245 checkSilentMode_l();
4246
4247 if (mOutput->audioHwDev->supportsAudioPatches()) {
4248 sp<DeviceHalInterface> hwDevice = mOutput->audioHwDev->hwDevice();
4249 status = hwDevice->createAudioPatch(patch->num_sources,
4250 patch->sources,
4251 patch->num_sinks,
4252 patch->sinks,
4253 handle);
4254 } else {
4255 char *address;
4256 if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
4257 //FIXME: we only support address on first sink with HAL version < 3.0
4258 address = audio_device_address_to_parameter(
4259 patch->sinks[0].ext.device.type,
4260 patch->sinks[0].ext.device.address);
4261 } else {
4262 address = (char *)calloc(1, 1);
4263 }
4264 AudioParameter param = AudioParameter(String8(address));
4265 free(address);
4266 param.addInt(String8(AudioParameter::keyRouting), (int)type);
4267 status = mOutput->stream->setParameters(param.toString());
4268 *handle = AUDIO_PATCH_HANDLE_NONE;
4269 }
4270 const std::string patchSinksAsString = patchSinksToString(patch);
4271
4272 mThreadMetrics.logEndInterval();
4273 mThreadMetrics.logCreatePatch(/* inDevices */ {}, patchSinksAsString);
4274 mThreadMetrics.logBeginInterval();
4275 // also dispatch to active AudioTracks for MediaMetrics
4276 for (const auto &track : mActiveTracks) {
4277 track->logEndInterval();
4278 track->logBeginInterval(patchSinksAsString);
4279 }
4280
4281 if (configChanged) {
4282 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
4283 }
4284 return status;
4285 }
4286
releaseAudioPatch_l(const audio_patch_handle_t handle)4287 status_t AudioFlinger::MixerThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
4288 {
4289 status_t status;
4290 if (property_get_bool("af.patch_park", false /* default_value */)) {
4291 // Park FastMixer to avoid potential DOS issues with writing to the HAL
4292 // or if HAL does not properly lock against access.
4293 AutoPark<FastMixer> park(mFastMixer);
4294 status = PlaybackThread::releaseAudioPatch_l(handle);
4295 } else {
4296 status = PlaybackThread::releaseAudioPatch_l(handle);
4297 }
4298 return status;
4299 }
4300
releaseAudioPatch_l(const audio_patch_handle_t handle)4301 status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
4302 {
4303 status_t status = NO_ERROR;
4304
4305 mPatch = audio_patch{};
4306 mOutDeviceTypeAddrs.clear();
4307
4308 if (mOutput->audioHwDev->supportsAudioPatches()) {
4309 sp<DeviceHalInterface> hwDevice = mOutput->audioHwDev->hwDevice();
4310 status = hwDevice->releaseAudioPatch(handle);
4311 } else {
4312 AudioParameter param;
4313 param.addInt(String8(AudioParameter::keyRouting), 0);
4314 status = mOutput->stream->setParameters(param.toString());
4315 }
4316 return status;
4317 }
4318
addPatchTrack(const sp<PatchTrack> & track)4319 void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track)
4320 {
4321 Mutex::Autolock _l(mLock);
4322 mTracks.add(track);
4323 }
4324
deletePatchTrack(const sp<PatchTrack> & track)4325 void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track)
4326 {
4327 Mutex::Autolock _l(mLock);
4328 destroyTrack_l(track);
4329 }
4330
toAudioPortConfig(struct audio_port_config * config)4331 void AudioFlinger::PlaybackThread::toAudioPortConfig(struct audio_port_config *config)
4332 {
4333 ThreadBase::toAudioPortConfig(config);
4334 config->role = AUDIO_PORT_ROLE_SOURCE;
4335 config->ext.mix.hw_module = mOutput->audioHwDev->handle();
4336 config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
4337 if (mOutput && mOutput->flags != AUDIO_OUTPUT_FLAG_NONE) {
4338 config->config_mask |= AUDIO_PORT_CONFIG_FLAGS;
4339 config->flags.output = mOutput->flags;
4340 }
4341 }
4342
4343 // ----------------------------------------------------------------------------
4344
MixerThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,bool systemReady,type_t type)4345 AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
4346 audio_io_handle_t id, bool systemReady, type_t type)
4347 : PlaybackThread(audioFlinger, output, id, type, systemReady),
4348 // mAudioMixer below
4349 // mFastMixer below
4350 mFastMixerFutex(0),
4351 mMasterMono(false)
4352 // mOutputSink below
4353 // mPipeSink below
4354 // mNormalSink below
4355 {
4356 setMasterBalance(audioFlinger->getMasterBalance_l());
4357 ALOGV("MixerThread() id=%d type=%d", id, type);
4358 ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%#x, mFrameSize=%zu, "
4359 "mFrameCount=%zu, mNormalFrameCount=%zu",
4360 mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
4361 mNormalFrameCount);
4362 mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
4363
4364 if (type == DUPLICATING) {
4365 // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks
4366 // (downstream MixerThreads) in DuplicatingThread::threadLoop_write().
4367 // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink.
4368 return;
4369 }
4370 // create an NBAIO sink for the HAL output stream, and negotiate
4371 mOutputSink = new AudioStreamOutSink(output->stream);
4372 size_t numCounterOffers = 0;
4373 const NBAIO_Format offers[1] = {Format_from_SR_C(
4374 mSampleRate, mChannelCount + mHapticChannelCount, mFormat)};
4375 #if !LOG_NDEBUG
4376 ssize_t index =
4377 #else
4378 (void)
4379 #endif
4380 mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
4381 ALOG_ASSERT(index == 0);
4382
4383 // initialize fast mixer depending on configuration
4384 bool initFastMixer;
4385 switch (kUseFastMixer) {
4386 case FastMixer_Never:
4387 initFastMixer = false;
4388 break;
4389 case FastMixer_Always:
4390 initFastMixer = true;
4391 break;
4392 case FastMixer_Static:
4393 case FastMixer_Dynamic:
4394 // FastMixer was designed to operate with a HAL that pulls at a regular rate,
4395 // where the period is less than an experimentally determined threshold that can be
4396 // scheduled reliably with CFS. However, the BT A2DP HAL is
4397 // bursty (does not pull at a regular rate) and so cannot operate with FastMixer.
4398 initFastMixer = mFrameCount < mNormalFrameCount
4399 && Intersection(outDeviceTypes(), getAudioDeviceOutAllA2dpSet()).empty();
4400 break;
4401 }
4402 ALOGW_IF(initFastMixer == false && mFrameCount < mNormalFrameCount,
4403 "FastMixer is preferred for this sink as frameCount %zu is less than threshold %zu",
4404 mFrameCount, mNormalFrameCount);
4405 if (initFastMixer) {
4406 audio_format_t fastMixerFormat;
4407 if (mMixerBufferEnabled && mEffectBufferEnabled) {
4408 fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT;
4409 } else {
4410 fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
4411 }
4412 if (mFormat != fastMixerFormat) {
4413 // change our Sink format to accept our intermediate precision
4414 mFormat = fastMixerFormat;
4415 free(mSinkBuffer);
4416 mFrameSize = audio_bytes_per_frame(mChannelCount + mHapticChannelCount, mFormat);
4417 const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
4418 (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
4419 }
4420
4421 // create a MonoPipe to connect our submix to FastMixer
4422 NBAIO_Format format = mOutputSink->format();
4423
4424 // adjust format to match that of the Fast Mixer
4425 ALOGV("format changed from %#x to %#x", format.mFormat, fastMixerFormat);
4426 format.mFormat = fastMixerFormat;
4427 format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount;
4428
4429 // This pipe depth compensates for scheduling latency of the normal mixer thread.
4430 // When it wakes up after a maximum latency, it runs a few cycles quickly before
4431 // finally blocking. Note the pipe implementation rounds up the request to a power of 2.
4432 MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
4433 const NBAIO_Format offers[1] = {format};
4434 size_t numCounterOffers = 0;
4435 #if !LOG_NDEBUG
4436 ssize_t index =
4437 #else
4438 (void)
4439 #endif
4440 monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
4441 ALOG_ASSERT(index == 0);
4442 monoPipe->setAvgFrames((mScreenState & 1) ?
4443 (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
4444 mPipeSink = monoPipe;
4445
4446 // create fast mixer and configure it initially with just one fast track for our submix
4447 mFastMixer = new FastMixer(mId);
4448 FastMixerStateQueue *sq = mFastMixer->sq();
4449 #ifdef STATE_QUEUE_DUMP
4450 sq->setObserverDump(&mStateQueueObserverDump);
4451 sq->setMutatorDump(&mStateQueueMutatorDump);
4452 #endif
4453 FastMixerState *state = sq->begin();
4454 FastTrack *fastTrack = &state->mFastTracks[0];
4455 // wrap the source side of the MonoPipe to make it an AudioBufferProvider
4456 fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
4457 fastTrack->mVolumeProvider = NULL;
4458 fastTrack->mChannelMask = mChannelMask | mHapticChannelMask; // mPipeSink channel mask for
4459 // audio to FastMixer
4460 fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer
4461 fastTrack->mHapticPlaybackEnabled = mHapticChannelMask != AUDIO_CHANNEL_NONE;
4462 fastTrack->mHapticIntensity = AudioMixer::HAPTIC_SCALE_NONE;
4463 fastTrack->mGeneration++;
4464 state->mFastTracksGen++;
4465 state->mTrackMask = 1;
4466 // fast mixer will use the HAL output sink
4467 state->mOutputSink = mOutputSink.get();
4468 state->mOutputSinkGen++;
4469 state->mFrameCount = mFrameCount;
4470 // specify sink channel mask when haptic channel mask present as it can not
4471 // be calculated directly from channel count
4472 state->mSinkChannelMask = mHapticChannelMask == AUDIO_CHANNEL_NONE
4473 ? AUDIO_CHANNEL_NONE : mChannelMask | mHapticChannelMask;
4474 state->mCommand = FastMixerState::COLD_IDLE;
4475 // already done in constructor initialization list
4476 //mFastMixerFutex = 0;
4477 state->mColdFutexAddr = &mFastMixerFutex;
4478 state->mColdGen++;
4479 state->mDumpState = &mFastMixerDumpState;
4480 mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
4481 state->mNBLogWriter = mFastMixerNBLogWriter.get();
4482 sq->end();
4483 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
4484
4485 NBLog::thread_info_t info;
4486 info.id = mId;
4487 info.type = NBLog::FASTMIXER;
4488 mFastMixerNBLogWriter->log<NBLog::EVENT_THREAD_INFO>(info);
4489
4490 // start the fast mixer
4491 mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
4492 pid_t tid = mFastMixer->getTid();
4493 sendPrioConfigEvent(getpid(), tid, kPriorityFastMixer, false /*forApp*/);
4494 stream()->setHalThreadPriority(kPriorityFastMixer);
4495
4496 #ifdef AUDIO_WATCHDOG
4497 // create and start the watchdog
4498 mAudioWatchdog = new AudioWatchdog();
4499 mAudioWatchdog->setDump(&mAudioWatchdogDump);
4500 mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
4501 tid = mAudioWatchdog->getTid();
4502 sendPrioConfigEvent(getpid(), tid, kPriorityFastMixer, false /*forApp*/);
4503 #endif
4504 } else {
4505 #ifdef TEE_SINK
4506 // Only use the MixerThread tee if there is no FastMixer.
4507 mTee.set(mOutputSink->format(), NBAIO_Tee::TEE_FLAG_OUTPUT_THREAD);
4508 mTee.setId(std::string("_") + std::to_string(mId) + "_M");
4509 #endif
4510 }
4511
4512 switch (kUseFastMixer) {
4513 case FastMixer_Never:
4514 case FastMixer_Dynamic:
4515 mNormalSink = mOutputSink;
4516 break;
4517 case FastMixer_Always:
4518 mNormalSink = mPipeSink;
4519 break;
4520 case FastMixer_Static:
4521 mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
4522 break;
4523 }
4524 }
4525
~MixerThread()4526 AudioFlinger::MixerThread::~MixerThread()
4527 {
4528 if (mFastMixer != 0) {
4529 FastMixerStateQueue *sq = mFastMixer->sq();
4530 FastMixerState *state = sq->begin();
4531 if (state->mCommand == FastMixerState::COLD_IDLE) {
4532 int32_t old = android_atomic_inc(&mFastMixerFutex);
4533 if (old == -1) {
4534 (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
4535 }
4536 }
4537 state->mCommand = FastMixerState::EXIT;
4538 sq->end();
4539 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
4540 mFastMixer->join();
4541 // Though the fast mixer thread has exited, it's state queue is still valid.
4542 // We'll use that extract the final state which contains one remaining fast track
4543 // corresponding to our sub-mix.
4544 state = sq->begin();
4545 ALOG_ASSERT(state->mTrackMask == 1);
4546 FastTrack *fastTrack = &state->mFastTracks[0];
4547 ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
4548 delete fastTrack->mBufferProvider;
4549 sq->end(false /*didModify*/);
4550 mFastMixer.clear();
4551 #ifdef AUDIO_WATCHDOG
4552 if (mAudioWatchdog != 0) {
4553 mAudioWatchdog->requestExit();
4554 mAudioWatchdog->requestExitAndWait();
4555 mAudioWatchdog.clear();
4556 }
4557 #endif
4558 }
4559 mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
4560 delete mAudioMixer;
4561 }
4562
4563
correctLatency_l(uint32_t latency) const4564 uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
4565 {
4566 if (mFastMixer != 0) {
4567 MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
4568 latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
4569 }
4570 return latency;
4571 }
4572
threadLoop_write()4573 ssize_t AudioFlinger::MixerThread::threadLoop_write()
4574 {
4575 // FIXME we should only do one push per cycle; confirm this is true
4576 // Start the fast mixer if it's not already running
4577 if (mFastMixer != 0) {
4578 FastMixerStateQueue *sq = mFastMixer->sq();
4579 FastMixerState *state = sq->begin();
4580 if (state->mCommand != FastMixerState::MIX_WRITE &&
4581 (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
4582 if (state->mCommand == FastMixerState::COLD_IDLE) {
4583
4584 // FIXME workaround for first HAL write being CPU bound on some devices
4585 ATRACE_BEGIN("write");
4586 mOutput->write((char *)mSinkBuffer, 0);
4587 ATRACE_END();
4588
4589 int32_t old = android_atomic_inc(&mFastMixerFutex);
4590 if (old == -1) {
4591 (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
4592 }
4593 #ifdef AUDIO_WATCHDOG
4594 if (mAudioWatchdog != 0) {
4595 mAudioWatchdog->resume();
4596 }
4597 #endif
4598 }
4599 state->mCommand = FastMixerState::MIX_WRITE;
4600 #ifdef FAST_THREAD_STATISTICS
4601 mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
4602 FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN);
4603 #endif
4604 sq->end();
4605 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
4606 if (kUseFastMixer == FastMixer_Dynamic) {
4607 mNormalSink = mPipeSink;
4608 }
4609 } else {
4610 sq->end(false /*didModify*/);
4611 }
4612 }
4613 return PlaybackThread::threadLoop_write();
4614 }
4615
threadLoop_standby()4616 void AudioFlinger::MixerThread::threadLoop_standby()
4617 {
4618 // Idle the fast mixer if it's currently running
4619 if (mFastMixer != 0) {
4620 FastMixerStateQueue *sq = mFastMixer->sq();
4621 FastMixerState *state = sq->begin();
4622 if (!(state->mCommand & FastMixerState::IDLE)) {
4623 // Report any frames trapped in the Monopipe
4624 MonoPipe *monoPipe = (MonoPipe *)mPipeSink.get();
4625 const long long pipeFrames = monoPipe->maxFrames() - monoPipe->availableToWrite();
4626 mLocalLog.log("threadLoop_standby: framesWritten:%lld suspendedFrames:%lld "
4627 "monoPipeWritten:%lld monoPipeLeft:%lld",
4628 (long long)mFramesWritten, (long long)mSuspendedFrames,
4629 (long long)mPipeSink->framesWritten(), pipeFrames);
4630 mLocalLog.log("threadLoop_standby: %s", mTimestamp.toString().c_str());
4631
4632 state->mCommand = FastMixerState::COLD_IDLE;
4633 state->mColdFutexAddr = &mFastMixerFutex;
4634 state->mColdGen++;
4635 mFastMixerFutex = 0;
4636 sq->end();
4637 // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
4638 sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
4639 if (kUseFastMixer == FastMixer_Dynamic) {
4640 mNormalSink = mOutputSink;
4641 }
4642 #ifdef AUDIO_WATCHDOG
4643 if (mAudioWatchdog != 0) {
4644 mAudioWatchdog->pause();
4645 }
4646 #endif
4647 } else {
4648 sq->end(false /*didModify*/);
4649 }
4650 }
4651 PlaybackThread::threadLoop_standby();
4652 }
4653
waitingAsyncCallback_l()4654 bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
4655 {
4656 return false;
4657 }
4658
shouldStandby_l()4659 bool AudioFlinger::PlaybackThread::shouldStandby_l()
4660 {
4661 return !mStandby;
4662 }
4663
waitingAsyncCallback()4664 bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
4665 {
4666 Mutex::Autolock _l(mLock);
4667 return waitingAsyncCallback_l();
4668 }
4669
4670 // shared by MIXER and DIRECT, overridden by DUPLICATING
threadLoop_standby()4671 void AudioFlinger::PlaybackThread::threadLoop_standby()
4672 {
4673 ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
4674 mOutput->standby();
4675 if (mUseAsyncWrite != 0) {
4676 // discard any pending drain or write ack by incrementing sequence
4677 mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
4678 mDrainSequence = (mDrainSequence + 2) & ~1;
4679 ALOG_ASSERT(mCallbackThread != 0);
4680 mCallbackThread->setWriteBlocked(mWriteAckSequence);
4681 mCallbackThread->setDraining(mDrainSequence);
4682 }
4683 mHwPaused = false;
4684 }
4685
onAddNewTrack_l()4686 void AudioFlinger::PlaybackThread::onAddNewTrack_l()
4687 {
4688 ALOGV("signal playback thread");
4689 broadcast_l();
4690 }
4691
onAsyncError()4692 void AudioFlinger::PlaybackThread::onAsyncError()
4693 {
4694 for (int i = AUDIO_STREAM_SYSTEM; i < (int)AUDIO_STREAM_CNT; i++) {
4695 invalidateTracks((audio_stream_type_t)i);
4696 }
4697 }
4698
threadLoop_mix()4699 void AudioFlinger::MixerThread::threadLoop_mix()
4700 {
4701 // mix buffers...
4702 mAudioMixer->process();
4703 mCurrentWriteLength = mSinkBufferSize;
4704 // increase sleep time progressively when application underrun condition clears.
4705 // Only increase sleep time if the mixer is ready for two consecutive times to avoid
4706 // that a steady state of alternating ready/not ready conditions keeps the sleep time
4707 // such that we would underrun the audio HAL.
4708 if ((mSleepTimeUs == 0) && (sleepTimeShift > 0)) {
4709 sleepTimeShift--;
4710 }
4711 mSleepTimeUs = 0;
4712 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
4713 //TODO: delay standby when effects have a tail
4714
4715 }
4716
threadLoop_sleepTime()4717 void AudioFlinger::MixerThread::threadLoop_sleepTime()
4718 {
4719 // If no tracks are ready, sleep once for the duration of an output
4720 // buffer size, then write 0s to the output
4721 if (mSleepTimeUs == 0) {
4722 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
4723 if (mPipeSink.get() != nullptr && mPipeSink == mNormalSink) {
4724 // Using the Monopipe availableToWrite, we estimate the
4725 // sleep time to retry for more data (before we underrun).
4726 MonoPipe *monoPipe = static_cast<MonoPipe *>(mPipeSink.get());
4727 const ssize_t availableToWrite = mPipeSink->availableToWrite();
4728 const size_t pipeFrames = monoPipe->maxFrames();
4729 const size_t framesLeft = pipeFrames - max(availableToWrite, 0);
4730 // HAL_framecount <= framesDelay ~ framesLeft / 2 <= Normal_Mixer_framecount
4731 const size_t framesDelay = std::min(
4732 mNormalFrameCount, max(framesLeft / 2, mFrameCount));
4733 ALOGV("pipeFrames:%zu framesLeft:%zu framesDelay:%zu",
4734 pipeFrames, framesLeft, framesDelay);
4735 mSleepTimeUs = framesDelay * MICROS_PER_SECOND / mSampleRate;
4736 } else {
4737 mSleepTimeUs = mActiveSleepTimeUs >> sleepTimeShift;
4738 if (mSleepTimeUs < kMinThreadSleepTimeUs) {
4739 mSleepTimeUs = kMinThreadSleepTimeUs;
4740 }
4741 // reduce sleep time in case of consecutive application underruns to avoid
4742 // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
4743 // duration we would end up writing less data than needed by the audio HAL if
4744 // the condition persists.
4745 if (sleepTimeShift < kMaxThreadSleepTimeShift) {
4746 sleepTimeShift++;
4747 }
4748 }
4749 } else {
4750 mSleepTimeUs = mIdleSleepTimeUs;
4751 }
4752 } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
4753 // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared
4754 // before effects processing or output.
4755 if (mMixerBufferValid) {
4756 memset(mMixerBuffer, 0, mMixerBufferSize);
4757 } else {
4758 memset(mSinkBuffer, 0, mSinkBufferSize);
4759 }
4760 mSleepTimeUs = 0;
4761 ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
4762 "anticipated start");
4763 }
4764 // TODO add standby time extension fct of effect tail
4765 }
4766
4767 // prepareTracks_l() must be called with ThreadBase::mLock held
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)4768 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
4769 Vector< sp<Track> > *tracksToRemove)
4770 {
4771 // clean up deleted track ids in AudioMixer before allocating new tracks
4772 (void)mTracks.processDeletedTrackIds([this](int trackId) {
4773 // for each trackId, destroy it in the AudioMixer
4774 if (mAudioMixer->exists(trackId)) {
4775 mAudioMixer->destroy(trackId);
4776 }
4777 });
4778 mTracks.clearDeletedTrackIds();
4779
4780 mixer_state mixerStatus = MIXER_IDLE;
4781 // find out which tracks need to be processed
4782 size_t count = mActiveTracks.size();
4783 size_t mixedTracks = 0;
4784 size_t tracksWithEffect = 0;
4785 // counts only _active_ fast tracks
4786 size_t fastTracks = 0;
4787 uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
4788
4789 float masterVolume = mMasterVolume;
4790 bool masterMute = mMasterMute;
4791
4792 if (masterMute) {
4793 masterVolume = 0;
4794 }
4795 // Delegate master volume control to effect in output mix effect chain if needed
4796 sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
4797 if (chain != 0) {
4798 uint32_t v = (uint32_t)(masterVolume * (1 << 24));
4799 chain->setVolume_l(&v, &v);
4800 masterVolume = (float)((v + (1 << 23)) >> 24);
4801 chain.clear();
4802 }
4803
4804 // prepare a new state to push
4805 FastMixerStateQueue *sq = NULL;
4806 FastMixerState *state = NULL;
4807 bool didModify = false;
4808 FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
4809 bool coldIdle = false;
4810 if (mFastMixer != 0) {
4811 sq = mFastMixer->sq();
4812 state = sq->begin();
4813 coldIdle = state->mCommand == FastMixerState::COLD_IDLE;
4814 }
4815
4816 mMixerBufferValid = false; // mMixerBuffer has no valid data until appropriate tracks found.
4817 mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found.
4818
4819 // DeferredOperations handles statistics after setting mixerStatus.
4820 class DeferredOperations {
4821 public:
4822 DeferredOperations(mixer_state *mixerStatus, ThreadMetrics *threadMetrics)
4823 : mMixerStatus(mixerStatus)
4824 , mThreadMetrics(threadMetrics) {}
4825
4826 // when leaving scope, tally frames properly.
4827 ~DeferredOperations() {
4828 // Tally underrun frames only if we are actually mixing (MIXER_TRACKS_READY)
4829 // because that is when the underrun occurs.
4830 // We do not distinguish between FastTracks and NormalTracks here.
4831 size_t maxUnderrunFrames = 0;
4832 if (*mMixerStatus == MIXER_TRACKS_READY && mUnderrunFrames.size() > 0) {
4833 for (const auto &underrun : mUnderrunFrames) {
4834 underrun.first->tallyUnderrunFrames(underrun.second);
4835 maxUnderrunFrames = max(underrun.second, maxUnderrunFrames);
4836 }
4837 }
4838 // send the max underrun frames for this mixer period
4839 mThreadMetrics->logUnderrunFrames(maxUnderrunFrames);
4840 }
4841
4842 // tallyUnderrunFrames() is called to update the track counters
4843 // with the number of underrun frames for a particular mixer period.
4844 // We defer tallying until we know the final mixer status.
4845 void tallyUnderrunFrames(sp<Track> track, size_t underrunFrames) {
4846 mUnderrunFrames.emplace_back(track, underrunFrames);
4847 }
4848
4849 private:
4850 const mixer_state * const mMixerStatus;
4851 ThreadMetrics * const mThreadMetrics;
4852 std::vector<std::pair<sp<Track>, size_t>> mUnderrunFrames;
4853 } deferredOperations(&mixerStatus, &mThreadMetrics);
4854 // implicit nested scope for variable capture
4855
4856 bool noFastHapticTrack = true;
4857 for (size_t i=0 ; i<count ; i++) {
4858 const sp<Track> t = mActiveTracks[i];
4859
4860 // this const just means the local variable doesn't change
4861 Track* const track = t.get();
4862
4863 // process fast tracks
4864 if (track->isFastTrack()) {
4865 LOG_ALWAYS_FATAL_IF(mFastMixer.get() == nullptr,
4866 "%s(%d): FastTrack(%d) present without FastMixer",
4867 __func__, id(), track->id());
4868
4869 if (track->getHapticPlaybackEnabled()) {
4870 noFastHapticTrack = false;
4871 }
4872
4873 // It's theoretically possible (though unlikely) for a fast track to be created
4874 // and then removed within the same normal mix cycle. This is not a problem, as
4875 // the track never becomes active so it's fast mixer slot is never touched.
4876 // The converse, of removing an (active) track and then creating a new track
4877 // at the identical fast mixer slot within the same normal mix cycle,
4878 // is impossible because the slot isn't marked available until the end of each cycle.
4879 int j = track->mFastIndex;
4880 ALOG_ASSERT(0 < j && j < (int)FastMixerState::sMaxFastTracks);
4881 ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
4882 FastTrack *fastTrack = &state->mFastTracks[j];
4883
4884 // Determine whether the track is currently in underrun condition,
4885 // and whether it had a recent underrun.
4886 FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
4887 FastTrackUnderruns underruns = ftDump->mUnderruns;
4888 uint32_t recentFull = (underruns.mBitFields.mFull -
4889 track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
4890 uint32_t recentPartial = (underruns.mBitFields.mPartial -
4891 track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
4892 uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
4893 track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
4894 uint32_t recentUnderruns = recentPartial + recentEmpty;
4895 track->mObservedUnderruns = underruns;
4896 // don't count underruns that occur while stopping or pausing
4897 // or stopped which can occur when flush() is called while active
4898 size_t underrunFrames = 0;
4899 if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
4900 recentUnderruns > 0) {
4901 // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
4902 underrunFrames = recentUnderruns * mFrameCount;
4903 }
4904 // Immediately account for FastTrack underruns.
4905 track->mAudioTrackServerProxy->tallyUnderrunFrames(underrunFrames);
4906
4907 // This is similar to the state machine for normal tracks,
4908 // with a few modifications for fast tracks.
4909 bool isActive = true;
4910 switch (track->mState) {
4911 case TrackBase::STOPPING_1:
4912 // track stays active in STOPPING_1 state until first underrun
4913 if (recentUnderruns > 0 || track->isTerminated()) {
4914 track->mState = TrackBase::STOPPING_2;
4915 }
4916 break;
4917 case TrackBase::PAUSING:
4918 // ramp down is not yet implemented
4919 track->setPaused();
4920 break;
4921 case TrackBase::RESUMING:
4922 // ramp up is not yet implemented
4923 track->mState = TrackBase::ACTIVE;
4924 break;
4925 case TrackBase::ACTIVE:
4926 if (recentFull > 0 || recentPartial > 0) {
4927 // track has provided at least some frames recently: reset retry count
4928 track->mRetryCount = kMaxTrackRetries;
4929 }
4930 if (recentUnderruns == 0) {
4931 // no recent underruns: stay active
4932 break;
4933 }
4934 // there has recently been an underrun of some kind
4935 if (track->sharedBuffer() == 0) {
4936 // were any of the recent underruns "empty" (no frames available)?
4937 if (recentEmpty == 0) {
4938 // no, then ignore the partial underruns as they are allowed indefinitely
4939 break;
4940 }
4941 // there has recently been an "empty" underrun: decrement the retry counter
4942 if (--(track->mRetryCount) > 0) {
4943 break;
4944 }
4945 // indicate to client process that the track was disabled because of underrun;
4946 // it will then automatically call start() when data is available
4947 track->disable();
4948 // remove from active list, but state remains ACTIVE [confusing but true]
4949 isActive = false;
4950 break;
4951 }
4952 FALLTHROUGH_INTENDED;
4953 case TrackBase::STOPPING_2:
4954 case TrackBase::PAUSED:
4955 case TrackBase::STOPPED:
4956 case TrackBase::FLUSHED: // flush() while active
4957 // Check for presentation complete if track is inactive
4958 // We have consumed all the buffers of this track.
4959 // This would be incomplete if we auto-paused on underrun
4960 {
4961 uint32_t latency = 0;
4962 status_t result = mOutput->stream->getLatency(&latency);
4963 ALOGE_IF(result != OK,
4964 "Error when retrieving output stream latency: %d", result);
4965 size_t audioHALFrames = (latency * mSampleRate) / 1000;
4966 int64_t framesWritten = mBytesWritten / mFrameSize;
4967 if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
4968 // track stays in active list until presentation is complete
4969 break;
4970 }
4971 }
4972 if (track->isStopping_2()) {
4973 track->mState = TrackBase::STOPPED;
4974 }
4975 if (track->isStopped()) {
4976 // Can't reset directly, as fast mixer is still polling this track
4977 // track->reset();
4978 // So instead mark this track as needing to be reset after push with ack
4979 resetMask |= 1 << i;
4980 }
4981 isActive = false;
4982 break;
4983 case TrackBase::IDLE:
4984 default:
4985 LOG_ALWAYS_FATAL("unexpected track state %d", track->mState);
4986 }
4987
4988 if (isActive) {
4989 // was it previously inactive?
4990 if (!(state->mTrackMask & (1 << j))) {
4991 ExtendedAudioBufferProvider *eabp = track;
4992 VolumeProvider *vp = track;
4993 fastTrack->mBufferProvider = eabp;
4994 fastTrack->mVolumeProvider = vp;
4995 fastTrack->mChannelMask = track->mChannelMask;
4996 fastTrack->mFormat = track->mFormat;
4997 fastTrack->mHapticPlaybackEnabled = track->getHapticPlaybackEnabled();
4998 fastTrack->mHapticIntensity = track->getHapticIntensity();
4999 fastTrack->mGeneration++;
5000 state->mTrackMask |= 1 << j;
5001 didModify = true;
5002 // no acknowledgement required for newly active tracks
5003 }
5004 sp<AudioTrackServerProxy> proxy = track->mAudioTrackServerProxy;
5005 float volume;
5006 if (track->isPlaybackRestricted() || mStreamTypes[track->streamType()].mute) {
5007 volume = 0.f;
5008 } else {
5009 volume = masterVolume * mStreamTypes[track->streamType()].volume;
5010 }
5011
5012 handleVoipVolume_l(&volume);
5013
5014 // cache the combined master volume and stream type volume for fast mixer; this
5015 // lacks any synchronization or barrier so VolumeProvider may read a stale value
5016 const float vh = track->getVolumeHandler()->getVolume(
5017 proxy->framesReleased()).first;
5018 volume *= vh;
5019 track->mCachedVolume = volume;
5020 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
5021 float vlf = volume * float_from_gain(gain_minifloat_unpack_left(vlr));
5022 float vrf = volume * float_from_gain(gain_minifloat_unpack_right(vlr));
5023
5024 track->setFinalVolume((vlf + vrf) / 2.f);
5025 ++fastTracks;
5026 } else {
5027 // was it previously active?
5028 if (state->mTrackMask & (1 << j)) {
5029 fastTrack->mBufferProvider = NULL;
5030 fastTrack->mGeneration++;
5031 state->mTrackMask &= ~(1 << j);
5032 didModify = true;
5033 // If any fast tracks were removed, we must wait for acknowledgement
5034 // because we're about to decrement the last sp<> on those tracks.
5035 block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
5036 } else {
5037 // ALOGW rather than LOG_ALWAYS_FATAL because it seems there are cases where an
5038 // AudioTrack may start (which may not be with a start() but with a write()
5039 // after underrun) and immediately paused or released. In that case the
5040 // FastTrack state hasn't had time to update.
5041 // TODO Remove the ALOGW when this theory is confirmed.
5042 ALOGW("fast track %d should have been active; "
5043 "mState=%d, mTrackMask=%#x, recentUnderruns=%u, isShared=%d",
5044 j, track->mState, state->mTrackMask, recentUnderruns,
5045 track->sharedBuffer() != 0);
5046 // Since the FastMixer state already has the track inactive, do nothing here.
5047 }
5048 tracksToRemove->add(track);
5049 // Avoids a misleading display in dumpsys
5050 track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
5051 }
5052 if (fastTrack->mHapticPlaybackEnabled != track->getHapticPlaybackEnabled()) {
5053 fastTrack->mHapticPlaybackEnabled = track->getHapticPlaybackEnabled();
5054 didModify = true;
5055 }
5056 continue;
5057 }
5058
5059 { // local variable scope to avoid goto warning
5060
5061 audio_track_cblk_t* cblk = track->cblk();
5062
5063 // The first time a track is added we wait
5064 // for all its buffers to be filled before processing it
5065 const int trackId = track->id();
5066
5067 // if an active track doesn't exist in the AudioMixer, create it.
5068 // use the trackId as the AudioMixer name.
5069 if (!mAudioMixer->exists(trackId)) {
5070 status_t status = mAudioMixer->create(
5071 trackId,
5072 track->mChannelMask,
5073 track->mFormat,
5074 track->mSessionId);
5075 if (status != OK) {
5076 ALOGW("%s(): AudioMixer cannot create track(%d)"
5077 " mask %#x, format %#x, sessionId %d",
5078 __func__, trackId,
5079 track->mChannelMask, track->mFormat, track->mSessionId);
5080 tracksToRemove->add(track);
5081 track->invalidate(); // consider it dead.
5082 continue;
5083 }
5084 }
5085
5086 // make sure that we have enough frames to mix one full buffer.
5087 // enforce this condition only once to enable draining the buffer in case the client
5088 // app does not call stop() and relies on underrun to stop:
5089 // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
5090 // during last round
5091 size_t desiredFrames;
5092 const uint32_t sampleRate = track->mAudioTrackServerProxy->getSampleRate();
5093 AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
5094
5095 desiredFrames = sourceFramesNeededWithTimestretch(
5096 sampleRate, mNormalFrameCount, mSampleRate, playbackRate.mSpeed);
5097 // TODO: ONLY USED FOR LEGACY RESAMPLERS, remove when they are removed.
5098 // add frames already consumed but not yet released by the resampler
5099 // because mAudioTrackServerProxy->framesReady() will include these frames
5100 desiredFrames += mAudioMixer->getUnreleasedFrames(trackId);
5101
5102 uint32_t minFrames = 1;
5103 if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
5104 (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
5105 minFrames = desiredFrames;
5106 }
5107
5108 size_t framesReady = track->framesReady();
5109 if (ATRACE_ENABLED()) {
5110 // I wish we had formatted trace names
5111 std::string traceName("nRdy");
5112 traceName += std::to_string(trackId);
5113 ATRACE_INT(traceName.c_str(), framesReady);
5114 }
5115 if ((framesReady >= minFrames) && track->isReady() &&
5116 !track->isPaused() && !track->isTerminated())
5117 {
5118 ALOGVV("track(%d) s=%08x [OK] on thread %p", trackId, cblk->mServer, this);
5119
5120 mixedTracks++;
5121
5122 // track->mainBuffer() != mSinkBuffer or mMixerBuffer means
5123 // there is an effect chain connected to the track
5124 chain.clear();
5125 if (track->mainBuffer() != mSinkBuffer &&
5126 track->mainBuffer() != mMixerBuffer) {
5127 if (mEffectBufferEnabled) {
5128 mEffectBufferValid = true; // Later can set directly.
5129 }
5130 chain = getEffectChain_l(track->sessionId());
5131 // Delegate volume control to effect in track effect chain if needed
5132 if (chain != 0) {
5133 tracksWithEffect++;
5134 } else {
5135 ALOGW("prepareTracks_l(): track(%d) attached to effect but no chain found on "
5136 "session %d",
5137 trackId, track->sessionId());
5138 }
5139 }
5140
5141
5142 int param = AudioMixer::VOLUME;
5143 if (track->mFillingUpStatus == Track::FS_FILLED) {
5144 // no ramp for the first volume setting
5145 track->mFillingUpStatus = Track::FS_ACTIVE;
5146 if (track->mState == TrackBase::RESUMING) {
5147 track->mState = TrackBase::ACTIVE;
5148 // If a new track is paused immediately after start, do not ramp on resume.
5149 if (cblk->mServer != 0) {
5150 param = AudioMixer::RAMP_VOLUME;
5151 }
5152 }
5153 mAudioMixer->setParameter(trackId, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
5154 mLeftVolFloat = -1.0;
5155 // FIXME should not make a decision based on mServer
5156 } else if (cblk->mServer != 0) {
5157 // If the track is stopped before the first frame was mixed,
5158 // do not apply ramp
5159 param = AudioMixer::RAMP_VOLUME;
5160 }
5161
5162 // compute volume for this track
5163 uint32_t vl, vr; // in U8.24 integer format
5164 float vlf, vrf, vaf; // in [0.0, 1.0] float format
5165 // read original volumes with volume control
5166 float v = masterVolume * mStreamTypes[track->streamType()].volume;
5167 // Always fetch volumeshaper volume to ensure state is updated.
5168 const sp<AudioTrackServerProxy> proxy = track->mAudioTrackServerProxy;
5169 const float vh = track->getVolumeHandler()->getVolume(
5170 track->mAudioTrackServerProxy->framesReleased()).first;
5171
5172 if (mStreamTypes[track->streamType()].mute || track->isPlaybackRestricted()) {
5173 v = 0;
5174 }
5175
5176 handleVoipVolume_l(&v);
5177
5178 if (track->isPausing()) {
5179 vl = vr = 0;
5180 vlf = vrf = vaf = 0.;
5181 track->setPaused();
5182 } else {
5183 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
5184 vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
5185 vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
5186 // track volumes come from shared memory, so can't be trusted and must be clamped
5187 if (vlf > GAIN_FLOAT_UNITY) {
5188 ALOGV("Track left volume out of range: %.3g", vlf);
5189 vlf = GAIN_FLOAT_UNITY;
5190 }
5191 if (vrf > GAIN_FLOAT_UNITY) {
5192 ALOGV("Track right volume out of range: %.3g", vrf);
5193 vrf = GAIN_FLOAT_UNITY;
5194 }
5195 // now apply the master volume and stream type volume and shaper volume
5196 vlf *= v * vh;
5197 vrf *= v * vh;
5198 // assuming master volume and stream type volume each go up to 1.0,
5199 // then derive vl and vr as U8.24 versions for the effect chain
5200 const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;
5201 vl = (uint32_t) (scaleto8_24 * vlf);
5202 vr = (uint32_t) (scaleto8_24 * vrf);
5203 // vl and vr are now in U8.24 format
5204 uint16_t sendLevel = proxy->getSendLevel_U4_12();
5205 // send level comes from shared memory and so may be corrupt
5206 if (sendLevel > MAX_GAIN_INT) {
5207 ALOGV("Track send level out of range: %04X", sendLevel);
5208 sendLevel = MAX_GAIN_INT;
5209 }
5210 // vaf is represented as [0.0, 1.0] float by rescaling sendLevel
5211 vaf = v * sendLevel * (1. / MAX_GAIN_INT);
5212 }
5213
5214 track->setFinalVolume((vrf + vlf) / 2.f);
5215
5216 // Delegate volume control to effect in track effect chain if needed
5217 if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
5218 // Do not ramp volume if volume is controlled by effect
5219 param = AudioMixer::VOLUME;
5220 // Update remaining floating point volume levels
5221 vlf = (float)vl / (1 << 24);
5222 vrf = (float)vr / (1 << 24);
5223 track->mHasVolumeController = true;
5224 } else {
5225 // force no volume ramp when volume controller was just disabled or removed
5226 // from effect chain to avoid volume spike
5227 if (track->mHasVolumeController) {
5228 param = AudioMixer::VOLUME;
5229 }
5230 track->mHasVolumeController = false;
5231 }
5232
5233 // XXX: these things DON'T need to be done each time
5234 mAudioMixer->setBufferProvider(trackId, track);
5235 mAudioMixer->enable(trackId);
5236
5237 mAudioMixer->setParameter(trackId, param, AudioMixer::VOLUME0, &vlf);
5238 mAudioMixer->setParameter(trackId, param, AudioMixer::VOLUME1, &vrf);
5239 mAudioMixer->setParameter(trackId, param, AudioMixer::AUXLEVEL, &vaf);
5240 mAudioMixer->setParameter(
5241 trackId,
5242 AudioMixer::TRACK,
5243 AudioMixer::FORMAT, (void *)track->format());
5244 mAudioMixer->setParameter(
5245 trackId,
5246 AudioMixer::TRACK,
5247 AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask());
5248 mAudioMixer->setParameter(
5249 trackId,
5250 AudioMixer::TRACK,
5251 AudioMixer::MIXER_CHANNEL_MASK,
5252 (void *)(uintptr_t)(mChannelMask | mHapticChannelMask));
5253 // limit track sample rate to 2 x output sample rate, which changes at re-configuration
5254 uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX;
5255 uint32_t reqSampleRate = proxy->getSampleRate();
5256 if (reqSampleRate == 0) {
5257 reqSampleRate = mSampleRate;
5258 } else if (reqSampleRate > maxSampleRate) {
5259 reqSampleRate = maxSampleRate;
5260 }
5261 mAudioMixer->setParameter(
5262 trackId,
5263 AudioMixer::RESAMPLE,
5264 AudioMixer::SAMPLE_RATE,
5265 (void *)(uintptr_t)reqSampleRate);
5266
5267 AudioPlaybackRate playbackRate = proxy->getPlaybackRate();
5268 mAudioMixer->setParameter(
5269 trackId,
5270 AudioMixer::TIMESTRETCH,
5271 AudioMixer::PLAYBACK_RATE,
5272 &playbackRate);
5273
5274 /*
5275 * Select the appropriate output buffer for the track.
5276 *
5277 * Tracks with effects go into their own effects chain buffer
5278 * and from there into either mEffectBuffer or mSinkBuffer.
5279 *
5280 * Other tracks can use mMixerBuffer for higher precision
5281 * channel accumulation. If this buffer is enabled
5282 * (mMixerBufferEnabled true), then selected tracks will accumulate
5283 * into it.
5284 *
5285 */
5286 if (mMixerBufferEnabled
5287 && (track->mainBuffer() == mSinkBuffer
5288 || track->mainBuffer() == mMixerBuffer)) {
5289 mAudioMixer->setParameter(
5290 trackId,
5291 AudioMixer::TRACK,
5292 AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat);
5293 mAudioMixer->setParameter(
5294 trackId,
5295 AudioMixer::TRACK,
5296 AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer);
5297 // TODO: override track->mainBuffer()?
5298 mMixerBufferValid = true;
5299 } else {
5300 mAudioMixer->setParameter(
5301 trackId,
5302 AudioMixer::TRACK,
5303 AudioMixer::MIXER_FORMAT, (void *)EFFECT_BUFFER_FORMAT);
5304 mAudioMixer->setParameter(
5305 trackId,
5306 AudioMixer::TRACK,
5307 AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
5308 }
5309 mAudioMixer->setParameter(
5310 trackId,
5311 AudioMixer::TRACK,
5312 AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
5313 mAudioMixer->setParameter(
5314 trackId,
5315 AudioMixer::TRACK,
5316 AudioMixer::HAPTIC_ENABLED, (void *)(uintptr_t)track->getHapticPlaybackEnabled());
5317 mAudioMixer->setParameter(
5318 trackId,
5319 AudioMixer::TRACK,
5320 AudioMixer::HAPTIC_INTENSITY, (void *)(uintptr_t)track->getHapticIntensity());
5321
5322 // reset retry count
5323 track->mRetryCount = kMaxTrackRetries;
5324
5325 // If one track is ready, set the mixer ready if:
5326 // - the mixer was not ready during previous round OR
5327 // - no other track is not ready
5328 if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
5329 mixerStatus != MIXER_TRACKS_ENABLED) {
5330 mixerStatus = MIXER_TRACKS_READY;
5331 }
5332
5333 // Enable the next few lines to instrument a test for underrun log handling.
5334 // TODO: Remove when we have a better way of testing the underrun log.
5335 #if 0
5336 static int i;
5337 if ((++i & 0xf) == 0) {
5338 deferredOperations.tallyUnderrunFrames(track, 10 /* underrunFrames */);
5339 }
5340 #endif
5341 } else {
5342 size_t underrunFrames = 0;
5343 if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
5344 ALOGV("track(%d) underrun, track state %s framesReady(%zu) < framesDesired(%zd)",
5345 trackId, track->getTrackStateAsString(), framesReady, desiredFrames);
5346 underrunFrames = desiredFrames;
5347 }
5348 deferredOperations.tallyUnderrunFrames(track, underrunFrames);
5349
5350 // clear effect chain input buffer if an active track underruns to avoid sending
5351 // previous audio buffer again to effects
5352 chain = getEffectChain_l(track->sessionId());
5353 if (chain != 0) {
5354 chain->clearInputBuffer();
5355 }
5356
5357 ALOGVV("track(%d) s=%08x [NOT READY] on thread %p", trackId, cblk->mServer, this);
5358 if ((track->sharedBuffer() != 0) || track->isTerminated() ||
5359 track->isStopped() || track->isPaused()) {
5360 // We have consumed all the buffers of this track.
5361 // Remove it from the list of active tracks.
5362 // TODO: use actual buffer filling status instead of latency when available from
5363 // audio HAL
5364 size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
5365 int64_t framesWritten = mBytesWritten / mFrameSize;
5366 if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
5367 if (track->isStopped()) {
5368 track->reset();
5369 }
5370 tracksToRemove->add(track);
5371 }
5372 } else {
5373 // No buffers for this track. Give it a few chances to
5374 // fill a buffer, then remove it from active list.
5375 if (--(track->mRetryCount) <= 0) {
5376 ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p",
5377 trackId, this);
5378 tracksToRemove->add(track);
5379 // indicate to client process that the track was disabled because of underrun;
5380 // it will then automatically call start() when data is available
5381 track->disable();
5382 // If one track is not ready, mark the mixer also not ready if:
5383 // - the mixer was ready during previous round OR
5384 // - no other track is ready
5385 } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
5386 mixerStatus != MIXER_TRACKS_READY) {
5387 mixerStatus = MIXER_TRACKS_ENABLED;
5388 }
5389 }
5390 mAudioMixer->disable(trackId);
5391 }
5392
5393 } // local variable scope to avoid goto warning
5394
5395 }
5396
5397 if (mHapticChannelMask != AUDIO_CHANNEL_NONE && sq != NULL) {
5398 // When there is no fast track playing haptic and FastMixer exists,
5399 // enabling the first FastTrack, which provides mixed data from normal
5400 // tracks, to play haptic data.
5401 FastTrack *fastTrack = &state->mFastTracks[0];
5402 if (fastTrack->mHapticPlaybackEnabled != noFastHapticTrack) {
5403 fastTrack->mHapticPlaybackEnabled = noFastHapticTrack;
5404 didModify = true;
5405 }
5406 }
5407
5408 // Push the new FastMixer state if necessary
5409 bool pauseAudioWatchdog = false;
5410 if (didModify) {
5411 state->mFastTracksGen++;
5412 // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
5413 if (kUseFastMixer == FastMixer_Dynamic &&
5414 state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
5415 state->mCommand = FastMixerState::COLD_IDLE;
5416 state->mColdFutexAddr = &mFastMixerFutex;
5417 state->mColdGen++;
5418 mFastMixerFutex = 0;
5419 if (kUseFastMixer == FastMixer_Dynamic) {
5420 mNormalSink = mOutputSink;
5421 }
5422 // If we go into cold idle, need to wait for acknowledgement
5423 // so that fast mixer stops doing I/O.
5424 block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
5425 pauseAudioWatchdog = true;
5426 }
5427 }
5428 if (sq != NULL) {
5429 sq->end(didModify);
5430 // No need to block if the FastMixer is in COLD_IDLE as the FastThread
5431 // is not active. (We BLOCK_UNTIL_ACKED when entering COLD_IDLE
5432 // when bringing the output sink into standby.)
5433 //
5434 // We will get the latest FastMixer state when we come out of COLD_IDLE.
5435 //
5436 // This occurs with BT suspend when we idle the FastMixer with
5437 // active tracks, which may be added or removed.
5438 sq->push(coldIdle ? FastMixerStateQueue::BLOCK_NEVER : block);
5439 }
5440 #ifdef AUDIO_WATCHDOG
5441 if (pauseAudioWatchdog && mAudioWatchdog != 0) {
5442 mAudioWatchdog->pause();
5443 }
5444 #endif
5445
5446 // Now perform the deferred reset on fast tracks that have stopped
5447 while (resetMask != 0) {
5448 size_t i = __builtin_ctz(resetMask);
5449 ALOG_ASSERT(i < count);
5450 resetMask &= ~(1 << i);
5451 sp<Track> track = mActiveTracks[i];
5452 ALOG_ASSERT(track->isFastTrack() && track->isStopped());
5453 track->reset();
5454 }
5455
5456 // Track destruction may occur outside of threadLoop once it is removed from active tracks.
5457 // Ensure the AudioMixer doesn't have a raw "buffer provider" pointer to the track if
5458 // it ceases to be active, to allow safe removal from the AudioMixer at the start
5459 // of prepareTracks_l(); this releases any outstanding buffer back to the track.
5460 // See also the implementation of destroyTrack_l().
5461 for (const auto &track : *tracksToRemove) {
5462 const int trackId = track->id();
5463 if (mAudioMixer->exists(trackId)) { // Normal tracks here, fast tracks in FastMixer.
5464 mAudioMixer->setBufferProvider(trackId, nullptr /* bufferProvider */);
5465 }
5466 }
5467
5468 // remove all the tracks that need to be...
5469 removeTracks_l(*tracksToRemove);
5470
5471 if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) {
5472 mEffectBufferValid = true;
5473 }
5474
5475 if (mEffectBufferValid) {
5476 // as long as there are effects we should clear the effects buffer, to avoid
5477 // passing a non-clean buffer to the effect chain
5478 memset(mEffectBuffer, 0, mEffectBufferSize);
5479 }
5480 // sink or mix buffer must be cleared if all tracks are connected to an
5481 // effect chain as in this case the mixer will not write to the sink or mix buffer
5482 // and track effects will accumulate into it
5483 if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
5484 (mixedTracks == 0 && fastTracks > 0))) {
5485 // FIXME as a performance optimization, should remember previous zero status
5486 if (mMixerBufferValid) {
5487 memset(mMixerBuffer, 0, mMixerBufferSize);
5488 // TODO: In testing, mSinkBuffer below need not be cleared because
5489 // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer
5490 // after mixing.
5491 //
5492 // To enforce this guarantee:
5493 // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
5494 // (mixedTracks == 0 && fastTracks > 0))
5495 // must imply MIXER_TRACKS_READY.
5496 // Later, we may clear buffers regardless, and skip much of this logic.
5497 }
5498 // FIXME as a performance optimization, should remember previous zero status
5499 memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize);
5500 }
5501
5502 // if any fast tracks, then status is ready
5503 mMixerStatusIgnoringFastTracks = mixerStatus;
5504 if (fastTracks > 0) {
5505 mixerStatus = MIXER_TRACKS_READY;
5506 }
5507 return mixerStatus;
5508 }
5509
5510 // trackCountForUid_l() must be called with ThreadBase::mLock held
trackCountForUid_l(uid_t uid) const5511 uint32_t AudioFlinger::PlaybackThread::trackCountForUid_l(uid_t uid) const
5512 {
5513 uint32_t trackCount = 0;
5514 for (size_t i = 0; i < mTracks.size() ; i++) {
5515 if (mTracks[i]->uid() == uid) {
5516 trackCount++;
5517 }
5518 }
5519 return trackCount;
5520 }
5521
5522 // isTrackAllowed_l() must be called with ThreadBase::mLock held
isTrackAllowed_l(audio_channel_mask_t channelMask,audio_format_t format,audio_session_t sessionId,uid_t uid) const5523 bool AudioFlinger::MixerThread::isTrackAllowed_l(
5524 audio_channel_mask_t channelMask, audio_format_t format,
5525 audio_session_t sessionId, uid_t uid) const
5526 {
5527 if (!PlaybackThread::isTrackAllowed_l(channelMask, format, sessionId, uid)) {
5528 return false;
5529 }
5530 // Check validity as we don't call AudioMixer::create() here.
5531 if (!mAudioMixer->isValidFormat(format)) {
5532 ALOGW("%s: invalid format: %#x", __func__, format);
5533 return false;
5534 }
5535 if (!mAudioMixer->isValidChannelMask(channelMask)) {
5536 ALOGW("%s: invalid channelMask: %#x", __func__, channelMask);
5537 return false;
5538 }
5539 return true;
5540 }
5541
5542 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)5543 bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair,
5544 status_t& status)
5545 {
5546 bool reconfig = false;
5547 bool a2dpDeviceChanged = false;
5548
5549 status = NO_ERROR;
5550
5551 AutoPark<FastMixer> park(mFastMixer);
5552
5553 AudioParameter param = AudioParameter(keyValuePair);
5554 int value;
5555 if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
5556 reconfig = true;
5557 }
5558 if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
5559 if (!isValidPcmSinkFormat((audio_format_t) value)) {
5560 status = BAD_VALUE;
5561 } else {
5562 // no need to save value, since it's constant
5563 reconfig = true;
5564 }
5565 }
5566 if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
5567 if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) {
5568 status = BAD_VALUE;
5569 } else {
5570 // no need to save value, since it's constant
5571 reconfig = true;
5572 }
5573 }
5574 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
5575 // do not accept frame count changes if tracks are open as the track buffer
5576 // size depends on frame count and correct behavior would not be guaranteed
5577 // if frame count is changed after track creation
5578 if (!mTracks.isEmpty()) {
5579 status = INVALID_OPERATION;
5580 } else {
5581 reconfig = true;
5582 }
5583 }
5584 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
5585 LOG_FATAL("Should not set routing device in MixerThread");
5586 }
5587
5588 if (status == NO_ERROR) {
5589 status = mOutput->stream->setParameters(keyValuePair);
5590 if (!mStandby && status == INVALID_OPERATION) {
5591 mOutput->standby();
5592 if (!mStandby) {
5593 mThreadMetrics.logEndInterval();
5594 mStandby = true;
5595 }
5596 mBytesWritten = 0;
5597 status = mOutput->stream->setParameters(keyValuePair);
5598 }
5599 if (status == NO_ERROR && reconfig) {
5600 readOutputParameters_l();
5601 delete mAudioMixer;
5602 mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
5603 for (const auto &track : mTracks) {
5604 const int trackId = track->id();
5605 status_t status = mAudioMixer->create(
5606 trackId,
5607 track->mChannelMask,
5608 track->mFormat,
5609 track->mSessionId);
5610 ALOGW_IF(status != NO_ERROR,
5611 "%s(): AudioMixer cannot create track(%d)"
5612 " mask %#x, format %#x, sessionId %d",
5613 __func__,
5614 trackId, track->mChannelMask, track->mFormat, track->mSessionId);
5615 }
5616 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
5617 }
5618 }
5619
5620 return reconfig || a2dpDeviceChanged;
5621 }
5622
5623
dumpInternals_l(int fd,const Vector<String16> & args)5624 void AudioFlinger::MixerThread::dumpInternals_l(int fd, const Vector<String16>& args)
5625 {
5626 PlaybackThread::dumpInternals_l(fd, args);
5627 dprintf(fd, " Thread throttle time (msecs): %u\n", mThreadThrottleTimeMs);
5628 dprintf(fd, " AudioMixer tracks: %s\n", mAudioMixer->trackNames().c_str());
5629 dprintf(fd, " Master mono: %s\n", mMasterMono ? "on" : "off");
5630 dprintf(fd, " Master balance: %f (%s)\n", mMasterBalance.load(),
5631 (hasFastMixer() ? std::to_string(mFastMixer->getMasterBalance())
5632 : mBalance.toString()).c_str());
5633 if (hasFastMixer()) {
5634 dprintf(fd, " FastMixer thread %p tid=%d", mFastMixer.get(), mFastMixer->getTid());
5635
5636 // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
5637 // while we are dumping it. It may be inconsistent, but it won't mutate!
5638 // This is a large object so we place it on the heap.
5639 // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
5640 const std::unique_ptr<FastMixerDumpState> copy =
5641 std::make_unique<FastMixerDumpState>(mFastMixerDumpState);
5642 copy->dump(fd);
5643
5644 #ifdef STATE_QUEUE_DUMP
5645 // Similar for state queue
5646 StateQueueObserverDump observerCopy = mStateQueueObserverDump;
5647 observerCopy.dump(fd);
5648 StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
5649 mutatorCopy.dump(fd);
5650 #endif
5651
5652 #ifdef AUDIO_WATCHDOG
5653 if (mAudioWatchdog != 0) {
5654 // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
5655 AudioWatchdogDump wdCopy = mAudioWatchdogDump;
5656 wdCopy.dump(fd);
5657 }
5658 #endif
5659
5660 } else {
5661 dprintf(fd, " No FastMixer\n");
5662 }
5663 }
5664
idleSleepTimeUs() const5665 uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
5666 {
5667 return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
5668 }
5669
suspendSleepTimeUs() const5670 uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
5671 {
5672 return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
5673 }
5674
cacheParameters_l()5675 void AudioFlinger::MixerThread::cacheParameters_l()
5676 {
5677 PlaybackThread::cacheParameters_l();
5678
5679 // FIXME: Relaxed timing because of a certain device that can't meet latency
5680 // Should be reduced to 2x after the vendor fixes the driver issue
5681 // increase threshold again due to low power audio mode. The way this warning
5682 // threshold is calculated and its usefulness should be reconsidered anyway.
5683 maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
5684 }
5685
5686 // ----------------------------------------------------------------------------
5687
DirectOutputThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,ThreadBase::type_t type,bool systemReady)5688 AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
5689 AudioStreamOut* output, audio_io_handle_t id, ThreadBase::type_t type, bool systemReady)
5690 : PlaybackThread(audioFlinger, output, id, type, systemReady)
5691 {
5692 setMasterBalance(audioFlinger->getMasterBalance_l());
5693 }
5694
~DirectOutputThread()5695 AudioFlinger::DirectOutputThread::~DirectOutputThread()
5696 {
5697 }
5698
dumpInternals_l(int fd,const Vector<String16> & args)5699 void AudioFlinger::DirectOutputThread::dumpInternals_l(int fd, const Vector<String16>& args)
5700 {
5701 PlaybackThread::dumpInternals_l(fd, args);
5702 dprintf(fd, " Master balance: %f Left: %f Right: %f\n",
5703 mMasterBalance.load(), mMasterBalanceLeft, mMasterBalanceRight);
5704 }
5705
setMasterBalance(float balance)5706 void AudioFlinger::DirectOutputThread::setMasterBalance(float balance)
5707 {
5708 Mutex::Autolock _l(mLock);
5709 if (mMasterBalance != balance) {
5710 mMasterBalance.store(balance);
5711 mBalance.computeStereoBalance(balance, &mMasterBalanceLeft, &mMasterBalanceRight);
5712 broadcast_l();
5713 }
5714 }
5715
processVolume_l(Track * track,bool lastTrack)5716 void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
5717 {
5718 float left, right;
5719
5720 // Ensure volumeshaper state always advances even when muted.
5721 const sp<AudioTrackServerProxy> proxy = track->mAudioTrackServerProxy;
5722 const auto [shaperVolume, shaperActive] = track->getVolumeHandler()->getVolume(
5723 proxy->framesReleased());
5724 mVolumeShaperActive = shaperActive;
5725
5726 if (mMasterMute || mStreamTypes[track->streamType()].mute || track->isPlaybackRestricted()) {
5727 left = right = 0;
5728 } else {
5729 float typeVolume = mStreamTypes[track->streamType()].volume;
5730 const float v = mMasterVolume * typeVolume * shaperVolume;
5731
5732 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
5733 left = float_from_gain(gain_minifloat_unpack_left(vlr));
5734 if (left > GAIN_FLOAT_UNITY) {
5735 left = GAIN_FLOAT_UNITY;
5736 }
5737 left *= v * mMasterBalanceLeft; // DirectOutputThread balance applied as track volume
5738 right = float_from_gain(gain_minifloat_unpack_right(vlr));
5739 if (right > GAIN_FLOAT_UNITY) {
5740 right = GAIN_FLOAT_UNITY;
5741 }
5742 right *= v * mMasterBalanceRight;
5743 }
5744
5745 if (lastTrack) {
5746 track->setFinalVolume((left + right) / 2.f);
5747 if (left != mLeftVolFloat || right != mRightVolFloat) {
5748 mLeftVolFloat = left;
5749 mRightVolFloat = right;
5750
5751 // Delegate volume control to effect in track effect chain if needed
5752 // only one effect chain can be present on DirectOutputThread, so if
5753 // there is one, the track is connected to it
5754 if (!mEffectChains.isEmpty()) {
5755 // if effect chain exists, volume is handled by it.
5756 // Convert volumes from float to 8.24
5757 uint32_t vl = (uint32_t)(left * (1 << 24));
5758 uint32_t vr = (uint32_t)(right * (1 << 24));
5759 // Direct/Offload effect chains set output volume in setVolume_l().
5760 (void)mEffectChains[0]->setVolume_l(&vl, &vr);
5761 } else {
5762 // otherwise we directly set the volume.
5763 setVolumeForOutput_l(left, right);
5764 }
5765 }
5766 }
5767 }
5768
onAddNewTrack_l()5769 void AudioFlinger::DirectOutputThread::onAddNewTrack_l()
5770 {
5771 sp<Track> previousTrack = mPreviousTrack.promote();
5772 sp<Track> latestTrack = mActiveTracks.getLatest();
5773
5774 if (previousTrack != 0 && latestTrack != 0) {
5775 if (mType == DIRECT) {
5776 if (previousTrack.get() != latestTrack.get()) {
5777 mFlushPending = true;
5778 }
5779 } else /* mType == OFFLOAD */ {
5780 if (previousTrack->sessionId() != latestTrack->sessionId()) {
5781 mFlushPending = true;
5782 }
5783 }
5784 } else if (previousTrack == 0) {
5785 // there could be an old track added back during track transition for direct
5786 // output, so always issues flush to flush data of the previous track if it
5787 // was already destroyed with HAL paused, then flush can resume the playback
5788 mFlushPending = true;
5789 }
5790 PlaybackThread::onAddNewTrack_l();
5791 }
5792
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)5793 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
5794 Vector< sp<Track> > *tracksToRemove
5795 )
5796 {
5797 size_t count = mActiveTracks.size();
5798 mixer_state mixerStatus = MIXER_IDLE;
5799 bool doHwPause = false;
5800 bool doHwResume = false;
5801
5802 // find out which tracks need to be processed
5803 for (const sp<Track> &t : mActiveTracks) {
5804 if (t->isInvalid()) {
5805 ALOGW("An invalidated track shouldn't be in active list");
5806 tracksToRemove->add(t);
5807 continue;
5808 }
5809
5810 Track* const track = t.get();
5811 #ifdef VERY_VERY_VERBOSE_LOGGING
5812 audio_track_cblk_t* cblk = track->cblk();
5813 #endif
5814 // Only consider last track started for volume and mixer state control.
5815 // In theory an older track could underrun and restart after the new one starts
5816 // but as we only care about the transition phase between two tracks on a
5817 // direct output, it is not a problem to ignore the underrun case.
5818 sp<Track> l = mActiveTracks.getLatest();
5819 bool last = l.get() == track;
5820
5821 if (track->isPausing()) {
5822 track->setPaused();
5823 if (mHwSupportsPause && last && !mHwPaused) {
5824 doHwPause = true;
5825 mHwPaused = true;
5826 }
5827 } else if (track->isFlushPending()) {
5828 track->flushAck();
5829 if (last) {
5830 mFlushPending = true;
5831 }
5832 } else if (track->isResumePending()) {
5833 track->resumeAck();
5834 if (last) {
5835 mLeftVolFloat = mRightVolFloat = -1.0;
5836 if (mHwPaused) {
5837 doHwResume = true;
5838 mHwPaused = false;
5839 }
5840 }
5841 }
5842
5843 // The first time a track is added we wait
5844 // for all its buffers to be filled before processing it.
5845 // Allow draining the buffer in case the client
5846 // app does not call stop() and relies on underrun to stop:
5847 // hence the test on (track->mRetryCount > 1).
5848 // If retryCount<=1 then track is about to underrun and be removed.
5849 // Do not use a high threshold for compressed audio.
5850 uint32_t minFrames;
5851 if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing()
5852 && (track->mRetryCount > 1) && audio_has_proportional_frames(mFormat)) {
5853 minFrames = mNormalFrameCount;
5854 } else {
5855 minFrames = 1;
5856 }
5857
5858 const size_t framesReady = track->framesReady();
5859 const int trackId = track->id();
5860 if (ATRACE_ENABLED()) {
5861 std::string traceName("nRdy");
5862 traceName += std::to_string(trackId);
5863 ATRACE_INT(traceName.c_str(), framesReady);
5864 }
5865 if ((framesReady >= minFrames) && track->isReady() && !track->isPaused() &&
5866 !track->isStopping_2() && !track->isStopped())
5867 {
5868 ALOGVV("track(%d) s=%08x [OK]", trackId, cblk->mServer);
5869
5870 if (track->mFillingUpStatus == Track::FS_FILLED) {
5871 track->mFillingUpStatus = Track::FS_ACTIVE;
5872 if (last) {
5873 // make sure processVolume_l() will apply new volume even if 0
5874 mLeftVolFloat = mRightVolFloat = -1.0;
5875 }
5876 if (!mHwSupportsPause) {
5877 track->resumeAck();
5878 }
5879 }
5880
5881 // compute volume for this track
5882 processVolume_l(track, last);
5883 if (last) {
5884 sp<Track> previousTrack = mPreviousTrack.promote();
5885 if (previousTrack != 0) {
5886 if (track != previousTrack.get()) {
5887 // Flush any data still being written from last track
5888 mBytesRemaining = 0;
5889 // Invalidate previous track to force a seek when resuming.
5890 previousTrack->invalidate();
5891 }
5892 }
5893 mPreviousTrack = track;
5894
5895 // reset retry count
5896 track->mRetryCount = kMaxTrackRetriesDirect;
5897 mActiveTrack = t;
5898 mixerStatus = MIXER_TRACKS_READY;
5899 if (mHwPaused) {
5900 doHwResume = true;
5901 mHwPaused = false;
5902 }
5903 }
5904 } else {
5905 // clear effect chain input buffer if the last active track started underruns
5906 // to avoid sending previous audio buffer again to effects
5907 if (!mEffectChains.isEmpty() && last) {
5908 mEffectChains[0]->clearInputBuffer();
5909 }
5910 if (track->isStopping_1()) {
5911 track->mState = TrackBase::STOPPING_2;
5912 if (last && mHwPaused) {
5913 doHwResume = true;
5914 mHwPaused = false;
5915 }
5916 }
5917 if ((track->sharedBuffer() != 0) || track->isStopped() ||
5918 track->isStopping_2() || track->isPaused()) {
5919 // We have consumed all the buffers of this track.
5920 // Remove it from the list of active tracks.
5921 size_t audioHALFrames;
5922 if (audio_has_proportional_frames(mFormat)) {
5923 audioHALFrames = (latency_l() * mSampleRate) / 1000;
5924 } else {
5925 audioHALFrames = 0;
5926 }
5927
5928 int64_t framesWritten = mBytesWritten / mFrameSize;
5929 if (mStandby || !last ||
5930 track->presentationComplete(framesWritten, audioHALFrames) ||
5931 track->isPaused() || mHwPaused) {
5932 if (track->isStopping_2()) {
5933 track->mState = TrackBase::STOPPED;
5934 }
5935 if (track->isStopped()) {
5936 track->reset();
5937 }
5938 tracksToRemove->add(track);
5939 }
5940 } else {
5941 // No buffers for this track. Give it a few chances to
5942 // fill a buffer, then remove it from active list.
5943 // Only consider last track started for mixer state control
5944 if (--(track->mRetryCount) <= 0) {
5945 ALOGV("BUFFER TIMEOUT: remove track(%d) from active list", trackId);
5946 tracksToRemove->add(track);
5947 // indicate to client process that the track was disabled because of underrun;
5948 // it will then automatically call start() when data is available
5949 track->disable();
5950 } else if (last) {
5951 ALOGW("pause because of UNDERRUN, framesReady = %zu,"
5952 "minFrames = %u, mFormat = %#x",
5953 framesReady, minFrames, mFormat);
5954 mixerStatus = MIXER_TRACKS_ENABLED;
5955 if (mHwSupportsPause && !mHwPaused && !mStandby) {
5956 doHwPause = true;
5957 mHwPaused = true;
5958 }
5959 }
5960 }
5961 }
5962 }
5963
5964 // if an active track did not command a flush, check for pending flush on stopped tracks
5965 if (!mFlushPending) {
5966 for (size_t i = 0; i < mTracks.size(); i++) {
5967 if (mTracks[i]->isFlushPending()) {
5968 mTracks[i]->flushAck();
5969 mFlushPending = true;
5970 }
5971 }
5972 }
5973
5974 // make sure the pause/flush/resume sequence is executed in the right order.
5975 // If a flush is pending and a track is active but the HW is not paused, force a HW pause
5976 // before flush and then resume HW. This can happen in case of pause/flush/resume
5977 // if resume is received before pause is executed.
5978 if (mHwSupportsPause && !mStandby &&
5979 (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
5980 status_t result = mOutput->stream->pause();
5981 ALOGE_IF(result != OK, "Error when pausing output stream: %d", result);
5982 }
5983 if (mFlushPending) {
5984 flushHw_l();
5985 }
5986 if (mHwSupportsPause && !mStandby && doHwResume) {
5987 status_t result = mOutput->stream->resume();
5988 ALOGE_IF(result != OK, "Error when resuming output stream: %d", result);
5989 }
5990 // remove all the tracks that need to be...
5991 removeTracks_l(*tracksToRemove);
5992
5993 return mixerStatus;
5994 }
5995
threadLoop_mix()5996 void AudioFlinger::DirectOutputThread::threadLoop_mix()
5997 {
5998 size_t frameCount = mFrameCount;
5999 int8_t *curBuf = (int8_t *)mSinkBuffer;
6000 // output audio to hardware
6001 while (frameCount) {
6002 AudioBufferProvider::Buffer buffer;
6003 buffer.frameCount = frameCount;
6004 status_t status = mActiveTrack->getNextBuffer(&buffer);
6005 if (status != NO_ERROR || buffer.raw == NULL) {
6006 // no need to pad with 0 for compressed audio
6007 if (audio_has_proportional_frames(mFormat)) {
6008 memset(curBuf, 0, frameCount * mFrameSize);
6009 }
6010 break;
6011 }
6012 memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
6013 frameCount -= buffer.frameCount;
6014 curBuf += buffer.frameCount * mFrameSize;
6015 mActiveTrack->releaseBuffer(&buffer);
6016 }
6017 mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer;
6018 mSleepTimeUs = 0;
6019 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
6020 mActiveTrack.clear();
6021 }
6022
threadLoop_sleepTime()6023 void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
6024 {
6025 // do not write to HAL when paused
6026 if (mHwPaused || (usesHwAvSync() && mStandby)) {
6027 mSleepTimeUs = mIdleSleepTimeUs;
6028 return;
6029 }
6030 if (mSleepTimeUs == 0) {
6031 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
6032 mSleepTimeUs = mActiveSleepTimeUs;
6033 } else {
6034 mSleepTimeUs = mIdleSleepTimeUs;
6035 }
6036 } else if (mBytesWritten != 0 && audio_has_proportional_frames(mFormat)) {
6037 memset(mSinkBuffer, 0, mFrameCount * mFrameSize);
6038 mSleepTimeUs = 0;
6039 }
6040 }
6041
threadLoop_exit()6042 void AudioFlinger::DirectOutputThread::threadLoop_exit()
6043 {
6044 {
6045 Mutex::Autolock _l(mLock);
6046 for (size_t i = 0; i < mTracks.size(); i++) {
6047 if (mTracks[i]->isFlushPending()) {
6048 mTracks[i]->flushAck();
6049 mFlushPending = true;
6050 }
6051 }
6052 if (mFlushPending) {
6053 flushHw_l();
6054 }
6055 }
6056 PlaybackThread::threadLoop_exit();
6057 }
6058
6059 // must be called with thread mutex locked
shouldStandby_l()6060 bool AudioFlinger::DirectOutputThread::shouldStandby_l()
6061 {
6062 bool trackPaused = false;
6063 bool trackStopped = false;
6064
6065 // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
6066 // after a timeout and we will enter standby then.
6067 if (mTracks.size() > 0) {
6068 trackPaused = mTracks[mTracks.size() - 1]->isPaused();
6069 trackStopped = mTracks[mTracks.size() - 1]->isStopped() ||
6070 mTracks[mTracks.size() - 1]->mState == TrackBase::IDLE;
6071 }
6072
6073 return !mStandby && !(trackPaused || (mHwPaused && !trackStopped));
6074 }
6075
6076 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)6077 bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair,
6078 status_t& status)
6079 {
6080 bool reconfig = false;
6081 bool a2dpDeviceChanged = false;
6082
6083 status = NO_ERROR;
6084
6085 AudioParameter param = AudioParameter(keyValuePair);
6086 int value;
6087 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
6088 LOG_FATAL("Should not set routing device in DirectOutputThread");
6089 }
6090 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
6091 // do not accept frame count changes if tracks are open as the track buffer
6092 // size depends on frame count and correct behavior would not be garantied
6093 // if frame count is changed after track creation
6094 if (!mTracks.isEmpty()) {
6095 status = INVALID_OPERATION;
6096 } else {
6097 reconfig = true;
6098 }
6099 }
6100 if (status == NO_ERROR) {
6101 status = mOutput->stream->setParameters(keyValuePair);
6102 if (!mStandby && status == INVALID_OPERATION) {
6103 mOutput->standby();
6104 if (!mStandby) {
6105 mThreadMetrics.logEndInterval();
6106 mStandby = true;
6107 }
6108 mBytesWritten = 0;
6109 status = mOutput->stream->setParameters(keyValuePair);
6110 }
6111 if (status == NO_ERROR && reconfig) {
6112 readOutputParameters_l();
6113 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
6114 }
6115 }
6116
6117 return reconfig || a2dpDeviceChanged;
6118 }
6119
activeSleepTimeUs() const6120 uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
6121 {
6122 uint32_t time;
6123 if (audio_has_proportional_frames(mFormat)) {
6124 time = PlaybackThread::activeSleepTimeUs();
6125 } else {
6126 time = kDirectMinSleepTimeUs;
6127 }
6128 return time;
6129 }
6130
idleSleepTimeUs() const6131 uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
6132 {
6133 uint32_t time;
6134 if (audio_has_proportional_frames(mFormat)) {
6135 time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
6136 } else {
6137 time = kDirectMinSleepTimeUs;
6138 }
6139 return time;
6140 }
6141
suspendSleepTimeUs() const6142 uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
6143 {
6144 uint32_t time;
6145 if (audio_has_proportional_frames(mFormat)) {
6146 time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
6147 } else {
6148 time = kDirectMinSleepTimeUs;
6149 }
6150 return time;
6151 }
6152
cacheParameters_l()6153 void AudioFlinger::DirectOutputThread::cacheParameters_l()
6154 {
6155 PlaybackThread::cacheParameters_l();
6156
6157 // use shorter standby delay as on normal output to release
6158 // hardware resources as soon as possible
6159 // no delay on outputs with HW A/V sync
6160 if (usesHwAvSync()) {
6161 mStandbyDelayNs = 0;
6162 } else if ((mType == OFFLOAD) && !audio_has_proportional_frames(mFormat)) {
6163 mStandbyDelayNs = kOffloadStandbyDelayNs;
6164 } else {
6165 mStandbyDelayNs = microseconds(mActiveSleepTimeUs*2);
6166 }
6167 }
6168
flushHw_l()6169 void AudioFlinger::DirectOutputThread::flushHw_l()
6170 {
6171 mOutput->flush();
6172 mHwPaused = false;
6173 mFlushPending = false;
6174 mTimestampVerifier.discontinuity(); // DIRECT and OFFLOADED flush resets frame count.
6175 mTimestamp.clear();
6176 }
6177
computeWaitTimeNs_l() const6178 int64_t AudioFlinger::DirectOutputThread::computeWaitTimeNs_l() const {
6179 // If a VolumeShaper is active, we must wake up periodically to update volume.
6180 const int64_t NS_PER_MS = 1000000;
6181 return mVolumeShaperActive ?
6182 kMinNormalSinkBufferSizeMs * NS_PER_MS : PlaybackThread::computeWaitTimeNs_l();
6183 }
6184
6185 // ----------------------------------------------------------------------------
6186
AsyncCallbackThread(const wp<AudioFlinger::PlaybackThread> & playbackThread)6187 AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
6188 const wp<AudioFlinger::PlaybackThread>& playbackThread)
6189 : Thread(false /*canCallJava*/),
6190 mPlaybackThread(playbackThread),
6191 mWriteAckSequence(0),
6192 mDrainSequence(0),
6193 mAsyncError(false)
6194 {
6195 }
6196
~AsyncCallbackThread()6197 AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
6198 {
6199 }
6200
onFirstRef()6201 void AudioFlinger::AsyncCallbackThread::onFirstRef()
6202 {
6203 run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
6204 }
6205
threadLoop()6206 bool AudioFlinger::AsyncCallbackThread::threadLoop()
6207 {
6208 while (!exitPending()) {
6209 uint32_t writeAckSequence;
6210 uint32_t drainSequence;
6211 bool asyncError;
6212
6213 {
6214 Mutex::Autolock _l(mLock);
6215 while (!((mWriteAckSequence & 1) ||
6216 (mDrainSequence & 1) ||
6217 mAsyncError ||
6218 exitPending())) {
6219 mWaitWorkCV.wait(mLock);
6220 }
6221
6222 if (exitPending()) {
6223 break;
6224 }
6225 ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
6226 mWriteAckSequence, mDrainSequence);
6227 writeAckSequence = mWriteAckSequence;
6228 mWriteAckSequence &= ~1;
6229 drainSequence = mDrainSequence;
6230 mDrainSequence &= ~1;
6231 asyncError = mAsyncError;
6232 mAsyncError = false;
6233 }
6234 {
6235 sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
6236 if (playbackThread != 0) {
6237 if (writeAckSequence & 1) {
6238 playbackThread->resetWriteBlocked(writeAckSequence >> 1);
6239 }
6240 if (drainSequence & 1) {
6241 playbackThread->resetDraining(drainSequence >> 1);
6242 }
6243 if (asyncError) {
6244 playbackThread->onAsyncError();
6245 }
6246 }
6247 }
6248 }
6249 return false;
6250 }
6251
exit()6252 void AudioFlinger::AsyncCallbackThread::exit()
6253 {
6254 ALOGV("AsyncCallbackThread::exit");
6255 Mutex::Autolock _l(mLock);
6256 requestExit();
6257 mWaitWorkCV.broadcast();
6258 }
6259
setWriteBlocked(uint32_t sequence)6260 void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
6261 {
6262 Mutex::Autolock _l(mLock);
6263 // bit 0 is cleared
6264 mWriteAckSequence = sequence << 1;
6265 }
6266
resetWriteBlocked()6267 void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
6268 {
6269 Mutex::Autolock _l(mLock);
6270 // ignore unexpected callbacks
6271 if (mWriteAckSequence & 2) {
6272 mWriteAckSequence |= 1;
6273 mWaitWorkCV.signal();
6274 }
6275 }
6276
setDraining(uint32_t sequence)6277 void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
6278 {
6279 Mutex::Autolock _l(mLock);
6280 // bit 0 is cleared
6281 mDrainSequence = sequence << 1;
6282 }
6283
resetDraining()6284 void AudioFlinger::AsyncCallbackThread::resetDraining()
6285 {
6286 Mutex::Autolock _l(mLock);
6287 // ignore unexpected callbacks
6288 if (mDrainSequence & 2) {
6289 mDrainSequence |= 1;
6290 mWaitWorkCV.signal();
6291 }
6292 }
6293
setAsyncError()6294 void AudioFlinger::AsyncCallbackThread::setAsyncError()
6295 {
6296 Mutex::Autolock _l(mLock);
6297 mAsyncError = true;
6298 mWaitWorkCV.signal();
6299 }
6300
6301
6302 // ----------------------------------------------------------------------------
OffloadThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,bool systemReady)6303 AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
6304 AudioStreamOut* output, audio_io_handle_t id, bool systemReady)
6305 : DirectOutputThread(audioFlinger, output, id, OFFLOAD, systemReady),
6306 mPausedWriteLength(0), mPausedBytesRemaining(0), mKeepWakeLock(true),
6307 mOffloadUnderrunPosition(~0LL)
6308 {
6309 //FIXME: mStandby should be set to true by ThreadBase constructo
6310 mStandby = true;
6311 mKeepWakeLock = property_get_bool("ro.audio.offload_wakelock", true /* default_value */);
6312 }
6313
threadLoop_exit()6314 void AudioFlinger::OffloadThread::threadLoop_exit()
6315 {
6316 if (mFlushPending || mHwPaused) {
6317 // If a flush is pending or track was paused, just discard buffered data
6318 flushHw_l();
6319 } else {
6320 mMixerStatus = MIXER_DRAIN_ALL;
6321 threadLoop_drain();
6322 }
6323 if (mUseAsyncWrite) {
6324 ALOG_ASSERT(mCallbackThread != 0);
6325 mCallbackThread->exit();
6326 }
6327 PlaybackThread::threadLoop_exit();
6328 }
6329
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)6330 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
6331 Vector< sp<Track> > *tracksToRemove
6332 )
6333 {
6334 size_t count = mActiveTracks.size();
6335
6336 mixer_state mixerStatus = MIXER_IDLE;
6337 bool doHwPause = false;
6338 bool doHwResume = false;
6339
6340 ALOGV("OffloadThread::prepareTracks_l active tracks %zu", count);
6341
6342 // find out which tracks need to be processed
6343 for (const sp<Track> &t : mActiveTracks) {
6344 Track* const track = t.get();
6345 #ifdef VERY_VERY_VERBOSE_LOGGING
6346 audio_track_cblk_t* cblk = track->cblk();
6347 #endif
6348 // Only consider last track started for volume and mixer state control.
6349 // In theory an older track could underrun and restart after the new one starts
6350 // but as we only care about the transition phase between two tracks on a
6351 // direct output, it is not a problem to ignore the underrun case.
6352 sp<Track> l = mActiveTracks.getLatest();
6353 bool last = l.get() == track;
6354
6355 if (track->isInvalid()) {
6356 ALOGW("An invalidated track shouldn't be in active list");
6357 tracksToRemove->add(track);
6358 continue;
6359 }
6360
6361 if (track->mState == TrackBase::IDLE) {
6362 ALOGW("An idle track shouldn't be in active list");
6363 continue;
6364 }
6365
6366 if (track->isPausing()) {
6367 track->setPaused();
6368 if (last) {
6369 if (mHwSupportsPause && !mHwPaused) {
6370 doHwPause = true;
6371 mHwPaused = true;
6372 }
6373 // If we were part way through writing the mixbuffer to
6374 // the HAL we must save this until we resume
6375 // BUG - this will be wrong if a different track is made active,
6376 // in that case we want to discard the pending data in the
6377 // mixbuffer and tell the client to present it again when the
6378 // track is resumed
6379 mPausedWriteLength = mCurrentWriteLength;
6380 mPausedBytesRemaining = mBytesRemaining;
6381 mBytesRemaining = 0; // stop writing
6382 }
6383 tracksToRemove->add(track);
6384 } else if (track->isFlushPending()) {
6385 if (track->isStopping_1()) {
6386 track->mRetryCount = kMaxTrackStopRetriesOffload;
6387 } else {
6388 track->mRetryCount = kMaxTrackRetriesOffload;
6389 }
6390 track->flushAck();
6391 if (last) {
6392 mFlushPending = true;
6393 }
6394 } else if (track->isResumePending()){
6395 track->resumeAck();
6396 if (last) {
6397 if (mPausedBytesRemaining) {
6398 // Need to continue write that was interrupted
6399 mCurrentWriteLength = mPausedWriteLength;
6400 mBytesRemaining = mPausedBytesRemaining;
6401 mPausedBytesRemaining = 0;
6402 }
6403 if (mHwPaused) {
6404 doHwResume = true;
6405 mHwPaused = false;
6406 // threadLoop_mix() will handle the case that we need to
6407 // resume an interrupted write
6408 }
6409 // enable write to audio HAL
6410 mSleepTimeUs = 0;
6411
6412 mLeftVolFloat = mRightVolFloat = -1.0;
6413
6414 // Do not handle new data in this iteration even if track->framesReady()
6415 mixerStatus = MIXER_TRACKS_ENABLED;
6416 }
6417 } else if (track->framesReady() && track->isReady() &&
6418 !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
6419 ALOGVV("OffloadThread: track(%d) s=%08x [OK]", track->id(), cblk->mServer);
6420 if (track->mFillingUpStatus == Track::FS_FILLED) {
6421 track->mFillingUpStatus = Track::FS_ACTIVE;
6422 if (last) {
6423 // make sure processVolume_l() will apply new volume even if 0
6424 mLeftVolFloat = mRightVolFloat = -1.0;
6425 }
6426 }
6427
6428 if (last) {
6429 sp<Track> previousTrack = mPreviousTrack.promote();
6430 if (previousTrack != 0) {
6431 if (track != previousTrack.get()) {
6432 // Flush any data still being written from last track
6433 mBytesRemaining = 0;
6434 if (mPausedBytesRemaining) {
6435 // Last track was paused so we also need to flush saved
6436 // mixbuffer state and invalidate track so that it will
6437 // re-submit that unwritten data when it is next resumed
6438 mPausedBytesRemaining = 0;
6439 // Invalidate is a bit drastic - would be more efficient
6440 // to have a flag to tell client that some of the
6441 // previously written data was lost
6442 previousTrack->invalidate();
6443 }
6444 // flush data already sent to the DSP if changing audio session as audio
6445 // comes from a different source. Also invalidate previous track to force a
6446 // seek when resuming.
6447 if (previousTrack->sessionId() != track->sessionId()) {
6448 previousTrack->invalidate();
6449 }
6450 }
6451 }
6452 mPreviousTrack = track;
6453 // reset retry count
6454 if (track->isStopping_1()) {
6455 track->mRetryCount = kMaxTrackStopRetriesOffload;
6456 } else {
6457 track->mRetryCount = kMaxTrackRetriesOffload;
6458 }
6459 mActiveTrack = t;
6460 mixerStatus = MIXER_TRACKS_READY;
6461 }
6462 } else {
6463 ALOGVV("OffloadThread: track(%d) s=%08x [NOT READY]", track->id(), cblk->mServer);
6464 if (track->isStopping_1()) {
6465 if (--(track->mRetryCount) <= 0) {
6466 // Hardware buffer can hold a large amount of audio so we must
6467 // wait for all current track's data to drain before we say
6468 // that the track is stopped.
6469 if (mBytesRemaining == 0) {
6470 // Only start draining when all data in mixbuffer
6471 // has been written
6472 ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
6473 track->mState = TrackBase::STOPPING_2; // so presentation completes after
6474 // drain do not drain if no data was ever sent to HAL (mStandby == true)
6475 if (last && !mStandby) {
6476 // do not modify drain sequence if we are already draining. This happens
6477 // when resuming from pause after drain.
6478 if ((mDrainSequence & 1) == 0) {
6479 mSleepTimeUs = 0;
6480 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
6481 mixerStatus = MIXER_DRAIN_TRACK;
6482 mDrainSequence += 2;
6483 }
6484 if (mHwPaused) {
6485 // It is possible to move from PAUSED to STOPPING_1 without
6486 // a resume so we must ensure hardware is running
6487 doHwResume = true;
6488 mHwPaused = false;
6489 }
6490 }
6491 }
6492 } else if (last) {
6493 ALOGV("stopping1 underrun retries left %d", track->mRetryCount);
6494 mixerStatus = MIXER_TRACKS_ENABLED;
6495 }
6496 } else if (track->isStopping_2()) {
6497 // Drain has completed or we are in standby, signal presentation complete
6498 if (!(mDrainSequence & 1) || !last || mStandby) {
6499 track->mState = TrackBase::STOPPED;
6500 uint32_t latency = 0;
6501 status_t result = mOutput->stream->getLatency(&latency);
6502 ALOGE_IF(result != OK,
6503 "Error when retrieving output stream latency: %d", result);
6504 size_t audioHALFrames = (latency * mSampleRate) / 1000;
6505 int64_t framesWritten =
6506 mBytesWritten / mOutput->getFrameSize();
6507 track->presentationComplete(framesWritten, audioHALFrames);
6508 track->reset();
6509 tracksToRemove->add(track);
6510 // DIRECT and OFFLOADED stop resets frame counts.
6511 if (!mUseAsyncWrite) {
6512 // If we don't get explicit drain notification we must
6513 // register discontinuity regardless of whether this is
6514 // the previous (!last) or the upcoming (last) track
6515 // to avoid skipping the discontinuity.
6516 mTimestampVerifier.discontinuity();
6517 }
6518 }
6519 } else {
6520 // No buffers for this track. Give it a few chances to
6521 // fill a buffer, then remove it from active list.
6522 if (--(track->mRetryCount) <= 0) {
6523 bool running = false;
6524 uint64_t position = 0;
6525 struct timespec unused;
6526 // The running check restarts the retry counter at least once.
6527 status_t ret = mOutput->stream->getPresentationPosition(&position, &unused);
6528 if (ret == NO_ERROR && position != mOffloadUnderrunPosition) {
6529 running = true;
6530 mOffloadUnderrunPosition = position;
6531 }
6532 if (ret == NO_ERROR) {
6533 ALOGVV("underrun counter, running(%d): %lld vs %lld", running,
6534 (long long)position, (long long)mOffloadUnderrunPosition);
6535 }
6536 if (running) { // still running, give us more time.
6537 track->mRetryCount = kMaxTrackRetriesOffload;
6538 } else {
6539 ALOGV("OffloadThread: BUFFER TIMEOUT: remove track(%d) from active list",
6540 track->id());
6541 tracksToRemove->add(track);
6542 // tell client process that the track was disabled because of underrun;
6543 // it will then automatically call start() when data is available
6544 track->disable();
6545 }
6546 } else if (last){
6547 mixerStatus = MIXER_TRACKS_ENABLED;
6548 }
6549 }
6550 }
6551 // compute volume for this track
6552 if (track->isReady()) { // check ready to prevent premature start.
6553 processVolume_l(track, last);
6554 }
6555 }
6556
6557 // make sure the pause/flush/resume sequence is executed in the right order.
6558 // If a flush is pending and a track is active but the HW is not paused, force a HW pause
6559 // before flush and then resume HW. This can happen in case of pause/flush/resume
6560 // if resume is received before pause is executed.
6561 if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
6562 status_t result = mOutput->stream->pause();
6563 ALOGE_IF(result != OK, "Error when pausing output stream: %d", result);
6564 }
6565 if (mFlushPending) {
6566 flushHw_l();
6567 }
6568 if (!mStandby && doHwResume) {
6569 status_t result = mOutput->stream->resume();
6570 ALOGE_IF(result != OK, "Error when resuming output stream: %d", result);
6571 }
6572
6573 // remove all the tracks that need to be...
6574 removeTracks_l(*tracksToRemove);
6575
6576 return mixerStatus;
6577 }
6578
6579 // must be called with thread mutex locked
waitingAsyncCallback_l()6580 bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
6581 {
6582 ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
6583 mWriteAckSequence, mDrainSequence);
6584 if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
6585 return true;
6586 }
6587 return false;
6588 }
6589
waitingAsyncCallback()6590 bool AudioFlinger::OffloadThread::waitingAsyncCallback()
6591 {
6592 Mutex::Autolock _l(mLock);
6593 return waitingAsyncCallback_l();
6594 }
6595
flushHw_l()6596 void AudioFlinger::OffloadThread::flushHw_l()
6597 {
6598 DirectOutputThread::flushHw_l();
6599 // Flush anything still waiting in the mixbuffer
6600 mCurrentWriteLength = 0;
6601 mBytesRemaining = 0;
6602 mPausedWriteLength = 0;
6603 mPausedBytesRemaining = 0;
6604 // reset bytes written count to reflect that DSP buffers are empty after flush.
6605 mBytesWritten = 0;
6606 mOffloadUnderrunPosition = ~0LL;
6607
6608 if (mUseAsyncWrite) {
6609 // discard any pending drain or write ack by incrementing sequence
6610 mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
6611 mDrainSequence = (mDrainSequence + 2) & ~1;
6612 ALOG_ASSERT(mCallbackThread != 0);
6613 mCallbackThread->setWriteBlocked(mWriteAckSequence);
6614 mCallbackThread->setDraining(mDrainSequence);
6615 }
6616 }
6617
invalidateTracks(audio_stream_type_t streamType)6618 void AudioFlinger::OffloadThread::invalidateTracks(audio_stream_type_t streamType)
6619 {
6620 Mutex::Autolock _l(mLock);
6621 if (PlaybackThread::invalidateTracks_l(streamType)) {
6622 mFlushPending = true;
6623 }
6624 }
6625
6626 // ----------------------------------------------------------------------------
6627
DuplicatingThread(const sp<AudioFlinger> & audioFlinger,AudioFlinger::MixerThread * mainThread,audio_io_handle_t id,bool systemReady)6628 AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
6629 AudioFlinger::MixerThread* mainThread, audio_io_handle_t id, bool systemReady)
6630 : MixerThread(audioFlinger, mainThread->getOutput(), id,
6631 systemReady, DUPLICATING),
6632 mWaitTimeMs(UINT_MAX)
6633 {
6634 addOutputTrack(mainThread);
6635 }
6636
~DuplicatingThread()6637 AudioFlinger::DuplicatingThread::~DuplicatingThread()
6638 {
6639 for (size_t i = 0; i < mOutputTracks.size(); i++) {
6640 mOutputTracks[i]->destroy();
6641 }
6642 }
6643
threadLoop_mix()6644 void AudioFlinger::DuplicatingThread::threadLoop_mix()
6645 {
6646 // mix buffers...
6647 if (outputsReady(outputTracks)) {
6648 mAudioMixer->process();
6649 } else {
6650 if (mMixerBufferValid) {
6651 memset(mMixerBuffer, 0, mMixerBufferSize);
6652 } else {
6653 memset(mSinkBuffer, 0, mSinkBufferSize);
6654 }
6655 }
6656 mSleepTimeUs = 0;
6657 writeFrames = mNormalFrameCount;
6658 mCurrentWriteLength = mSinkBufferSize;
6659 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
6660 }
6661
threadLoop_sleepTime()6662 void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
6663 {
6664 if (mSleepTimeUs == 0) {
6665 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
6666 mSleepTimeUs = mActiveSleepTimeUs;
6667 } else {
6668 mSleepTimeUs = mIdleSleepTimeUs;
6669 }
6670 } else if (mBytesWritten != 0) {
6671 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
6672 writeFrames = mNormalFrameCount;
6673 memset(mSinkBuffer, 0, mSinkBufferSize);
6674 } else {
6675 // flush remaining overflow buffers in output tracks
6676 writeFrames = 0;
6677 }
6678 mSleepTimeUs = 0;
6679 }
6680 }
6681
threadLoop_write()6682 ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
6683 {
6684 for (size_t i = 0; i < outputTracks.size(); i++) {
6685 const ssize_t actualWritten = outputTracks[i]->write(mSinkBuffer, writeFrames);
6686
6687 // Consider the first OutputTrack for timestamp and frame counting.
6688
6689 // The threadLoop() generally assumes writing a full sink buffer size at a time.
6690 // Here, we correct for writeFrames of 0 (a stop) or underruns because
6691 // we always claim success.
6692 if (i == 0) {
6693 const ssize_t correction = mSinkBufferSize / mFrameSize - actualWritten;
6694 ALOGD_IF(correction != 0 && writeFrames != 0,
6695 "%s: writeFrames:%u actualWritten:%zd correction:%zd mFramesWritten:%lld",
6696 __func__, writeFrames, actualWritten, correction, (long long)mFramesWritten);
6697 mFramesWritten -= correction;
6698 }
6699
6700 // TODO: Report correction for the other output tracks and show in the dump.
6701 }
6702 if (mStandby) {
6703 mThreadMetrics.logBeginInterval();
6704 mStandby = false;
6705 }
6706 return (ssize_t)mSinkBufferSize;
6707 }
6708
threadLoop_standby()6709 void AudioFlinger::DuplicatingThread::threadLoop_standby()
6710 {
6711 // DuplicatingThread implements standby by stopping all tracks
6712 for (size_t i = 0; i < outputTracks.size(); i++) {
6713 outputTracks[i]->stop();
6714 }
6715 }
6716
dumpInternals_l(int fd,const Vector<String16> & args __unused)6717 void AudioFlinger::DuplicatingThread::dumpInternals_l(int fd, const Vector<String16>& args __unused)
6718 {
6719 MixerThread::dumpInternals_l(fd, args);
6720
6721 std::stringstream ss;
6722 const size_t numTracks = mOutputTracks.size();
6723 ss << " " << numTracks << " OutputTracks";
6724 if (numTracks > 0) {
6725 ss << ":";
6726 for (const auto &track : mOutputTracks) {
6727 const sp<ThreadBase> thread = track->thread().promote();
6728 ss << " (" << track->id() << " : ";
6729 if (thread.get() != nullptr) {
6730 ss << thread.get() << ", " << thread->id();
6731 } else {
6732 ss << "null";
6733 }
6734 ss << ")";
6735 }
6736 }
6737 ss << "\n";
6738 std::string result = ss.str();
6739 write(fd, result.c_str(), result.size());
6740 }
6741
saveOutputTracks()6742 void AudioFlinger::DuplicatingThread::saveOutputTracks()
6743 {
6744 outputTracks = mOutputTracks;
6745 }
6746
clearOutputTracks()6747 void AudioFlinger::DuplicatingThread::clearOutputTracks()
6748 {
6749 outputTracks.clear();
6750 }
6751
addOutputTrack(MixerThread * thread)6752 void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
6753 {
6754 Mutex::Autolock _l(mLock);
6755 // The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass.
6756 // Adjust for thread->sampleRate() to determine minimum buffer frame count.
6757 // Then triple buffer because Threads do not run synchronously and may not be clock locked.
6758 const size_t frameCount =
6759 3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate());
6760 // TODO: Consider asynchronous sample rate conversion to handle clock disparity
6761 // from different OutputTracks and their associated MixerThreads (e.g. one may
6762 // nearly empty and the other may be dropping data).
6763
6764 sp<OutputTrack> outputTrack = new OutputTrack(thread,
6765 this,
6766 mSampleRate,
6767 mFormat,
6768 mChannelMask,
6769 frameCount,
6770 IPCThreadState::self()->getCallingUid());
6771 status_t status = outputTrack != 0 ? outputTrack->initCheck() : (status_t) NO_MEMORY;
6772 if (status != NO_ERROR) {
6773 ALOGE("addOutputTrack() initCheck failed %d", status);
6774 return;
6775 }
6776 thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f);
6777 mOutputTracks.add(outputTrack);
6778 ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread);
6779 updateWaitTime_l();
6780 }
6781
removeOutputTrack(MixerThread * thread)6782 void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
6783 {
6784 Mutex::Autolock _l(mLock);
6785 for (size_t i = 0; i < mOutputTracks.size(); i++) {
6786 if (mOutputTracks[i]->thread() == thread) {
6787 mOutputTracks[i]->destroy();
6788 mOutputTracks.removeAt(i);
6789 updateWaitTime_l();
6790 if (thread->getOutput() == mOutput) {
6791 mOutput = NULL;
6792 }
6793 return;
6794 }
6795 }
6796 ALOGV("removeOutputTrack(): unknown thread: %p", thread);
6797 }
6798
6799 // caller must hold mLock
updateWaitTime_l()6800 void AudioFlinger::DuplicatingThread::updateWaitTime_l()
6801 {
6802 mWaitTimeMs = UINT_MAX;
6803 for (size_t i = 0; i < mOutputTracks.size(); i++) {
6804 sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
6805 if (strong != 0) {
6806 uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
6807 if (waitTimeMs < mWaitTimeMs) {
6808 mWaitTimeMs = waitTimeMs;
6809 }
6810 }
6811 }
6812 }
6813
6814
outputsReady(const SortedVector<sp<OutputTrack>> & outputTracks)6815 bool AudioFlinger::DuplicatingThread::outputsReady(
6816 const SortedVector< sp<OutputTrack> > &outputTracks)
6817 {
6818 for (size_t i = 0; i < outputTracks.size(); i++) {
6819 sp<ThreadBase> thread = outputTracks[i]->thread().promote();
6820 if (thread == 0) {
6821 ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
6822 outputTracks[i].get());
6823 return false;
6824 }
6825 PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
6826 // see note at standby() declaration
6827 if (playbackThread->standby() && !playbackThread->isSuspended()) {
6828 ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
6829 thread.get());
6830 return false;
6831 }
6832 }
6833 return true;
6834 }
6835
sendMetadataToBackend_l(const StreamOutHalInterface::SourceMetadata & metadata)6836 void AudioFlinger::DuplicatingThread::sendMetadataToBackend_l(
6837 const StreamOutHalInterface::SourceMetadata& metadata)
6838 {
6839 for (auto& outputTrack : outputTracks) { // not mOutputTracks
6840 outputTrack->setMetadatas(metadata.tracks);
6841 }
6842 }
6843
activeSleepTimeUs() const6844 uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
6845 {
6846 return (mWaitTimeMs * 1000) / 2;
6847 }
6848
cacheParameters_l()6849 void AudioFlinger::DuplicatingThread::cacheParameters_l()
6850 {
6851 // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
6852 updateWaitTime_l();
6853
6854 MixerThread::cacheParameters_l();
6855 }
6856
6857
6858 // ----------------------------------------------------------------------------
6859 // Record
6860 // ----------------------------------------------------------------------------
6861
RecordThread(const sp<AudioFlinger> & audioFlinger,AudioStreamIn * input,audio_io_handle_t id,bool systemReady)6862 AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
6863 AudioStreamIn *input,
6864 audio_io_handle_t id,
6865 bool systemReady
6866 ) :
6867 ThreadBase(audioFlinger, id, RECORD, systemReady, false /* isOut */),
6868 mInput(input),
6869 mSource(mInput),
6870 mActiveTracks(&this->mLocalLog),
6871 mRsmpInBuffer(NULL),
6872 // mRsmpInFrames, mRsmpInFramesP2, and mRsmpInFramesOA are set by readInputParameters_l()
6873 mRsmpInRear(0)
6874 , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
6875 "RecordThreadRO", MemoryHeapBase::READ_ONLY))
6876 // mFastCapture below
6877 , mFastCaptureFutex(0)
6878 // mInputSource
6879 // mPipeSink
6880 // mPipeSource
6881 , mPipeFramesP2(0)
6882 // mPipeMemory
6883 // mFastCaptureNBLogWriter
6884 , mFastTrackAvail(false)
6885 , mBtNrecSuspended(false)
6886 {
6887 snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id);
6888 mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
6889
6890 if (mInput != nullptr && mInput->audioHwDev != nullptr) {
6891 mIsMsdDevice = strcmp(
6892 mInput->audioHwDev->moduleName(), AUDIO_HARDWARE_MODULE_ID_MSD) == 0;
6893 }
6894
6895 readInputParameters_l();
6896
6897 // TODO: We may also match on address as well as device type for
6898 // AUDIO_DEVICE_IN_BUS, AUDIO_DEVICE_IN_BLUETOOTH_A2DP, AUDIO_DEVICE_IN_REMOTE_SUBMIX
6899 // TODO: This property should be ensure that only contains one single device type.
6900 mTimestampCorrectedDevice = (audio_devices_t)property_get_int64(
6901 "audio.timestamp.corrected_input_device",
6902 (int64_t)(mIsMsdDevice ? AUDIO_DEVICE_IN_BUS // turn on by default for MSD
6903 : AUDIO_DEVICE_NONE));
6904
6905 // create an NBAIO source for the HAL input stream, and negotiate
6906 mInputSource = new AudioStreamInSource(input->stream);
6907 size_t numCounterOffers = 0;
6908 const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
6909 #if !LOG_NDEBUG
6910 ssize_t index =
6911 #else
6912 (void)
6913 #endif
6914 mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
6915 ALOG_ASSERT(index == 0);
6916
6917 // initialize fast capture depending on configuration
6918 bool initFastCapture;
6919 switch (kUseFastCapture) {
6920 case FastCapture_Never:
6921 initFastCapture = false;
6922 ALOGV("%p kUseFastCapture = Never, initFastCapture = false", this);
6923 break;
6924 case FastCapture_Always:
6925 initFastCapture = true;
6926 ALOGV("%p kUseFastCapture = Always, initFastCapture = true", this);
6927 break;
6928 case FastCapture_Static:
6929 initFastCapture = (mFrameCount * 1000) / mSampleRate < kMinNormalCaptureBufferSizeMs;
6930 ALOGV("%p kUseFastCapture = Static, (%lld * 1000) / %u vs %u, initFastCapture = %d",
6931 this, (long long)mFrameCount, mSampleRate, kMinNormalCaptureBufferSizeMs,
6932 initFastCapture);
6933 break;
6934 // case FastCapture_Dynamic:
6935 }
6936
6937 if (initFastCapture) {
6938 // create a Pipe for FastCapture to write to, and for us and fast tracks to read from
6939 NBAIO_Format format = mInputSource->format();
6940 // quadruple-buffering of 20 ms each; this ensures we can sleep for 20ms in RecordThread
6941 size_t pipeFramesP2 = roundup(4 * FMS_20 * mSampleRate / 1000);
6942 size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
6943 void *pipeBuffer = nullptr;
6944 const sp<MemoryDealer> roHeap(readOnlyHeap());
6945 sp<IMemory> pipeMemory;
6946 if ((roHeap == 0) ||
6947 (pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
6948 (pipeBuffer = pipeMemory->unsecurePointer()) == nullptr) {
6949 ALOGE("not enough memory for pipe buffer size=%zu; "
6950 "roHeap=%p, pipeMemory=%p, pipeBuffer=%p; roHeapSize: %lld",
6951 pipeSize, roHeap.get(), pipeMemory.get(), pipeBuffer,
6952 (long long)kRecordThreadReadOnlyHeapSize);
6953 goto failed;
6954 }
6955 // pipe will be shared directly with fast clients, so clear to avoid leaking old information
6956 memset(pipeBuffer, 0, pipeSize);
6957 Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
6958 const NBAIO_Format offers[1] = {format};
6959 size_t numCounterOffers = 0;
6960 ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers);
6961 ALOG_ASSERT(index == 0);
6962 mPipeSink = pipe;
6963 PipeReader *pipeReader = new PipeReader(*pipe);
6964 numCounterOffers = 0;
6965 index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers);
6966 ALOG_ASSERT(index == 0);
6967 mPipeSource = pipeReader;
6968 mPipeFramesP2 = pipeFramesP2;
6969 mPipeMemory = pipeMemory;
6970
6971 // create fast capture
6972 mFastCapture = new FastCapture();
6973 FastCaptureStateQueue *sq = mFastCapture->sq();
6974 #ifdef STATE_QUEUE_DUMP
6975 // FIXME
6976 #endif
6977 FastCaptureState *state = sq->begin();
6978 state->mCblk = NULL;
6979 state->mInputSource = mInputSource.get();
6980 state->mInputSourceGen++;
6981 state->mPipeSink = pipe;
6982 state->mPipeSinkGen++;
6983 state->mFrameCount = mFrameCount;
6984 state->mCommand = FastCaptureState::COLD_IDLE;
6985 // already done in constructor initialization list
6986 //mFastCaptureFutex = 0;
6987 state->mColdFutexAddr = &mFastCaptureFutex;
6988 state->mColdGen++;
6989 state->mDumpState = &mFastCaptureDumpState;
6990 #ifdef TEE_SINK
6991 // FIXME
6992 #endif
6993 mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture");
6994 state->mNBLogWriter = mFastCaptureNBLogWriter.get();
6995 sq->end();
6996 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
6997
6998 // start the fast capture
6999 mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
7000 pid_t tid = mFastCapture->getTid();
7001 sendPrioConfigEvent(getpid(), tid, kPriorityFastCapture, false /*forApp*/);
7002 stream()->setHalThreadPriority(kPriorityFastCapture);
7003 #ifdef AUDIO_WATCHDOG
7004 // FIXME
7005 #endif
7006
7007 mFastTrackAvail = true;
7008 }
7009 #ifdef TEE_SINK
7010 mTee.set(mInputSource->format(), NBAIO_Tee::TEE_FLAG_INPUT_THREAD);
7011 mTee.setId(std::string("_") + std::to_string(mId) + "_C");
7012 #endif
7013 failed: ;
7014
7015 // FIXME mNormalSource
7016 }
7017
~RecordThread()7018 AudioFlinger::RecordThread::~RecordThread()
7019 {
7020 if (mFastCapture != 0) {
7021 FastCaptureStateQueue *sq = mFastCapture->sq();
7022 FastCaptureState *state = sq->begin();
7023 if (state->mCommand == FastCaptureState::COLD_IDLE) {
7024 int32_t old = android_atomic_inc(&mFastCaptureFutex);
7025 if (old == -1) {
7026 (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
7027 }
7028 }
7029 state->mCommand = FastCaptureState::EXIT;
7030 sq->end();
7031 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
7032 mFastCapture->join();
7033 mFastCapture.clear();
7034 }
7035 mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter);
7036 mAudioFlinger->unregisterWriter(mNBLogWriter);
7037 free(mRsmpInBuffer);
7038 }
7039
onFirstRef()7040 void AudioFlinger::RecordThread::onFirstRef()
7041 {
7042 run(mThreadName, PRIORITY_URGENT_AUDIO);
7043 }
7044
preExit()7045 void AudioFlinger::RecordThread::preExit()
7046 {
7047 ALOGV(" preExit()");
7048 Mutex::Autolock _l(mLock);
7049 for (size_t i = 0; i < mTracks.size(); i++) {
7050 sp<RecordTrack> track = mTracks[i];
7051 track->invalidate();
7052 }
7053 mActiveTracks.clear();
7054 mStartStopCond.broadcast();
7055 }
7056
threadLoop()7057 bool AudioFlinger::RecordThread::threadLoop()
7058 {
7059 nsecs_t lastWarning = 0;
7060
7061 inputStandBy();
7062
7063 reacquire_wakelock:
7064 sp<RecordTrack> activeTrack;
7065 {
7066 Mutex::Autolock _l(mLock);
7067 acquireWakeLock_l();
7068 }
7069
7070 // used to request a deferred sleep, to be executed later while mutex is unlocked
7071 uint32_t sleepUs = 0;
7072
7073 int64_t lastLoopCountRead = -2; // never matches "previous" loop, when loopCount = 0.
7074
7075 // loop while there is work to do
7076 for (int64_t loopCount = 0;; ++loopCount) { // loopCount used for statistics tracking
7077 Vector< sp<EffectChain> > effectChains;
7078
7079 // activeTracks accumulates a copy of a subset of mActiveTracks
7080 Vector< sp<RecordTrack> > activeTracks;
7081
7082 // reference to the (first and only) active fast track
7083 sp<RecordTrack> fastTrack;
7084
7085 // reference to a fast track which is about to be removed
7086 sp<RecordTrack> fastTrackToRemove;
7087
7088 bool silenceFastCapture = false;
7089
7090 { // scope for mLock
7091 Mutex::Autolock _l(mLock);
7092
7093 processConfigEvents_l();
7094
7095 // check exitPending here because checkForNewParameters_l() and
7096 // checkForNewParameters_l() can temporarily release mLock
7097 if (exitPending()) {
7098 break;
7099 }
7100
7101 // sleep with mutex unlocked
7102 if (sleepUs > 0) {
7103 ATRACE_BEGIN("sleepC");
7104 mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)sleepUs));
7105 ATRACE_END();
7106 sleepUs = 0;
7107 continue;
7108 }
7109
7110 // if no active track(s), then standby and release wakelock
7111 size_t size = mActiveTracks.size();
7112 if (size == 0) {
7113 standbyIfNotAlreadyInStandby();
7114 // exitPending() can't become true here
7115 releaseWakeLock_l();
7116 ALOGV("RecordThread: loop stopping");
7117 // go to sleep
7118 mWaitWorkCV.wait(mLock);
7119 ALOGV("RecordThread: loop starting");
7120 goto reacquire_wakelock;
7121 }
7122
7123 bool doBroadcast = false;
7124 bool allStopped = true;
7125 for (size_t i = 0; i < size; ) {
7126
7127 activeTrack = mActiveTracks[i];
7128 if (activeTrack->isTerminated()) {
7129 if (activeTrack->isFastTrack()) {
7130 ALOG_ASSERT(fastTrackToRemove == 0);
7131 fastTrackToRemove = activeTrack;
7132 }
7133 removeTrack_l(activeTrack);
7134 mActiveTracks.remove(activeTrack);
7135 size--;
7136 continue;
7137 }
7138
7139 TrackBase::track_state activeTrackState = activeTrack->mState;
7140 switch (activeTrackState) {
7141
7142 case TrackBase::PAUSING:
7143 mActiveTracks.remove(activeTrack);
7144 activeTrack->mState = TrackBase::PAUSED;
7145 doBroadcast = true;
7146 size--;
7147 continue;
7148
7149 case TrackBase::STARTING_1:
7150 sleepUs = 10000;
7151 i++;
7152 allStopped = false;
7153 continue;
7154
7155 case TrackBase::STARTING_2:
7156 doBroadcast = true;
7157 if (mStandby) {
7158 mThreadMetrics.logBeginInterval();
7159 mStandby = false;
7160 }
7161 activeTrack->mState = TrackBase::ACTIVE;
7162 allStopped = false;
7163 break;
7164
7165 case TrackBase::ACTIVE:
7166 allStopped = false;
7167 break;
7168
7169 case TrackBase::IDLE: // cannot be on ActiveTracks if idle
7170 case TrackBase::PAUSED: // cannot be on ActiveTracks if paused
7171 case TrackBase::STOPPED: // cannot be on ActiveTracks if destroyed/terminated
7172 default:
7173 LOG_ALWAYS_FATAL("%s: Unexpected active track state:%d, id:%d, tracks:%zu",
7174 __func__, activeTrackState, activeTrack->id(), size);
7175 }
7176
7177 if (activeTrack->isFastTrack()) {
7178 ALOG_ASSERT(!mFastTrackAvail);
7179 ALOG_ASSERT(fastTrack == 0);
7180 // if the active fast track is silenced either:
7181 // 1) silence the whole capture from fast capture buffer if this is
7182 // the only active track
7183 // 2) invalidate this track: this will cause the client to reconnect and possibly
7184 // be invalidated again until unsilenced
7185 if (activeTrack->isSilenced()) {
7186 if (size > 1) {
7187 activeTrack->invalidate();
7188 ALOG_ASSERT(fastTrackToRemove == 0);
7189 fastTrackToRemove = activeTrack;
7190 removeTrack_l(activeTrack);
7191 mActiveTracks.remove(activeTrack);
7192 size--;
7193 continue;
7194 } else {
7195 silenceFastCapture = true;
7196 }
7197 }
7198 fastTrack = activeTrack;
7199 }
7200
7201 activeTracks.add(activeTrack);
7202 i++;
7203
7204 }
7205
7206 mActiveTracks.updatePowerState(this);
7207
7208 updateMetadata_l();
7209
7210 if (allStopped) {
7211 standbyIfNotAlreadyInStandby();
7212 }
7213 if (doBroadcast) {
7214 mStartStopCond.broadcast();
7215 }
7216
7217 // sleep if there are no active tracks to process
7218 if (activeTracks.isEmpty()) {
7219 if (sleepUs == 0) {
7220 sleepUs = kRecordThreadSleepUs;
7221 }
7222 continue;
7223 }
7224 sleepUs = 0;
7225
7226 lockEffectChains_l(effectChains);
7227 }
7228
7229 // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0
7230
7231 size_t size = effectChains.size();
7232 for (size_t i = 0; i < size; i++) {
7233 // thread mutex is not locked, but effect chain is locked
7234 effectChains[i]->process_l();
7235 }
7236
7237 // Push a new fast capture state if fast capture is not already running, or cblk change
7238 if (mFastCapture != 0) {
7239 FastCaptureStateQueue *sq = mFastCapture->sq();
7240 FastCaptureState *state = sq->begin();
7241 bool didModify = false;
7242 FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
7243 if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
7244 (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
7245 if (state->mCommand == FastCaptureState::COLD_IDLE) {
7246 int32_t old = android_atomic_inc(&mFastCaptureFutex);
7247 if (old == -1) {
7248 (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
7249 }
7250 }
7251 state->mCommand = FastCaptureState::READ_WRITE;
7252 #if 0 // FIXME
7253 mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
7254 FastThreadDumpState::kSamplingNforLowRamDevice :
7255 FastThreadDumpState::kSamplingN);
7256 #endif
7257 didModify = true;
7258 }
7259 audio_track_cblk_t *cblkOld = state->mCblk;
7260 audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
7261 if (cblkNew != cblkOld) {
7262 state->mCblk = cblkNew;
7263 // block until acked if removing a fast track
7264 if (cblkOld != NULL) {
7265 block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
7266 }
7267 didModify = true;
7268 }
7269 AudioBufferProvider* abp = (fastTrack != 0 && fastTrack->isPatchTrack()) ?
7270 reinterpret_cast<AudioBufferProvider*>(fastTrack.get()) : nullptr;
7271 if (state->mFastPatchRecordBufferProvider != abp) {
7272 state->mFastPatchRecordBufferProvider = abp;
7273 state->mFastPatchRecordFormat = fastTrack == 0 ?
7274 AUDIO_FORMAT_INVALID : fastTrack->format();
7275 didModify = true;
7276 }
7277 if (state->mSilenceCapture != silenceFastCapture) {
7278 state->mSilenceCapture = silenceFastCapture;
7279 didModify = true;
7280 }
7281 sq->end(didModify);
7282 if (didModify) {
7283 sq->push(block);
7284 #if 0
7285 if (kUseFastCapture == FastCapture_Dynamic) {
7286 mNormalSource = mPipeSource;
7287 }
7288 #endif
7289 }
7290 }
7291
7292 // now run the fast track destructor with thread mutex unlocked
7293 fastTrackToRemove.clear();
7294
7295 // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
7296 // Only the client(s) that are too slow will overrun. But if even the fastest client is too
7297 // slow, then this RecordThread will overrun by not calling HAL read often enough.
7298 // If destination is non-contiguous, first read past the nominal end of buffer, then
7299 // copy to the right place. Permitted because mRsmpInBuffer was over-allocated.
7300
7301 int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
7302 ssize_t framesRead;
7303 const int64_t lastIoBeginNs = systemTime(); // start IO timing
7304
7305 // If an NBAIO source is present, use it to read the normal capture's data
7306 if (mPipeSource != 0) {
7307 size_t framesToRead = min(mRsmpInFramesOA - rear, mRsmpInFramesP2 / 2);
7308
7309 // The audio fifo read() returns OVERRUN on overflow, and advances the read pointer
7310 // to the full buffer point (clearing the overflow condition). Upon OVERRUN error,
7311 // we immediately retry the read() to get data and prevent another overflow.
7312 for (int retries = 0; retries <= 2; ++retries) {
7313 ALOGW_IF(retries > 0, "overrun on read from pipe, retry #%d", retries);
7314 framesRead = mPipeSource->read((uint8_t*)mRsmpInBuffer + rear * mFrameSize,
7315 framesToRead);
7316 if (framesRead != OVERRUN) break;
7317 }
7318
7319 const ssize_t availableToRead = mPipeSource->availableToRead();
7320 if (availableToRead >= 0) {
7321 // PipeSource is the master clock. It is up to the AudioRecord client to keep up.
7322 LOG_ALWAYS_FATAL_IF((size_t)availableToRead > mPipeFramesP2,
7323 "more frames to read than fifo size, %zd > %zu",
7324 availableToRead, mPipeFramesP2);
7325 const size_t pipeFramesFree = mPipeFramesP2 - availableToRead;
7326 const size_t sleepFrames = min(pipeFramesFree, mRsmpInFramesP2) / 2;
7327 ALOGVV("mPipeFramesP2:%zu mRsmpInFramesP2:%zu sleepFrames:%zu availableToRead:%zd",
7328 mPipeFramesP2, mRsmpInFramesP2, sleepFrames, availableToRead);
7329 sleepUs = (sleepFrames * 1000000LL) / mSampleRate;
7330 }
7331 if (framesRead < 0) {
7332 status_t status = (status_t) framesRead;
7333 switch (status) {
7334 case OVERRUN:
7335 ALOGW("overrun on read from pipe");
7336 framesRead = 0;
7337 break;
7338 case NEGOTIATE:
7339 ALOGE("re-negotiation is needed");
7340 framesRead = -1; // Will cause an attempt to recover.
7341 break;
7342 default:
7343 ALOGE("unknown error %d on read from pipe", status);
7344 break;
7345 }
7346 }
7347 // otherwise use the HAL / AudioStreamIn directly
7348 } else {
7349 ATRACE_BEGIN("read");
7350 size_t bytesRead;
7351 status_t result = mSource->read(
7352 (uint8_t*)mRsmpInBuffer + rear * mFrameSize, mBufferSize, &bytesRead);
7353 ATRACE_END();
7354 if (result < 0) {
7355 framesRead = result;
7356 } else {
7357 framesRead = bytesRead / mFrameSize;
7358 }
7359 }
7360
7361 const int64_t lastIoEndNs = systemTime(); // end IO timing
7362
7363 // Update server timestamp with server stats
7364 // systemTime() is optional if the hardware supports timestamps.
7365 if (framesRead >= 0) {
7366 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += framesRead;
7367 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = lastIoEndNs;
7368 }
7369
7370 // Update server timestamp with kernel stats
7371 if (mPipeSource.get() == nullptr /* don't obtain for FastCapture, could block */) {
7372 int64_t position, time;
7373 if (mStandby) {
7374 mTimestampVerifier.discontinuity();
7375 } else if (mSource->getCapturePosition(&position, &time) == NO_ERROR
7376 && time > mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL]) {
7377
7378 mTimestampVerifier.add(position, time, mSampleRate);
7379
7380 // Correct timestamps
7381 if (isTimestampCorrectionEnabled()) {
7382 ALOGV("TS_BEFORE: %d %lld %lld",
7383 id(), (long long)time, (long long)position);
7384 auto correctedTimestamp = mTimestampVerifier.getLastCorrectedTimestamp();
7385 position = correctedTimestamp.mFrames;
7386 time = correctedTimestamp.mTimeNs;
7387 ALOGV("TS_AFTER: %d %lld %lld",
7388 id(), (long long)time, (long long)position);
7389 }
7390
7391 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = position;
7392 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] = time;
7393 // Note: In general record buffers should tend to be empty in
7394 // a properly running pipeline.
7395 //
7396 // Also, it is not advantageous to call get_presentation_position during the read
7397 // as the read obtains a lock, preventing the timestamp call from executing.
7398 } else {
7399 mTimestampVerifier.error();
7400 }
7401 }
7402
7403 // From the timestamp, input read latency is negative output write latency.
7404 const audio_input_flags_t flags = mInput != NULL ? mInput->flags : AUDIO_INPUT_FLAG_NONE;
7405 const double latencyMs = RecordTrack::checkServerLatencySupported(mFormat, flags)
7406 ? - mTimestamp.getOutputServerLatencyMs(mSampleRate) : 0.;
7407 if (latencyMs != 0.) { // note 0. means timestamp is empty.
7408 mLatencyMs.add(latencyMs);
7409 }
7410
7411 // Use this to track timestamp information
7412 // ALOGD("%s", mTimestamp.toString().c_str());
7413
7414 if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
7415 ALOGE("read failed: framesRead=%zd", framesRead);
7416 // Force input into standby so that it tries to recover at next read attempt
7417 inputStandBy();
7418 sleepUs = kRecordThreadSleepUs;
7419 }
7420 if (framesRead <= 0) {
7421 goto unlock;
7422 }
7423 ALOG_ASSERT(framesRead > 0);
7424 mFramesRead += framesRead;
7425
7426 #ifdef TEE_SINK
7427 (void)mTee.write((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesRead);
7428 #endif
7429 // If destination is non-contiguous, we now correct for reading past end of buffer.
7430 {
7431 size_t part1 = mRsmpInFramesP2 - rear;
7432 if ((size_t) framesRead > part1) {
7433 memcpy(mRsmpInBuffer, (uint8_t*)mRsmpInBuffer + mRsmpInFramesP2 * mFrameSize,
7434 (framesRead - part1) * mFrameSize);
7435 }
7436 }
7437 rear = mRsmpInRear += framesRead;
7438
7439 size = activeTracks.size();
7440
7441 // loop over each active track
7442 for (size_t i = 0; i < size; i++) {
7443 activeTrack = activeTracks[i];
7444
7445 // skip fast tracks, as those are handled directly by FastCapture
7446 if (activeTrack->isFastTrack()) {
7447 continue;
7448 }
7449
7450 // TODO: This code probably should be moved to RecordTrack.
7451 // TODO: Update the activeTrack buffer converter in case of reconfigure.
7452
7453 enum {
7454 OVERRUN_UNKNOWN,
7455 OVERRUN_TRUE,
7456 OVERRUN_FALSE
7457 } overrun = OVERRUN_UNKNOWN;
7458
7459 // loop over getNextBuffer to handle circular sink
7460 for (;;) {
7461
7462 activeTrack->mSink.frameCount = ~0;
7463 status_t status = activeTrack->getNextBuffer(&activeTrack->mSink);
7464 size_t framesOut = activeTrack->mSink.frameCount;
7465 LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));
7466
7467 // check available frames and handle overrun conditions
7468 // if the record track isn't draining fast enough.
7469 bool hasOverrun;
7470 size_t framesIn;
7471 activeTrack->mResamplerBufferProvider->sync(&framesIn, &hasOverrun);
7472 if (hasOverrun) {
7473 overrun = OVERRUN_TRUE;
7474 }
7475 if (framesOut == 0 || framesIn == 0) {
7476 break;
7477 }
7478
7479 // Don't allow framesOut to be larger than what is possible with resampling
7480 // from framesIn.
7481 // This isn't strictly necessary but helps limit buffer resizing in
7482 // RecordBufferConverter. TODO: remove when no longer needed.
7483 framesOut = min(framesOut,
7484 destinationFramesPossible(
7485 framesIn, mSampleRate, activeTrack->mSampleRate));
7486
7487 if (activeTrack->isDirect()) {
7488 // No RecordBufferConverter used for direct streams. Pass
7489 // straight from RecordThread buffer to RecordTrack buffer.
7490 AudioBufferProvider::Buffer buffer;
7491 buffer.frameCount = framesOut;
7492 status_t status = activeTrack->mResamplerBufferProvider->getNextBuffer(&buffer);
7493 if (status == OK && buffer.frameCount != 0) {
7494 ALOGV_IF(buffer.frameCount != framesOut,
7495 "%s() read less than expected (%zu vs %zu)",
7496 __func__, buffer.frameCount, framesOut);
7497 framesOut = buffer.frameCount;
7498 memcpy(activeTrack->mSink.raw, buffer.raw, buffer.frameCount * mFrameSize);
7499 activeTrack->mResamplerBufferProvider->releaseBuffer(&buffer);
7500 } else {
7501 framesOut = 0;
7502 ALOGE("%s() cannot fill request, status: %d, frameCount: %zu",
7503 __func__, status, buffer.frameCount);
7504 }
7505 } else {
7506 // process frames from the RecordThread buffer provider to the RecordTrack
7507 // buffer
7508 framesOut = activeTrack->mRecordBufferConverter->convert(
7509 activeTrack->mSink.raw,
7510 activeTrack->mResamplerBufferProvider,
7511 framesOut);
7512 }
7513
7514 if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
7515 overrun = OVERRUN_FALSE;
7516 }
7517
7518 if (activeTrack->mFramesToDrop == 0) {
7519 if (framesOut > 0) {
7520 activeTrack->mSink.frameCount = framesOut;
7521 // Sanitize before releasing if the track has no access to the source data
7522 // An idle UID receives silence from non virtual devices until active
7523 if (activeTrack->isSilenced()) {
7524 memset(activeTrack->mSink.raw, 0, framesOut * activeTrack->frameSize());
7525 }
7526 activeTrack->releaseBuffer(&activeTrack->mSink);
7527 }
7528 } else {
7529 // FIXME could do a partial drop of framesOut
7530 if (activeTrack->mFramesToDrop > 0) {
7531 activeTrack->mFramesToDrop -= (ssize_t)framesOut;
7532 if (activeTrack->mFramesToDrop <= 0) {
7533 activeTrack->clearSyncStartEvent();
7534 }
7535 } else {
7536 activeTrack->mFramesToDrop += framesOut;
7537 if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 ||
7538 activeTrack->mSyncStartEvent->isCancelled()) {
7539 ALOGW("Synced record %s, session %d, trigger session %d",
7540 (activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled",
7541 activeTrack->sessionId(),
7542 (activeTrack->mSyncStartEvent != 0) ?
7543 activeTrack->mSyncStartEvent->triggerSession() :
7544 AUDIO_SESSION_NONE);
7545 activeTrack->clearSyncStartEvent();
7546 }
7547 }
7548 }
7549
7550 if (framesOut == 0) {
7551 break;
7552 }
7553 }
7554
7555 switch (overrun) {
7556 case OVERRUN_TRUE:
7557 // client isn't retrieving buffers fast enough
7558 if (!activeTrack->setOverflow()) {
7559 nsecs_t now = systemTime();
7560 // FIXME should lastWarning per track?
7561 if ((now - lastWarning) > kWarningThrottleNs) {
7562 ALOGW("RecordThread: buffer overflow");
7563 lastWarning = now;
7564 }
7565 }
7566 break;
7567 case OVERRUN_FALSE:
7568 activeTrack->clearOverflow();
7569 break;
7570 case OVERRUN_UNKNOWN:
7571 break;
7572 }
7573
7574 // update frame information and push timestamp out
7575 activeTrack->updateTrackFrameInfo(
7576 activeTrack->mServerProxy->framesReleased(),
7577 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER],
7578 mSampleRate, mTimestamp);
7579 }
7580
7581 unlock:
7582 // enable changes in effect chain
7583 unlockEffectChains(effectChains);
7584 // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
7585 if (audio_has_proportional_frames(mFormat)
7586 && loopCount == lastLoopCountRead + 1) {
7587 const int64_t readPeriodNs = lastIoEndNs - mLastIoEndNs;
7588 const double jitterMs =
7589 TimestampVerifier<int64_t, int64_t>::computeJitterMs(
7590 {framesRead, readPeriodNs},
7591 {0, 0} /* lastTimestamp */, mSampleRate);
7592 const double processMs = (lastIoBeginNs - mLastIoEndNs) * 1e-6;
7593
7594 Mutex::Autolock _l(mLock);
7595 mIoJitterMs.add(jitterMs);
7596 mProcessTimeMs.add(processMs);
7597 }
7598 // update timing info.
7599 mLastIoBeginNs = lastIoBeginNs;
7600 mLastIoEndNs = lastIoEndNs;
7601 lastLoopCountRead = loopCount;
7602 }
7603
7604 standbyIfNotAlreadyInStandby();
7605
7606 {
7607 Mutex::Autolock _l(mLock);
7608 for (size_t i = 0; i < mTracks.size(); i++) {
7609 sp<RecordTrack> track = mTracks[i];
7610 track->invalidate();
7611 }
7612 mActiveTracks.clear();
7613 mStartStopCond.broadcast();
7614 }
7615
7616 releaseWakeLock();
7617
7618 ALOGV("RecordThread %p exiting", this);
7619 return false;
7620 }
7621
standbyIfNotAlreadyInStandby()7622 void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby()
7623 {
7624 if (!mStandby) {
7625 inputStandBy();
7626 mThreadMetrics.logEndInterval();
7627 mStandby = true;
7628 }
7629 }
7630
inputStandBy()7631 void AudioFlinger::RecordThread::inputStandBy()
7632 {
7633 // Idle the fast capture if it's currently running
7634 if (mFastCapture != 0) {
7635 FastCaptureStateQueue *sq = mFastCapture->sq();
7636 FastCaptureState *state = sq->begin();
7637 if (!(state->mCommand & FastCaptureState::IDLE)) {
7638 state->mCommand = FastCaptureState::COLD_IDLE;
7639 state->mColdFutexAddr = &mFastCaptureFutex;
7640 state->mColdGen++;
7641 mFastCaptureFutex = 0;
7642 sq->end();
7643 // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
7644 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED);
7645 #if 0
7646 if (kUseFastCapture == FastCapture_Dynamic) {
7647 // FIXME
7648 }
7649 #endif
7650 #ifdef AUDIO_WATCHDOG
7651 // FIXME
7652 #endif
7653 } else {
7654 sq->end(false /*didModify*/);
7655 }
7656 }
7657 status_t result = mSource->standby();
7658 ALOGE_IF(result != OK, "Error when putting input stream into standby: %d", result);
7659
7660 // If going into standby, flush the pipe source.
7661 if (mPipeSource.get() != nullptr) {
7662 const ssize_t flushed = mPipeSource->flush();
7663 if (flushed > 0) {
7664 ALOGV("Input standby flushed PipeSource %zd frames", flushed);
7665 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += flushed;
7666 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = systemTime();
7667 }
7668 }
7669 }
7670
7671 // RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held
createRecordTrack_l(const sp<AudioFlinger::Client> & client,const audio_attributes_t & attr,uint32_t * pSampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t * pFrameCount,audio_session_t sessionId,size_t * pNotificationFrameCount,pid_t creatorPid,uid_t uid,audio_input_flags_t * flags,pid_t tid,status_t * status,audio_port_handle_t portId,const String16 & opPackageName)7672 sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
7673 const sp<AudioFlinger::Client>& client,
7674 const audio_attributes_t& attr,
7675 uint32_t *pSampleRate,
7676 audio_format_t format,
7677 audio_channel_mask_t channelMask,
7678 size_t *pFrameCount,
7679 audio_session_t sessionId,
7680 size_t *pNotificationFrameCount,
7681 pid_t creatorPid,
7682 uid_t uid,
7683 audio_input_flags_t *flags,
7684 pid_t tid,
7685 status_t *status,
7686 audio_port_handle_t portId,
7687 const String16& opPackageName)
7688 {
7689 size_t frameCount = *pFrameCount;
7690 size_t notificationFrameCount = *pNotificationFrameCount;
7691 sp<RecordTrack> track;
7692 status_t lStatus;
7693 audio_input_flags_t inputFlags = mInput->flags;
7694 audio_input_flags_t requestedFlags = *flags;
7695 uint32_t sampleRate;
7696
7697 lStatus = initCheck();
7698 if (lStatus != NO_ERROR) {
7699 ALOGE("createRecordTrack_l() audio driver not initialized");
7700 goto Exit;
7701 }
7702
7703 if (!audio_is_linear_pcm(mFormat) && (*flags & AUDIO_INPUT_FLAG_DIRECT) == 0) {
7704 ALOGE("createRecordTrack_l() on an encoded stream requires AUDIO_INPUT_FLAG_DIRECT");
7705 lStatus = BAD_VALUE;
7706 goto Exit;
7707 }
7708
7709 if (*pSampleRate == 0) {
7710 *pSampleRate = mSampleRate;
7711 }
7712 sampleRate = *pSampleRate;
7713
7714 // special case for FAST flag considered OK if fast capture is present
7715 if (hasFastCapture()) {
7716 inputFlags = (audio_input_flags_t)(inputFlags | AUDIO_INPUT_FLAG_FAST);
7717 }
7718
7719 // Check if requested flags are compatible with input stream flags
7720 if ((*flags & inputFlags) != *flags) {
7721 ALOGW("createRecordTrack_l(): mismatch between requested flags (%08x) and"
7722 " input flags (%08x)",
7723 *flags, inputFlags);
7724 *flags = (audio_input_flags_t)(*flags & inputFlags);
7725 }
7726
7727 // client expresses a preference for FAST, but we get the final say
7728 if (*flags & AUDIO_INPUT_FLAG_FAST) {
7729 if (
7730 // we formerly checked for a callback handler (non-0 tid),
7731 // but that is no longer required for TRANSFER_OBTAIN mode
7732 //
7733 // Frame count is not specified (0), or is less than or equal the pipe depth.
7734 // It is OK to provide a higher capacity than requested.
7735 // We will force it to mPipeFramesP2 below.
7736 (frameCount <= mPipeFramesP2) &&
7737 // PCM data
7738 audio_is_linear_pcm(format) &&
7739 // hardware format
7740 (format == mFormat) &&
7741 // hardware channel mask
7742 (channelMask == mChannelMask) &&
7743 // hardware sample rate
7744 (sampleRate == mSampleRate) &&
7745 // record thread has an associated fast capture
7746 hasFastCapture() &&
7747 // there are sufficient fast track slots available
7748 mFastTrackAvail
7749 ) {
7750 // check compatibility with audio effects.
7751 Mutex::Autolock _l(mLock);
7752 // Do not accept FAST flag if the session has software effects
7753 sp<EffectChain> chain = getEffectChain_l(sessionId);
7754 if (chain != 0) {
7755 audio_input_flags_t old = *flags;
7756 chain->checkInputFlagCompatibility(flags);
7757 if (old != *flags) {
7758 ALOGV("%p AUDIO_INPUT_FLAGS denied by effect old=%#x new=%#x",
7759 this, (int)old, (int)*flags);
7760 }
7761 }
7762 ALOGV_IF((*flags & AUDIO_INPUT_FLAG_FAST) != 0,
7763 "%p AUDIO_INPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
7764 this, frameCount, mFrameCount);
7765 } else {
7766 ALOGV("%p AUDIO_INPUT_FLAG_FAST denied: frameCount=%zu mFrameCount=%zu mPipeFramesP2=%zu "
7767 "format=%#x isLinear=%d mFormat=%#x channelMask=%#x sampleRate=%u mSampleRate=%u "
7768 "hasFastCapture=%d tid=%d mFastTrackAvail=%d",
7769 this, frameCount, mFrameCount, mPipeFramesP2,
7770 format, audio_is_linear_pcm(format), mFormat, channelMask, sampleRate, mSampleRate,
7771 hasFastCapture(), tid, mFastTrackAvail);
7772 *flags = (audio_input_flags_t)(*flags & ~AUDIO_INPUT_FLAG_FAST);
7773 }
7774 }
7775
7776 // If FAST or RAW flags were corrected, ask caller to request new input from audio policy
7777 if ((*flags & AUDIO_INPUT_FLAG_FAST) !=
7778 (requestedFlags & AUDIO_INPUT_FLAG_FAST)) {
7779 *flags = (audio_input_flags_t) (*flags & ~(AUDIO_INPUT_FLAG_FAST | AUDIO_INPUT_FLAG_RAW));
7780 lStatus = BAD_TYPE;
7781 goto Exit;
7782 }
7783
7784 // compute track buffer size in frames, and suggest the notification frame count
7785 if (*flags & AUDIO_INPUT_FLAG_FAST) {
7786 // fast track: frame count is exactly the pipe depth
7787 frameCount = mPipeFramesP2;
7788 // ignore requested notificationFrames, and always notify exactly once every HAL buffer
7789 notificationFrameCount = mFrameCount;
7790 } else {
7791 // not fast track: max notification period is resampled equivalent of one HAL buffer time
7792 // or 20 ms if there is a fast capture
7793 // TODO This could be a roundupRatio inline, and const
7794 size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
7795 * sampleRate + mSampleRate - 1) / mSampleRate;
7796 // minimum number of notification periods is at least kMinNotifications,
7797 // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
7798 static const size_t kMinNotifications = 3;
7799 static const uint32_t kMinMs = 30;
7800 // TODO This could be a roundupRatio inline
7801 const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
7802 // TODO This could be a roundupRatio inline
7803 const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
7804 maxNotificationFrames;
7805 const size_t minFrameCount = maxNotificationFrames *
7806 max(kMinNotifications, minNotificationsByMs);
7807 frameCount = max(frameCount, minFrameCount);
7808 if (notificationFrameCount == 0 || notificationFrameCount > maxNotificationFrames) {
7809 notificationFrameCount = maxNotificationFrames;
7810 }
7811 }
7812 *pFrameCount = frameCount;
7813 *pNotificationFrameCount = notificationFrameCount;
7814
7815 { // scope for mLock
7816 Mutex::Autolock _l(mLock);
7817
7818 track = new RecordTrack(this, client, attr, sampleRate,
7819 format, channelMask, frameCount,
7820 nullptr /* buffer */, (size_t)0 /* bufferSize */, sessionId, creatorPid, uid,
7821 *flags, TrackBase::TYPE_DEFAULT, opPackageName, portId);
7822
7823 lStatus = track->initCheck();
7824 if (lStatus != NO_ERROR) {
7825 ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
7826 // track must be cleared from the caller as the caller has the AF lock
7827 goto Exit;
7828 }
7829 mTracks.add(track);
7830
7831 if ((*flags & AUDIO_INPUT_FLAG_FAST) && (tid != -1)) {
7832 pid_t callingPid = IPCThreadState::self()->getCallingPid();
7833 // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
7834 // so ask activity manager to do this on our behalf
7835 sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp, true /*forApp*/);
7836 }
7837 }
7838
7839 lStatus = NO_ERROR;
7840
7841 Exit:
7842 *status = lStatus;
7843 return track;
7844 }
7845
start(RecordThread::RecordTrack * recordTrack,AudioSystem::sync_event_t event,audio_session_t triggerSession)7846 status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
7847 AudioSystem::sync_event_t event,
7848 audio_session_t triggerSession)
7849 {
7850 ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
7851 sp<ThreadBase> strongMe = this;
7852 status_t status = NO_ERROR;
7853
7854 if (event == AudioSystem::SYNC_EVENT_NONE) {
7855 recordTrack->clearSyncStartEvent();
7856 } else if (event != AudioSystem::SYNC_EVENT_SAME) {
7857 recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
7858 triggerSession,
7859 recordTrack->sessionId(),
7860 syncStartEventCallback,
7861 recordTrack);
7862 // Sync event can be cancelled by the trigger session if the track is not in a
7863 // compatible state in which case we start record immediately
7864 if (recordTrack->mSyncStartEvent->isCancelled()) {
7865 recordTrack->clearSyncStartEvent();
7866 } else {
7867 // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
7868 recordTrack->mFramesToDrop = -(ssize_t)
7869 ((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000);
7870 }
7871 }
7872
7873 {
7874 // This section is a rendezvous between binder thread executing start() and RecordThread
7875 AutoMutex lock(mLock);
7876 if (recordTrack->isInvalid()) {
7877 recordTrack->clearSyncStartEvent();
7878 ALOGW("%s track %d: invalidated before startInput", __func__, recordTrack->portId());
7879 return DEAD_OBJECT;
7880 }
7881 if (mActiveTracks.indexOf(recordTrack) >= 0) {
7882 if (recordTrack->mState == TrackBase::PAUSING) {
7883 // We haven't stopped yet (moved to PAUSED and not in mActiveTracks)
7884 // so no need to startInput().
7885 ALOGV("active record track PAUSING -> ACTIVE");
7886 recordTrack->mState = TrackBase::ACTIVE;
7887 } else {
7888 ALOGV("active record track state %d", recordTrack->mState);
7889 }
7890 return status;
7891 }
7892
7893 // TODO consider other ways of handling this, such as changing the state to :STARTING and
7894 // adding the track to mActiveTracks after returning from AudioSystem::startInput(),
7895 // or using a separate command thread
7896 recordTrack->mState = TrackBase::STARTING_1;
7897 mActiveTracks.add(recordTrack);
7898 status_t status = NO_ERROR;
7899 if (recordTrack->isExternalTrack()) {
7900 mLock.unlock();
7901 status = AudioSystem::startInput(recordTrack->portId());
7902 mLock.lock();
7903 if (recordTrack->isInvalid()) {
7904 recordTrack->clearSyncStartEvent();
7905 if (status == NO_ERROR && recordTrack->mState == TrackBase::STARTING_1) {
7906 recordTrack->mState = TrackBase::STARTING_2;
7907 // STARTING_2 forces destroy to call stopInput.
7908 }
7909 ALOGW("%s track %d: invalidated after startInput", __func__, recordTrack->portId());
7910 return DEAD_OBJECT;
7911 }
7912 if (recordTrack->mState != TrackBase::STARTING_1) {
7913 ALOGW("%s(%d): unsynchronized mState:%d change",
7914 __func__, recordTrack->id(), recordTrack->mState);
7915 // Someone else has changed state, let them take over,
7916 // leave mState in the new state.
7917 recordTrack->clearSyncStartEvent();
7918 return INVALID_OPERATION;
7919 }
7920 // we're ok, but perhaps startInput has failed
7921 if (status != NO_ERROR) {
7922 ALOGW("%s(%d): startInput failed, status %d",
7923 __func__, recordTrack->id(), status);
7924 // We are in ActiveTracks if STARTING_1 and valid, so remove from ActiveTracks,
7925 // leave in STARTING_1, so destroy() will not call stopInput.
7926 mActiveTracks.remove(recordTrack);
7927 recordTrack->clearSyncStartEvent();
7928 return status;
7929 }
7930 sendIoConfigEvent_l(
7931 AUDIO_CLIENT_STARTED, recordTrack->creatorPid(), recordTrack->portId());
7932 }
7933
7934 recordTrack->logBeginInterval(patchSourcesToString(&mPatch)); // log to MediaMetrics
7935
7936 // Catch up with current buffer indices if thread is already running.
7937 // This is what makes a new client discard all buffered data. If the track's mRsmpInFront
7938 // was initialized to some value closer to the thread's mRsmpInFront, then the track could
7939 // see previously buffered data before it called start(), but with greater risk of overrun.
7940
7941 recordTrack->mResamplerBufferProvider->reset();
7942 if (!recordTrack->isDirect()) {
7943 // clear any converter state as new data will be discontinuous
7944 recordTrack->mRecordBufferConverter->reset();
7945 }
7946 recordTrack->mState = TrackBase::STARTING_2;
7947 // signal thread to start
7948 mWaitWorkCV.broadcast();
7949 return status;
7950 }
7951 }
7952
syncStartEventCallback(const wp<SyncEvent> & event)7953 void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
7954 {
7955 sp<SyncEvent> strongEvent = event.promote();
7956
7957 if (strongEvent != 0) {
7958 sp<RefBase> ptr = strongEvent->cookie().promote();
7959 if (ptr != 0) {
7960 RecordTrack *recordTrack = (RecordTrack *)ptr.get();
7961 recordTrack->handleSyncStartEvent(strongEvent);
7962 }
7963 }
7964 }
7965
stop(RecordThread::RecordTrack * recordTrack)7966 bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
7967 ALOGV("RecordThread::stop");
7968 AutoMutex _l(mLock);
7969 // if we're invalid, we can't be on the ActiveTracks.
7970 if (mActiveTracks.indexOf(recordTrack) < 0 || recordTrack->mState == TrackBase::PAUSING) {
7971 return false;
7972 }
7973 // note that threadLoop may still be processing the track at this point [without lock]
7974 recordTrack->mState = TrackBase::PAUSING;
7975
7976 // NOTE: Waiting here is important to keep stop synchronous.
7977 // This is needed for proper patchRecord peer release.
7978 while (recordTrack->mState == TrackBase::PAUSING && !recordTrack->isInvalid()) {
7979 mWaitWorkCV.broadcast(); // signal thread to stop
7980 mStartStopCond.wait(mLock);
7981 }
7982
7983 if (recordTrack->mState == TrackBase::PAUSED) { // successful stop
7984 ALOGV("Record stopped OK");
7985 return true;
7986 }
7987
7988 // don't handle anything - we've been invalidated or restarted and in a different state
7989 ALOGW_IF("%s(%d): unsynchronized stop, state: %d",
7990 __func__, recordTrack->id(), recordTrack->mState);
7991 return false;
7992 }
7993
isValidSyncEvent(const sp<SyncEvent> & event __unused) const7994 bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
7995 {
7996 return false;
7997 }
7998
setSyncEvent(const sp<SyncEvent> & event __unused)7999 status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event __unused)
8000 {
8001 #if 0 // This branch is currently dead code, but is preserved in case it will be needed in future
8002 if (!isValidSyncEvent(event)) {
8003 return BAD_VALUE;
8004 }
8005
8006 audio_session_t eventSession = event->triggerSession();
8007 status_t ret = NAME_NOT_FOUND;
8008
8009 Mutex::Autolock _l(mLock);
8010
8011 for (size_t i = 0; i < mTracks.size(); i++) {
8012 sp<RecordTrack> track = mTracks[i];
8013 if (eventSession == track->sessionId()) {
8014 (void) track->setSyncEvent(event);
8015 ret = NO_ERROR;
8016 }
8017 }
8018 return ret;
8019 #else
8020 return BAD_VALUE;
8021 #endif
8022 }
8023
getActiveMicrophones(std::vector<media::MicrophoneInfo> * activeMicrophones)8024 status_t AudioFlinger::RecordThread::getActiveMicrophones(
8025 std::vector<media::MicrophoneInfo>* activeMicrophones)
8026 {
8027 ALOGV("RecordThread::getActiveMicrophones");
8028 AutoMutex _l(mLock);
8029 status_t status = mInput->stream->getActiveMicrophones(activeMicrophones);
8030 return status;
8031 }
8032
setPreferredMicrophoneDirection(audio_microphone_direction_t direction)8033 status_t AudioFlinger::RecordThread::setPreferredMicrophoneDirection(
8034 audio_microphone_direction_t direction)
8035 {
8036 ALOGV("setPreferredMicrophoneDirection(%d)", direction);
8037 AutoMutex _l(mLock);
8038 return mInput->stream->setPreferredMicrophoneDirection(direction);
8039 }
8040
setPreferredMicrophoneFieldDimension(float zoom)8041 status_t AudioFlinger::RecordThread::setPreferredMicrophoneFieldDimension(float zoom)
8042 {
8043 ALOGV("setPreferredMicrophoneFieldDimension(%f)", zoom);
8044 AutoMutex _l(mLock);
8045 return mInput->stream->setPreferredMicrophoneFieldDimension(zoom);
8046 }
8047
updateMetadata_l()8048 void AudioFlinger::RecordThread::updateMetadata_l()
8049 {
8050 if (mInput == nullptr || mInput->stream == nullptr ||
8051 !mActiveTracks.readAndClearHasChanged()) {
8052 return;
8053 }
8054 StreamInHalInterface::SinkMetadata metadata;
8055 for (const sp<RecordTrack> &track : mActiveTracks) {
8056 // No track is invalid as this is called after prepareTrack_l in the same critical section
8057 metadata.tracks.push_back({
8058 .source = track->attributes().source,
8059 .gain = 1, // capture tracks do not have volumes
8060 });
8061 }
8062 mInput->stream->updateSinkMetadata(metadata);
8063 }
8064
8065 // destroyTrack_l() must be called with ThreadBase::mLock held
destroyTrack_l(const sp<RecordTrack> & track)8066 void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
8067 {
8068 track->terminate();
8069 track->mState = TrackBase::STOPPED;
8070 // active tracks are removed by threadLoop()
8071 if (mActiveTracks.indexOf(track) < 0) {
8072 removeTrack_l(track);
8073 }
8074 }
8075
removeTrack_l(const sp<RecordTrack> & track)8076 void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
8077 {
8078 String8 result;
8079 track->appendDump(result, false /* active */);
8080 mLocalLog.log("removeTrack_l (%p) %s", track.get(), result.string());
8081
8082 mTracks.remove(track);
8083 // need anything related to effects here?
8084 if (track->isFastTrack()) {
8085 ALOG_ASSERT(!mFastTrackAvail);
8086 mFastTrackAvail = true;
8087 }
8088 }
8089
dumpInternals_l(int fd,const Vector<String16> & args __unused)8090 void AudioFlinger::RecordThread::dumpInternals_l(int fd, const Vector<String16>& args __unused)
8091 {
8092 AudioStreamIn *input = mInput;
8093 audio_input_flags_t flags = input != NULL ? input->flags : AUDIO_INPUT_FLAG_NONE;
8094 dprintf(fd, " AudioStreamIn: %p flags %#x (%s)\n",
8095 input, flags, toString(flags).c_str());
8096 dprintf(fd, " Frames read: %lld\n", (long long)mFramesRead);
8097 if (mActiveTracks.isEmpty()) {
8098 dprintf(fd, " No active record clients\n");
8099 }
8100
8101 if (input != nullptr) {
8102 dprintf(fd, " Hal stream dump:\n");
8103 (void)input->stream->dump(fd);
8104 }
8105
8106 dprintf(fd, " Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no");
8107 dprintf(fd, " Fast track available: %s\n", mFastTrackAvail ? "yes" : "no");
8108
8109 // Make a non-atomic copy of fast capture dump state so it won't change underneath us
8110 // while we are dumping it. It may be inconsistent, but it won't mutate!
8111 // This is a large object so we place it on the heap.
8112 // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
8113 const std::unique_ptr<FastCaptureDumpState> copy =
8114 std::make_unique<FastCaptureDumpState>(mFastCaptureDumpState);
8115 copy->dump(fd);
8116 }
8117
dumpTracks_l(int fd,const Vector<String16> & args __unused)8118 void AudioFlinger::RecordThread::dumpTracks_l(int fd, const Vector<String16>& args __unused)
8119 {
8120 String8 result;
8121 size_t numtracks = mTracks.size();
8122 size_t numactive = mActiveTracks.size();
8123 size_t numactiveseen = 0;
8124 dprintf(fd, " %zu Tracks", numtracks);
8125 const char *prefix = " ";
8126 if (numtracks) {
8127 dprintf(fd, " of which %zu are active\n", numactive);
8128 result.append(prefix);
8129 mTracks[0]->appendDumpHeader(result);
8130 for (size_t i = 0; i < numtracks ; ++i) {
8131 sp<RecordTrack> track = mTracks[i];
8132 if (track != 0) {
8133 bool active = mActiveTracks.indexOf(track) >= 0;
8134 if (active) {
8135 numactiveseen++;
8136 }
8137 result.append(prefix);
8138 track->appendDump(result, active);
8139 }
8140 }
8141 } else {
8142 dprintf(fd, "\n");
8143 }
8144
8145 if (numactiveseen != numactive) {
8146 result.append(" The following tracks are in the active list but"
8147 " not in the track list\n");
8148 result.append(prefix);
8149 mActiveTracks[0]->appendDumpHeader(result);
8150 for (size_t i = 0; i < numactive; ++i) {
8151 sp<RecordTrack> track = mActiveTracks[i];
8152 if (mTracks.indexOf(track) < 0) {
8153 result.append(prefix);
8154 track->appendDump(result, true /* active */);
8155 }
8156 }
8157
8158 }
8159 write(fd, result.string(), result.size());
8160 }
8161
setRecordSilenced(audio_port_handle_t portId,bool silenced)8162 void AudioFlinger::RecordThread::setRecordSilenced(audio_port_handle_t portId, bool silenced)
8163 {
8164 Mutex::Autolock _l(mLock);
8165 for (size_t i = 0; i < mTracks.size() ; i++) {
8166 sp<RecordTrack> track = mTracks[i];
8167 if (track != 0 && track->portId() == portId) {
8168 track->setSilenced(silenced);
8169 }
8170 }
8171 }
8172
reset()8173 void AudioFlinger::RecordThread::ResamplerBufferProvider::reset()
8174 {
8175 sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
8176 RecordThread *recordThread = (RecordThread *) threadBase.get();
8177 mRsmpInFront = recordThread->mRsmpInRear;
8178 mRsmpInUnrel = 0;
8179 }
8180
sync(size_t * framesAvailable,bool * hasOverrun)8181 void AudioFlinger::RecordThread::ResamplerBufferProvider::sync(
8182 size_t *framesAvailable, bool *hasOverrun)
8183 {
8184 sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
8185 RecordThread *recordThread = (RecordThread *) threadBase.get();
8186 const int32_t rear = recordThread->mRsmpInRear;
8187 const int32_t front = mRsmpInFront;
8188 const ssize_t filled = audio_utils::safe_sub_overflow(rear, front);
8189
8190 size_t framesIn;
8191 bool overrun = false;
8192 if (filled < 0) {
8193 // should not happen, but treat like a massive overrun and re-sync
8194 framesIn = 0;
8195 mRsmpInFront = rear;
8196 overrun = true;
8197 } else if ((size_t) filled <= recordThread->mRsmpInFrames) {
8198 framesIn = (size_t) filled;
8199 } else {
8200 // client is not keeping up with server, but give it latest data
8201 framesIn = recordThread->mRsmpInFrames;
8202 mRsmpInFront = /* front = */ audio_utils::safe_sub_overflow(
8203 rear, static_cast<int32_t>(framesIn));
8204 overrun = true;
8205 }
8206 if (framesAvailable != NULL) {
8207 *framesAvailable = framesIn;
8208 }
8209 if (hasOverrun != NULL) {
8210 *hasOverrun = overrun;
8211 }
8212 }
8213
8214 // AudioBufferProvider interface
getNextBuffer(AudioBufferProvider::Buffer * buffer)8215 status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer(
8216 AudioBufferProvider::Buffer* buffer)
8217 {
8218 sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
8219 if (threadBase == 0) {
8220 buffer->frameCount = 0;
8221 buffer->raw = NULL;
8222 return NOT_ENOUGH_DATA;
8223 }
8224 RecordThread *recordThread = (RecordThread *) threadBase.get();
8225 int32_t rear = recordThread->mRsmpInRear;
8226 int32_t front = mRsmpInFront;
8227 ssize_t filled = audio_utils::safe_sub_overflow(rear, front);
8228 // FIXME should not be P2 (don't want to increase latency)
8229 // FIXME if client not keeping up, discard
8230 LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames));
8231 // 'filled' may be non-contiguous, so return only the first contiguous chunk
8232 front &= recordThread->mRsmpInFramesP2 - 1;
8233 size_t part1 = recordThread->mRsmpInFramesP2 - front;
8234 if (part1 > (size_t) filled) {
8235 part1 = filled;
8236 }
8237 size_t ask = buffer->frameCount;
8238 ALOG_ASSERT(ask > 0);
8239 if (part1 > ask) {
8240 part1 = ask;
8241 }
8242 if (part1 == 0) {
8243 // out of data is fine since the resampler will return a short-count.
8244 buffer->raw = NULL;
8245 buffer->frameCount = 0;
8246 mRsmpInUnrel = 0;
8247 return NOT_ENOUGH_DATA;
8248 }
8249
8250 buffer->raw = (uint8_t*)recordThread->mRsmpInBuffer + front * recordThread->mFrameSize;
8251 buffer->frameCount = part1;
8252 mRsmpInUnrel = part1;
8253 return NO_ERROR;
8254 }
8255
8256 // AudioBufferProvider interface
releaseBuffer(AudioBufferProvider::Buffer * buffer)8257 void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer(
8258 AudioBufferProvider::Buffer* buffer)
8259 {
8260 int32_t stepCount = static_cast<int32_t>(buffer->frameCount);
8261 if (stepCount == 0) {
8262 return;
8263 }
8264 ALOG_ASSERT(stepCount <= mRsmpInUnrel);
8265 mRsmpInUnrel -= stepCount;
8266 mRsmpInFront = audio_utils::safe_add_overflow(mRsmpInFront, stepCount);
8267 buffer->raw = NULL;
8268 buffer->frameCount = 0;
8269 }
8270
checkBtNrec()8271 void AudioFlinger::RecordThread::checkBtNrec()
8272 {
8273 Mutex::Autolock _l(mLock);
8274 checkBtNrec_l();
8275 }
8276
checkBtNrec_l()8277 void AudioFlinger::RecordThread::checkBtNrec_l()
8278 {
8279 // disable AEC and NS if the device is a BT SCO headset supporting those
8280 // pre processings
8281 bool suspend = audio_is_bluetooth_sco_device(inDeviceType()) &&
8282 mAudioFlinger->btNrecIsOff();
8283 if (mBtNrecSuspended.exchange(suspend) != suspend) {
8284 for (size_t i = 0; i < mEffectChains.size(); i++) {
8285 setEffectSuspended_l(FX_IID_AEC, suspend, mEffectChains[i]->sessionId());
8286 setEffectSuspended_l(FX_IID_NS, suspend, mEffectChains[i]->sessionId());
8287 }
8288 }
8289 }
8290
8291
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)8292 bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair,
8293 status_t& status)
8294 {
8295 bool reconfig = false;
8296
8297 status = NO_ERROR;
8298
8299 audio_format_t reqFormat = mFormat;
8300 uint32_t samplingRate = mSampleRate;
8301 // TODO this may change if we want to support capture from HDMI PCM multi channel (e.g on TVs).
8302 audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount);
8303
8304 AudioParameter param = AudioParameter(keyValuePair);
8305 int value;
8306
8307 // scope for AutoPark extends to end of method
8308 AutoPark<FastCapture> park(mFastCapture);
8309
8310 // TODO Investigate when this code runs. Check with audio policy when a sample rate and
8311 // channel count change can be requested. Do we mandate the first client defines the
8312 // HAL sampling rate and channel count or do we allow changes on the fly?
8313 if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
8314 samplingRate = value;
8315 reconfig = true;
8316 }
8317 if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
8318 if (!audio_is_linear_pcm((audio_format_t) value)) {
8319 status = BAD_VALUE;
8320 } else {
8321 reqFormat = (audio_format_t) value;
8322 reconfig = true;
8323 }
8324 }
8325 if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
8326 audio_channel_mask_t mask = (audio_channel_mask_t) value;
8327 if (!audio_is_input_channel(mask) ||
8328 audio_channel_count_from_in_mask(mask) > FCC_8) {
8329 status = BAD_VALUE;
8330 } else {
8331 channelMask = mask;
8332 reconfig = true;
8333 }
8334 }
8335 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
8336 // do not accept frame count changes if tracks are open as the track buffer
8337 // size depends on frame count and correct behavior would not be guaranteed
8338 // if frame count is changed after track creation
8339 if (mActiveTracks.size() > 0) {
8340 status = INVALID_OPERATION;
8341 } else {
8342 reconfig = true;
8343 }
8344 }
8345 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
8346 LOG_FATAL("Should not set routing device in RecordThread");
8347 }
8348 if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
8349 mAudioSource != (audio_source_t)value) {
8350 LOG_FATAL("Should not set audio source in RecordThread");
8351 }
8352
8353 if (status == NO_ERROR) {
8354 status = mInput->stream->setParameters(keyValuePair);
8355 if (status == INVALID_OPERATION) {
8356 inputStandBy();
8357 status = mInput->stream->setParameters(keyValuePair);
8358 }
8359 if (reconfig) {
8360 if (status == BAD_VALUE) {
8361 uint32_t sRate;
8362 audio_channel_mask_t channelMask;
8363 audio_format_t format;
8364 if (mInput->stream->getAudioProperties(&sRate, &channelMask, &format) == OK &&
8365 audio_is_linear_pcm(format) && audio_is_linear_pcm(reqFormat) &&
8366 sRate <= (AUDIO_RESAMPLER_DOWN_RATIO_MAX * samplingRate) &&
8367 audio_channel_count_from_in_mask(channelMask) <= FCC_8) {
8368 status = NO_ERROR;
8369 }
8370 }
8371 if (status == NO_ERROR) {
8372 readInputParameters_l();
8373 sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
8374 }
8375 }
8376 }
8377
8378 return reconfig;
8379 }
8380
getParameters(const String8 & keys)8381 String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
8382 {
8383 Mutex::Autolock _l(mLock);
8384 if (initCheck() == NO_ERROR) {
8385 String8 out_s8;
8386 if (mInput->stream->getParameters(keys, &out_s8) == OK) {
8387 return out_s8;
8388 }
8389 }
8390 return String8();
8391 }
8392
ioConfigChanged(audio_io_config_event event,pid_t pid,audio_port_handle_t portId)8393 void AudioFlinger::RecordThread::ioConfigChanged(audio_io_config_event event, pid_t pid,
8394 audio_port_handle_t portId) {
8395 sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
8396
8397 desc->mIoHandle = mId;
8398
8399 switch (event) {
8400 case AUDIO_INPUT_OPENED:
8401 case AUDIO_INPUT_REGISTERED:
8402 case AUDIO_INPUT_CONFIG_CHANGED:
8403 desc->mPatch = mPatch;
8404 desc->mChannelMask = mChannelMask;
8405 desc->mSamplingRate = mSampleRate;
8406 desc->mFormat = mFormat;
8407 desc->mFrameCount = mFrameCount;
8408 desc->mFrameCountHAL = mFrameCount;
8409 desc->mLatency = 0;
8410 break;
8411 case AUDIO_CLIENT_STARTED:
8412 desc->mPatch = mPatch;
8413 desc->mPortId = portId;
8414 break;
8415 case AUDIO_INPUT_CLOSED:
8416 default:
8417 break;
8418 }
8419 mAudioFlinger->ioConfigChanged(event, desc, pid);
8420 }
8421
readInputParameters_l()8422 void AudioFlinger::RecordThread::readInputParameters_l()
8423 {
8424 status_t result = mInput->stream->getAudioProperties(&mSampleRate, &mChannelMask, &mHALFormat);
8425 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving audio properties from HAL: %d", result);
8426 mFormat = mHALFormat;
8427 mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
8428 if (audio_is_linear_pcm(mFormat)) {
8429 LOG_ALWAYS_FATAL_IF(mChannelCount > FCC_8, "HAL channel count %d > %d",
8430 mChannelCount, FCC_8);
8431 } else {
8432 // Can have more that FCC_8 channels in encoded streams.
8433 ALOGI("HAL format %#x is not linear pcm", mFormat);
8434 }
8435 result = mInput->stream->getFrameSize(&mFrameSize);
8436 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving frame size from HAL: %d", result);
8437 LOG_ALWAYS_FATAL_IF(mFrameSize <= 0, "Error frame size was %zu but must be greater than zero",
8438 mFrameSize);
8439 result = mInput->stream->getBufferSize(&mBufferSize);
8440 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving buffer size from HAL: %d", result);
8441 mFrameCount = mBufferSize / mFrameSize;
8442 ALOGV("%p RecordThread params: mChannelCount=%u, mFormat=%#x, mFrameSize=%zu, "
8443 "mBufferSize=%zu, mFrameCount=%zu",
8444 this, mChannelCount, mFormat, mFrameSize, mBufferSize, mFrameCount);
8445 // This is the formula for calculating the temporary buffer size.
8446 // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to
8447 // 1 full output buffer, regardless of the alignment of the available input.
8448 // The value is somewhat arbitrary, and could probably be even larger.
8449 // A larger value should allow more old data to be read after a track calls start(),
8450 // without increasing latency.
8451 //
8452 // Note this is independent of the maximum downsampling ratio permitted for capture.
8453 mRsmpInFrames = mFrameCount * 7;
8454 mRsmpInFramesP2 = roundup(mRsmpInFrames);
8455 free(mRsmpInBuffer);
8456 mRsmpInBuffer = NULL;
8457
8458 // TODO optimize audio capture buffer sizes ...
8459 // Here we calculate the size of the sliding buffer used as a source
8460 // for resampling. mRsmpInFramesP2 is currently roundup(mFrameCount * 7).
8461 // For current HAL frame counts, this is usually 2048 = 40 ms. It would
8462 // be better to have it derived from the pipe depth in the long term.
8463 // The current value is higher than necessary. However it should not add to latency.
8464
8465 // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer
8466 mRsmpInFramesOA = mRsmpInFramesP2 + mFrameCount - 1;
8467 (void)posix_memalign(&mRsmpInBuffer, 32, mRsmpInFramesOA * mFrameSize);
8468 // if posix_memalign fails, will segv here.
8469 memset(mRsmpInBuffer, 0, mRsmpInFramesOA * mFrameSize);
8470
8471 // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints.
8472 // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks?
8473
8474 audio_input_flags_t flags = mInput->flags;
8475 mediametrics::LogItem item(mThreadMetrics.getMetricsId());
8476 item.set(AMEDIAMETRICS_PROP_EVENT, AMEDIAMETRICS_PROP_EVENT_VALUE_READPARAMETERS)
8477 .set(AMEDIAMETRICS_PROP_ENCODING, formatToString(mFormat).c_str())
8478 .set(AMEDIAMETRICS_PROP_FLAGS, toString(flags).c_str())
8479 .set(AMEDIAMETRICS_PROP_SAMPLERATE, (int32_t)mSampleRate)
8480 .set(AMEDIAMETRICS_PROP_CHANNELMASK, (int32_t)mChannelMask)
8481 .set(AMEDIAMETRICS_PROP_CHANNELCOUNT, (int32_t)mChannelCount)
8482 .set(AMEDIAMETRICS_PROP_FRAMECOUNT, (int32_t)mFrameCount)
8483 .record();
8484 }
8485
getInputFramesLost()8486 uint32_t AudioFlinger::RecordThread::getInputFramesLost()
8487 {
8488 Mutex::Autolock _l(mLock);
8489 uint32_t result;
8490 if (initCheck() == NO_ERROR && mInput->stream->getInputFramesLost(&result) == OK) {
8491 return result;
8492 }
8493 return 0;
8494 }
8495
sessionIds() const8496 KeyedVector<audio_session_t, bool> AudioFlinger::RecordThread::sessionIds() const
8497 {
8498 KeyedVector<audio_session_t, bool> ids;
8499 Mutex::Autolock _l(mLock);
8500 for (size_t j = 0; j < mTracks.size(); ++j) {
8501 sp<RecordThread::RecordTrack> track = mTracks[j];
8502 audio_session_t sessionId = track->sessionId();
8503 if (ids.indexOfKey(sessionId) < 0) {
8504 ids.add(sessionId, true);
8505 }
8506 }
8507 return ids;
8508 }
8509
clearInput()8510 AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
8511 {
8512 Mutex::Autolock _l(mLock);
8513 AudioStreamIn *input = mInput;
8514 mInput = NULL;
8515 return input;
8516 }
8517
8518 // this method must always be called either with ThreadBase mLock held or inside the thread loop
stream() const8519 sp<StreamHalInterface> AudioFlinger::RecordThread::stream() const
8520 {
8521 if (mInput == NULL) {
8522 return NULL;
8523 }
8524 return mInput->stream;
8525 }
8526
addEffectChain_l(const sp<EffectChain> & chain)8527 status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
8528 {
8529 ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
8530 chain->setThread(this);
8531 chain->setInBuffer(NULL);
8532 chain->setOutBuffer(NULL);
8533
8534 checkSuspendOnAddEffectChain_l(chain);
8535
8536 // make sure enabled pre processing effects state is communicated to the HAL as we
8537 // just moved them to a new input stream.
8538 chain->syncHalEffectsState();
8539
8540 mEffectChains.add(chain);
8541
8542 return NO_ERROR;
8543 }
8544
removeEffectChain_l(const sp<EffectChain> & chain)8545 size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
8546 {
8547 ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
8548
8549 for (size_t i = 0; i < mEffectChains.size(); i++) {
8550 if (chain == mEffectChains[i]) {
8551 mEffectChains.removeAt(i);
8552 break;
8553 }
8554 }
8555 return mEffectChains.size();
8556 }
8557
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)8558 status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch,
8559 audio_patch_handle_t *handle)
8560 {
8561 status_t status = NO_ERROR;
8562
8563 // store new device and send to effects
8564 mInDeviceTypeAddr.mType = patch->sources[0].ext.device.type;
8565 mInDeviceTypeAddr.mAddress = patch->sources[0].ext.device.address;
8566 audio_port_handle_t deviceId = patch->sources[0].id;
8567 for (size_t i = 0; i < mEffectChains.size(); i++) {
8568 mEffectChains[i]->setInputDevice_l(inDeviceTypeAddr());
8569 }
8570
8571 checkBtNrec_l();
8572
8573 // store new source and send to effects
8574 if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
8575 mAudioSource = patch->sinks[0].ext.mix.usecase.source;
8576 for (size_t i = 0; i < mEffectChains.size(); i++) {
8577 mEffectChains[i]->setAudioSource_l(mAudioSource);
8578 }
8579 }
8580
8581 if (mInput->audioHwDev->supportsAudioPatches()) {
8582 sp<DeviceHalInterface> hwDevice = mInput->audioHwDev->hwDevice();
8583 status = hwDevice->createAudioPatch(patch->num_sources,
8584 patch->sources,
8585 patch->num_sinks,
8586 patch->sinks,
8587 handle);
8588 } else {
8589 char *address;
8590 if (strcmp(patch->sources[0].ext.device.address, "") != 0) {
8591 address = audio_device_address_to_parameter(
8592 patch->sources[0].ext.device.type,
8593 patch->sources[0].ext.device.address);
8594 } else {
8595 address = (char *)calloc(1, 1);
8596 }
8597 AudioParameter param = AudioParameter(String8(address));
8598 free(address);
8599 param.addInt(String8(AudioParameter::keyRouting),
8600 (int)patch->sources[0].ext.device.type);
8601 param.addInt(String8(AudioParameter::keyInputSource),
8602 (int)patch->sinks[0].ext.mix.usecase.source);
8603 status = mInput->stream->setParameters(param.toString());
8604 *handle = AUDIO_PATCH_HANDLE_NONE;
8605 }
8606
8607 if ((mPatch.num_sources == 0) || (mPatch.sources[0].id != deviceId)) {
8608 sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
8609 mPatch = *patch;
8610 }
8611
8612 const std::string pathSourcesAsString = patchSourcesToString(patch);
8613 mThreadMetrics.logEndInterval();
8614 mThreadMetrics.logCreatePatch(pathSourcesAsString, /* outDevices */ {});
8615 mThreadMetrics.logBeginInterval();
8616 // also dispatch to active AudioRecords
8617 for (const auto &track : mActiveTracks) {
8618 track->logEndInterval();
8619 track->logBeginInterval(pathSourcesAsString);
8620 }
8621 return status;
8622 }
8623
releaseAudioPatch_l(const audio_patch_handle_t handle)8624 status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
8625 {
8626 status_t status = NO_ERROR;
8627
8628 mPatch = audio_patch{};
8629 mInDeviceTypeAddr.reset();
8630
8631 if (mInput->audioHwDev->supportsAudioPatches()) {
8632 sp<DeviceHalInterface> hwDevice = mInput->audioHwDev->hwDevice();
8633 status = hwDevice->releaseAudioPatch(handle);
8634 } else {
8635 AudioParameter param;
8636 param.addInt(String8(AudioParameter::keyRouting), 0);
8637 status = mInput->stream->setParameters(param.toString());
8638 }
8639 return status;
8640 }
8641
updateOutDevices(const DeviceDescriptorBaseVector & outDevices)8642 void AudioFlinger::RecordThread::updateOutDevices(const DeviceDescriptorBaseVector& outDevices)
8643 {
8644 mOutDevices = outDevices;
8645 mOutDeviceTypeAddrs = deviceTypeAddrsFromDescriptors(mOutDevices);
8646 for (size_t i = 0; i < mEffectChains.size(); i++) {
8647 mEffectChains[i]->setDevices_l(outDeviceTypeAddrs());
8648 }
8649 }
8650
addPatchTrack(const sp<PatchRecord> & record)8651 void AudioFlinger::RecordThread::addPatchTrack(const sp<PatchRecord>& record)
8652 {
8653 Mutex::Autolock _l(mLock);
8654 mTracks.add(record);
8655 if (record->getSource()) {
8656 mSource = record->getSource();
8657 }
8658 }
8659
deletePatchTrack(const sp<PatchRecord> & record)8660 void AudioFlinger::RecordThread::deletePatchTrack(const sp<PatchRecord>& record)
8661 {
8662 Mutex::Autolock _l(mLock);
8663 if (mSource == record->getSource()) {
8664 mSource = mInput;
8665 }
8666 destroyTrack_l(record);
8667 }
8668
toAudioPortConfig(struct audio_port_config * config)8669 void AudioFlinger::RecordThread::toAudioPortConfig(struct audio_port_config *config)
8670 {
8671 ThreadBase::toAudioPortConfig(config);
8672 config->role = AUDIO_PORT_ROLE_SINK;
8673 config->ext.mix.hw_module = mInput->audioHwDev->handle();
8674 config->ext.mix.usecase.source = mAudioSource;
8675 if (mInput && mInput->flags != AUDIO_INPUT_FLAG_NONE) {
8676 config->config_mask |= AUDIO_PORT_CONFIG_FLAGS;
8677 config->flags.input = mInput->flags;
8678 }
8679 }
8680
8681 // ----------------------------------------------------------------------------
8682 // Mmap
8683 // ----------------------------------------------------------------------------
8684
MmapThreadHandle(const sp<MmapThread> & thread)8685 AudioFlinger::MmapThreadHandle::MmapThreadHandle(const sp<MmapThread>& thread)
8686 : mThread(thread)
8687 {
8688 assert(thread != 0); // thread must start non-null and stay non-null
8689 }
8690
~MmapThreadHandle()8691 AudioFlinger::MmapThreadHandle::~MmapThreadHandle()
8692 {
8693 mThread->disconnect();
8694 }
8695
createMmapBuffer(int32_t minSizeFrames,struct audio_mmap_buffer_info * info)8696 status_t AudioFlinger::MmapThreadHandle::createMmapBuffer(int32_t minSizeFrames,
8697 struct audio_mmap_buffer_info *info)
8698 {
8699 return mThread->createMmapBuffer(minSizeFrames, info);
8700 }
8701
getMmapPosition(struct audio_mmap_position * position)8702 status_t AudioFlinger::MmapThreadHandle::getMmapPosition(struct audio_mmap_position *position)
8703 {
8704 return mThread->getMmapPosition(position);
8705 }
8706
start(const AudioClient & client,const audio_attributes_t * attr,audio_port_handle_t * handle)8707 status_t AudioFlinger::MmapThreadHandle::start(const AudioClient& client,
8708 const audio_attributes_t *attr, audio_port_handle_t *handle)
8709
8710 {
8711 return mThread->start(client, attr, handle);
8712 }
8713
stop(audio_port_handle_t handle)8714 status_t AudioFlinger::MmapThreadHandle::stop(audio_port_handle_t handle)
8715 {
8716 return mThread->stop(handle);
8717 }
8718
standby()8719 status_t AudioFlinger::MmapThreadHandle::standby()
8720 {
8721 return mThread->standby();
8722 }
8723
8724
MmapThread(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,AudioHwDevice * hwDev,sp<StreamHalInterface> stream,bool systemReady,bool isOut)8725 AudioFlinger::MmapThread::MmapThread(
8726 const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
8727 AudioHwDevice *hwDev, sp<StreamHalInterface> stream, bool systemReady, bool isOut)
8728 : ThreadBase(audioFlinger, id, (isOut ? MMAP_PLAYBACK : MMAP_CAPTURE), systemReady, isOut),
8729 mSessionId(AUDIO_SESSION_NONE),
8730 mPortId(AUDIO_PORT_HANDLE_NONE),
8731 mHalStream(stream), mHalDevice(hwDev->hwDevice()), mAudioHwDev(hwDev),
8732 mActiveTracks(&this->mLocalLog),
8733 mHalVolFloat(-1.0f), // Initialize to illegal value so it always gets set properly later.
8734 mNoCallbackWarningCount(0)
8735 {
8736 mStandby = true;
8737 readHalParameters_l();
8738 }
8739
~MmapThread()8740 AudioFlinger::MmapThread::~MmapThread()
8741 {
8742 releaseWakeLock_l();
8743 }
8744
onFirstRef()8745 void AudioFlinger::MmapThread::onFirstRef()
8746 {
8747 run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
8748 }
8749
disconnect()8750 void AudioFlinger::MmapThread::disconnect()
8751 {
8752 ActiveTracks<MmapTrack> activeTracks;
8753 {
8754 Mutex::Autolock _l(mLock);
8755 for (const sp<MmapTrack> &t : mActiveTracks) {
8756 activeTracks.add(t);
8757 }
8758 }
8759 for (const sp<MmapTrack> &t : activeTracks) {
8760 stop(t->portId());
8761 }
8762 // This will decrement references and may cause the destruction of this thread.
8763 if (isOutput()) {
8764 AudioSystem::releaseOutput(mPortId);
8765 } else {
8766 AudioSystem::releaseInput(mPortId);
8767 }
8768 }
8769
8770
configure(const audio_attributes_t * attr,audio_stream_type_t streamType __unused,audio_session_t sessionId,const sp<MmapStreamCallback> & callback,audio_port_handle_t deviceId,audio_port_handle_t portId)8771 void AudioFlinger::MmapThread::configure(const audio_attributes_t *attr,
8772 audio_stream_type_t streamType __unused,
8773 audio_session_t sessionId,
8774 const sp<MmapStreamCallback>& callback,
8775 audio_port_handle_t deviceId,
8776 audio_port_handle_t portId)
8777 {
8778 mAttr = *attr;
8779 mSessionId = sessionId;
8780 mCallback = callback;
8781 mDeviceId = deviceId;
8782 mPortId = portId;
8783 }
8784
createMmapBuffer(int32_t minSizeFrames,struct audio_mmap_buffer_info * info)8785 status_t AudioFlinger::MmapThread::createMmapBuffer(int32_t minSizeFrames,
8786 struct audio_mmap_buffer_info *info)
8787 {
8788 if (mHalStream == 0) {
8789 return NO_INIT;
8790 }
8791 mStandby = true;
8792 acquireWakeLock();
8793 return mHalStream->createMmapBuffer(minSizeFrames, info);
8794 }
8795
getMmapPosition(struct audio_mmap_position * position)8796 status_t AudioFlinger::MmapThread::getMmapPosition(struct audio_mmap_position *position)
8797 {
8798 if (mHalStream == 0) {
8799 return NO_INIT;
8800 }
8801 return mHalStream->getMmapPosition(position);
8802 }
8803
exitStandby()8804 status_t AudioFlinger::MmapThread::exitStandby()
8805 {
8806 status_t ret = mHalStream->start();
8807 if (ret != NO_ERROR) {
8808 ALOGE("%s: error mHalStream->start() = %d for first track", __FUNCTION__, ret);
8809 return ret;
8810 }
8811 if (mStandby) {
8812 mThreadMetrics.logBeginInterval();
8813 mStandby = false;
8814 }
8815 return NO_ERROR;
8816 }
8817
start(const AudioClient & client,const audio_attributes_t * attr,audio_port_handle_t * handle)8818 status_t AudioFlinger::MmapThread::start(const AudioClient& client,
8819 const audio_attributes_t *attr,
8820 audio_port_handle_t *handle)
8821 {
8822 ALOGV("%s clientUid %d mStandby %d mPortId %d *handle %d", __FUNCTION__,
8823 client.clientUid, mStandby, mPortId, *handle);
8824 if (mHalStream == 0) {
8825 return NO_INIT;
8826 }
8827
8828 status_t ret;
8829
8830 if (*handle == mPortId) {
8831 // for the first track, reuse portId and session allocated when the stream was opened
8832 return exitStandby();
8833 }
8834
8835 audio_port_handle_t portId = AUDIO_PORT_HANDLE_NONE;
8836
8837 audio_io_handle_t io = mId;
8838 if (isOutput()) {
8839 audio_config_t config = AUDIO_CONFIG_INITIALIZER;
8840 config.sample_rate = mSampleRate;
8841 config.channel_mask = mChannelMask;
8842 config.format = mFormat;
8843 audio_stream_type_t stream = streamType();
8844 audio_output_flags_t flags =
8845 (audio_output_flags_t)(AUDIO_OUTPUT_FLAG_MMAP_NOIRQ | AUDIO_OUTPUT_FLAG_DIRECT);
8846 audio_port_handle_t deviceId = mDeviceId;
8847 std::vector<audio_io_handle_t> secondaryOutputs;
8848 ret = AudioSystem::getOutputForAttr(&mAttr, &io,
8849 mSessionId,
8850 &stream,
8851 client.clientPid,
8852 client.clientUid,
8853 &config,
8854 flags,
8855 &deviceId,
8856 &portId,
8857 &secondaryOutputs);
8858 ALOGD_IF(!secondaryOutputs.empty(),
8859 "MmapThread::start does not support secondary outputs, ignoring them");
8860 } else {
8861 audio_config_base_t config;
8862 config.sample_rate = mSampleRate;
8863 config.channel_mask = mChannelMask;
8864 config.format = mFormat;
8865 audio_port_handle_t deviceId = mDeviceId;
8866 ret = AudioSystem::getInputForAttr(&mAttr, &io,
8867 RECORD_RIID_INVALID,
8868 mSessionId,
8869 client.clientPid,
8870 client.clientUid,
8871 client.packageName,
8872 &config,
8873 AUDIO_INPUT_FLAG_MMAP_NOIRQ,
8874 &deviceId,
8875 &portId);
8876 }
8877 // APM should not chose a different input or output stream for the same set of attributes
8878 // and audo configuration
8879 if (ret != NO_ERROR || io != mId) {
8880 ALOGE("%s: error getting output or input from APM (error %d, io %d expected io %d)",
8881 __FUNCTION__, ret, io, mId);
8882 return BAD_VALUE;
8883 }
8884
8885 if (isOutput()) {
8886 ret = AudioSystem::startOutput(portId);
8887 } else {
8888 ret = AudioSystem::startInput(portId);
8889 }
8890
8891 Mutex::Autolock _l(mLock);
8892 // abort if start is rejected by audio policy manager
8893 if (ret != NO_ERROR) {
8894 ALOGE("%s: error start rejected by AudioPolicyManager = %d", __FUNCTION__, ret);
8895 if (!mActiveTracks.isEmpty()) {
8896 mLock.unlock();
8897 if (isOutput()) {
8898 AudioSystem::releaseOutput(portId);
8899 } else {
8900 AudioSystem::releaseInput(portId);
8901 }
8902 mLock.lock();
8903 } else {
8904 mHalStream->stop();
8905 }
8906 return PERMISSION_DENIED;
8907 }
8908
8909 // Given that MmapThread::mAttr is mutable, should a MmapTrack have attributes ?
8910 sp<MmapTrack> track = new MmapTrack(this, attr == nullptr ? mAttr : *attr, mSampleRate, mFormat,
8911 mChannelMask, mSessionId, isOutput(), client.clientUid,
8912 client.clientPid, IPCThreadState::self()->getCallingPid(),
8913 portId);
8914
8915 if (isOutput()) {
8916 // force volume update when a new track is added
8917 mHalVolFloat = -1.0f;
8918 } else if (!track->isSilenced_l()) {
8919 for (const sp<MmapTrack> &t : mActiveTracks) {
8920 if (t->isSilenced_l() && t->uid() != client.clientUid)
8921 t->invalidate();
8922 }
8923 }
8924
8925
8926 mActiveTracks.add(track);
8927 sp<EffectChain> chain = getEffectChain_l(mSessionId);
8928 if (chain != 0) {
8929 chain->setStrategy(AudioSystem::getStrategyForStream(streamType()));
8930 chain->incTrackCnt();
8931 chain->incActiveTrackCnt();
8932 }
8933
8934 track->logBeginInterval(patchSinksToString(&mPatch)); // log to MediaMetrics
8935 *handle = portId;
8936 broadcast_l();
8937
8938 ALOGV("%s DONE handle %d stream %p", __FUNCTION__, *handle, mHalStream.get());
8939
8940 return NO_ERROR;
8941 }
8942
stop(audio_port_handle_t handle)8943 status_t AudioFlinger::MmapThread::stop(audio_port_handle_t handle)
8944 {
8945 ALOGV("%s handle %d", __FUNCTION__, handle);
8946
8947 if (mHalStream == 0) {
8948 return NO_INIT;
8949 }
8950
8951 if (handle == mPortId) {
8952 mHalStream->stop();
8953 return NO_ERROR;
8954 }
8955
8956 Mutex::Autolock _l(mLock);
8957
8958 sp<MmapTrack> track;
8959 for (const sp<MmapTrack> &t : mActiveTracks) {
8960 if (handle == t->portId()) {
8961 track = t;
8962 break;
8963 }
8964 }
8965 if (track == 0) {
8966 return BAD_VALUE;
8967 }
8968
8969 mActiveTracks.remove(track);
8970
8971 mLock.unlock();
8972 if (isOutput()) {
8973 AudioSystem::stopOutput(track->portId());
8974 AudioSystem::releaseOutput(track->portId());
8975 } else {
8976 AudioSystem::stopInput(track->portId());
8977 AudioSystem::releaseInput(track->portId());
8978 }
8979 mLock.lock();
8980
8981 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
8982 if (chain != 0) {
8983 chain->decActiveTrackCnt();
8984 chain->decTrackCnt();
8985 }
8986
8987 broadcast_l();
8988
8989 return NO_ERROR;
8990 }
8991
standby()8992 status_t AudioFlinger::MmapThread::standby()
8993 {
8994 ALOGV("%s", __FUNCTION__);
8995
8996 if (mHalStream == 0) {
8997 return NO_INIT;
8998 }
8999 if (!mActiveTracks.isEmpty()) {
9000 return INVALID_OPERATION;
9001 }
9002 mHalStream->standby();
9003 if (!mStandby) {
9004 mThreadMetrics.logEndInterval();
9005 mStandby = true;
9006 }
9007 releaseWakeLock();
9008 return NO_ERROR;
9009 }
9010
9011
readHalParameters_l()9012 void AudioFlinger::MmapThread::readHalParameters_l()
9013 {
9014 status_t result = mHalStream->getAudioProperties(&mSampleRate, &mChannelMask, &mHALFormat);
9015 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving audio properties from HAL: %d", result);
9016 mFormat = mHALFormat;
9017 LOG_ALWAYS_FATAL_IF(!audio_is_linear_pcm(mFormat), "HAL format %#x is not linear pcm", mFormat);
9018 result = mHalStream->getFrameSize(&mFrameSize);
9019 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving frame size from HAL: %d", result);
9020 LOG_ALWAYS_FATAL_IF(mFrameSize <= 0, "Error frame size was %zu but must be greater than zero",
9021 mFrameSize);
9022 result = mHalStream->getBufferSize(&mBufferSize);
9023 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving buffer size from HAL: %d", result);
9024 mFrameCount = mBufferSize / mFrameSize;
9025
9026 // TODO: make a readHalParameters call?
9027 mediametrics::LogItem item(mThreadMetrics.getMetricsId());
9028 item.set(AMEDIAMETRICS_PROP_EVENT, AMEDIAMETRICS_PROP_EVENT_VALUE_READPARAMETERS)
9029 .set(AMEDIAMETRICS_PROP_ENCODING, formatToString(mFormat).c_str())
9030 .set(AMEDIAMETRICS_PROP_SAMPLERATE, (int32_t)mSampleRate)
9031 .set(AMEDIAMETRICS_PROP_CHANNELMASK, (int32_t)mChannelMask)
9032 .set(AMEDIAMETRICS_PROP_CHANNELCOUNT, (int32_t)mChannelCount)
9033 .set(AMEDIAMETRICS_PROP_FRAMECOUNT, (int32_t)mFrameCount)
9034 /*
9035 .set(AMEDIAMETRICS_PROP_FLAGS, toString(flags).c_str())
9036 .set(AMEDIAMETRICS_PROP_PREFIX_HAPTIC AMEDIAMETRICS_PROP_CHANNELMASK,
9037 (int32_t)mHapticChannelMask)
9038 .set(AMEDIAMETRICS_PROP_PREFIX_HAPTIC AMEDIAMETRICS_PROP_CHANNELCOUNT,
9039 (int32_t)mHapticChannelCount)
9040 */
9041 .set(AMEDIAMETRICS_PROP_PREFIX_HAL AMEDIAMETRICS_PROP_ENCODING,
9042 formatToString(mHALFormat).c_str())
9043 .set(AMEDIAMETRICS_PROP_PREFIX_HAL AMEDIAMETRICS_PROP_FRAMECOUNT,
9044 (int32_t)mFrameCount) // sic - added HAL
9045 .record();
9046 }
9047
threadLoop()9048 bool AudioFlinger::MmapThread::threadLoop()
9049 {
9050 checkSilentMode_l();
9051
9052 const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
9053
9054 while (!exitPending())
9055 {
9056 Vector< sp<EffectChain> > effectChains;
9057
9058 { // under Thread lock
9059 Mutex::Autolock _l(mLock);
9060
9061 if (mSignalPending) {
9062 // A signal was raised while we were unlocked
9063 mSignalPending = false;
9064 } else {
9065 if (mConfigEvents.isEmpty()) {
9066 // we're about to wait, flush the binder command buffer
9067 IPCThreadState::self()->flushCommands();
9068
9069 if (exitPending()) {
9070 break;
9071 }
9072
9073 // wait until we have something to do...
9074 ALOGV("%s going to sleep", myName.string());
9075 mWaitWorkCV.wait(mLock);
9076 ALOGV("%s waking up", myName.string());
9077
9078 checkSilentMode_l();
9079
9080 continue;
9081 }
9082 }
9083
9084 processConfigEvents_l();
9085
9086 processVolume_l();
9087
9088 checkInvalidTracks_l();
9089
9090 mActiveTracks.updatePowerState(this);
9091
9092 updateMetadata_l();
9093
9094 lockEffectChains_l(effectChains);
9095 } // release Thread lock
9096
9097 for (size_t i = 0; i < effectChains.size(); i ++) {
9098 effectChains[i]->process_l(); // Thread is not locked, but effect chain is locked
9099 }
9100
9101 // enable changes in effect chain, including moving to another thread.
9102 unlockEffectChains(effectChains);
9103 // Effect chains will be actually deleted here if they were removed from
9104 // mEffectChains list during mixing or effects processing
9105 }
9106
9107 threadLoop_exit();
9108
9109 if (!mStandby) {
9110 threadLoop_standby();
9111 mStandby = true;
9112 }
9113
9114 ALOGV("Thread %p type %d exiting", this, mType);
9115 return false;
9116 }
9117
9118 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)9119 bool AudioFlinger::MmapThread::checkForNewParameter_l(const String8& keyValuePair,
9120 status_t& status)
9121 {
9122 AudioParameter param = AudioParameter(keyValuePair);
9123 int value;
9124 bool sendToHal = true;
9125 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
9126 LOG_FATAL("Should not happen set routing device in MmapThread");
9127 }
9128 if (sendToHal) {
9129 status = mHalStream->setParameters(keyValuePair);
9130 } else {
9131 status = NO_ERROR;
9132 }
9133
9134 return false;
9135 }
9136
getParameters(const String8 & keys)9137 String8 AudioFlinger::MmapThread::getParameters(const String8& keys)
9138 {
9139 Mutex::Autolock _l(mLock);
9140 String8 out_s8;
9141 if (initCheck() == NO_ERROR && mHalStream->getParameters(keys, &out_s8) == OK) {
9142 return out_s8;
9143 }
9144 return String8();
9145 }
9146
ioConfigChanged(audio_io_config_event event,pid_t pid,audio_port_handle_t portId __unused)9147 void AudioFlinger::MmapThread::ioConfigChanged(audio_io_config_event event, pid_t pid,
9148 audio_port_handle_t portId __unused) {
9149 sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
9150
9151 desc->mIoHandle = mId;
9152
9153 switch (event) {
9154 case AUDIO_INPUT_OPENED:
9155 case AUDIO_INPUT_REGISTERED:
9156 case AUDIO_INPUT_CONFIG_CHANGED:
9157 case AUDIO_OUTPUT_OPENED:
9158 case AUDIO_OUTPUT_REGISTERED:
9159 case AUDIO_OUTPUT_CONFIG_CHANGED:
9160 desc->mPatch = mPatch;
9161 desc->mChannelMask = mChannelMask;
9162 desc->mSamplingRate = mSampleRate;
9163 desc->mFormat = mFormat;
9164 desc->mFrameCount = mFrameCount;
9165 desc->mFrameCountHAL = mFrameCount;
9166 desc->mLatency = 0;
9167 break;
9168
9169 case AUDIO_INPUT_CLOSED:
9170 case AUDIO_OUTPUT_CLOSED:
9171 default:
9172 break;
9173 }
9174 mAudioFlinger->ioConfigChanged(event, desc, pid);
9175 }
9176
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)9177 status_t AudioFlinger::MmapThread::createAudioPatch_l(const struct audio_patch *patch,
9178 audio_patch_handle_t *handle)
9179 {
9180 status_t status = NO_ERROR;
9181
9182 // store new device and send to effects
9183 audio_devices_t type = AUDIO_DEVICE_NONE;
9184 audio_port_handle_t deviceId;
9185 AudioDeviceTypeAddrVector sinkDeviceTypeAddrs;
9186 AudioDeviceTypeAddr sourceDeviceTypeAddr;
9187 uint32_t numDevices = 0;
9188 if (isOutput()) {
9189 for (unsigned int i = 0; i < patch->num_sinks; i++) {
9190 LOG_ALWAYS_FATAL_IF(popcount(patch->sinks[i].ext.device.type) > 1
9191 && !mAudioHwDev->supportsAudioPatches(),
9192 "Enumerated device type(%#x) must not be used "
9193 "as it does not support audio patches",
9194 patch->sinks[i].ext.device.type);
9195 type |= patch->sinks[i].ext.device.type;
9196 sinkDeviceTypeAddrs.push_back(AudioDeviceTypeAddr(patch->sinks[i].ext.device.type,
9197 patch->sinks[i].ext.device.address));
9198 }
9199 deviceId = patch->sinks[0].id;
9200 numDevices = mPatch.num_sinks;
9201 } else {
9202 type = patch->sources[0].ext.device.type;
9203 deviceId = patch->sources[0].id;
9204 numDevices = mPatch.num_sources;
9205 sourceDeviceTypeAddr.mType = patch->sources[0].ext.device.type;
9206 sourceDeviceTypeAddr.mAddress = patch->sources[0].ext.device.address;
9207 }
9208
9209 for (size_t i = 0; i < mEffectChains.size(); i++) {
9210 if (isOutput()) {
9211 mEffectChains[i]->setDevices_l(sinkDeviceTypeAddrs);
9212 } else {
9213 mEffectChains[i]->setInputDevice_l(sourceDeviceTypeAddr);
9214 }
9215 }
9216
9217 if (!isOutput()) {
9218 // store new source and send to effects
9219 if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
9220 mAudioSource = patch->sinks[0].ext.mix.usecase.source;
9221 for (size_t i = 0; i < mEffectChains.size(); i++) {
9222 mEffectChains[i]->setAudioSource_l(mAudioSource);
9223 }
9224 }
9225 }
9226
9227 if (mAudioHwDev->supportsAudioPatches()) {
9228 status = mHalDevice->createAudioPatch(patch->num_sources,
9229 patch->sources,
9230 patch->num_sinks,
9231 patch->sinks,
9232 handle);
9233 } else {
9234 char *address;
9235 if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
9236 //FIXME: we only support address on first sink with HAL version < 3.0
9237 address = audio_device_address_to_parameter(
9238 patch->sinks[0].ext.device.type,
9239 patch->sinks[0].ext.device.address);
9240 } else {
9241 address = (char *)calloc(1, 1);
9242 }
9243 AudioParameter param = AudioParameter(String8(address));
9244 free(address);
9245 param.addInt(String8(AudioParameter::keyRouting), (int)type);
9246 if (!isOutput()) {
9247 param.addInt(String8(AudioParameter::keyInputSource),
9248 (int)patch->sinks[0].ext.mix.usecase.source);
9249 }
9250 status = mHalStream->setParameters(param.toString());
9251 *handle = AUDIO_PATCH_HANDLE_NONE;
9252 }
9253
9254 if (numDevices == 0 || mDeviceId != deviceId) {
9255 if (isOutput()) {
9256 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
9257 mOutDeviceTypeAddrs = sinkDeviceTypeAddrs;
9258 checkSilentMode_l();
9259 } else {
9260 sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
9261 mInDeviceTypeAddr = sourceDeviceTypeAddr;
9262 }
9263 sp<MmapStreamCallback> callback = mCallback.promote();
9264 if (mDeviceId != deviceId && callback != 0) {
9265 mLock.unlock();
9266 callback->onRoutingChanged(deviceId);
9267 mLock.lock();
9268 }
9269 mPatch = *patch;
9270 mDeviceId = deviceId;
9271 }
9272 return status;
9273 }
9274
releaseAudioPatch_l(const audio_patch_handle_t handle)9275 status_t AudioFlinger::MmapThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
9276 {
9277 status_t status = NO_ERROR;
9278
9279 mPatch = audio_patch{};
9280 mOutDeviceTypeAddrs.clear();
9281 mInDeviceTypeAddr.reset();
9282
9283 bool supportsAudioPatches = mHalDevice->supportsAudioPatches(&supportsAudioPatches) == OK ?
9284 supportsAudioPatches : false;
9285
9286 if (supportsAudioPatches) {
9287 status = mHalDevice->releaseAudioPatch(handle);
9288 } else {
9289 AudioParameter param;
9290 param.addInt(String8(AudioParameter::keyRouting), 0);
9291 status = mHalStream->setParameters(param.toString());
9292 }
9293 return status;
9294 }
9295
toAudioPortConfig(struct audio_port_config * config)9296 void AudioFlinger::MmapThread::toAudioPortConfig(struct audio_port_config *config)
9297 {
9298 ThreadBase::toAudioPortConfig(config);
9299 if (isOutput()) {
9300 config->role = AUDIO_PORT_ROLE_SOURCE;
9301 config->ext.mix.hw_module = mAudioHwDev->handle();
9302 config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
9303 } else {
9304 config->role = AUDIO_PORT_ROLE_SINK;
9305 config->ext.mix.hw_module = mAudioHwDev->handle();
9306 config->ext.mix.usecase.source = mAudioSource;
9307 }
9308 }
9309
addEffectChain_l(const sp<EffectChain> & chain)9310 status_t AudioFlinger::MmapThread::addEffectChain_l(const sp<EffectChain>& chain)
9311 {
9312 audio_session_t session = chain->sessionId();
9313
9314 ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
9315 // Attach all tracks with same session ID to this chain.
9316 // indicate all active tracks in the chain
9317 for (const sp<MmapTrack> &track : mActiveTracks) {
9318 if (session == track->sessionId()) {
9319 chain->incTrackCnt();
9320 chain->incActiveTrackCnt();
9321 }
9322 }
9323
9324 chain->setThread(this);
9325 chain->setInBuffer(nullptr);
9326 chain->setOutBuffer(nullptr);
9327 chain->syncHalEffectsState();
9328
9329 mEffectChains.add(chain);
9330 checkSuspendOnAddEffectChain_l(chain);
9331 return NO_ERROR;
9332 }
9333
removeEffectChain_l(const sp<EffectChain> & chain)9334 size_t AudioFlinger::MmapThread::removeEffectChain_l(const sp<EffectChain>& chain)
9335 {
9336 audio_session_t session = chain->sessionId();
9337
9338 ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
9339
9340 for (size_t i = 0; i < mEffectChains.size(); i++) {
9341 if (chain == mEffectChains[i]) {
9342 mEffectChains.removeAt(i);
9343 // detach all active tracks from the chain
9344 // detach all tracks with same session ID from this chain
9345 for (const sp<MmapTrack> &track : mActiveTracks) {
9346 if (session == track->sessionId()) {
9347 chain->decActiveTrackCnt();
9348 chain->decTrackCnt();
9349 }
9350 }
9351 break;
9352 }
9353 }
9354 return mEffectChains.size();
9355 }
9356
threadLoop_standby()9357 void AudioFlinger::MmapThread::threadLoop_standby()
9358 {
9359 mHalStream->standby();
9360 }
9361
threadLoop_exit()9362 void AudioFlinger::MmapThread::threadLoop_exit()
9363 {
9364 // Do not call callback->onTearDown() because it is redundant for thread exit
9365 // and because it can cause a recursive mutex lock on stop().
9366 }
9367
setSyncEvent(const sp<SyncEvent> & event __unused)9368 status_t AudioFlinger::MmapThread::setSyncEvent(const sp<SyncEvent>& event __unused)
9369 {
9370 return BAD_VALUE;
9371 }
9372
isValidSyncEvent(const sp<SyncEvent> & event __unused) const9373 bool AudioFlinger::MmapThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
9374 {
9375 return false;
9376 }
9377
checkEffectCompatibility_l(const effect_descriptor_t * desc,audio_session_t sessionId)9378 status_t AudioFlinger::MmapThread::checkEffectCompatibility_l(
9379 const effect_descriptor_t *desc, audio_session_t sessionId)
9380 {
9381 // No global effect sessions on mmap threads
9382 if (audio_is_global_session(sessionId)) {
9383 ALOGW("checkEffectCompatibility_l(): global effect %s on MMAP thread %s",
9384 desc->name, mThreadName);
9385 return BAD_VALUE;
9386 }
9387
9388 if (!isOutput() && ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_PRE_PROC)) {
9389 ALOGW("checkEffectCompatibility_l(): non pre processing effect %s on capture mmap thread",
9390 desc->name);
9391 return BAD_VALUE;
9392 }
9393 if (isOutput() && ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC)) {
9394 ALOGW("checkEffectCompatibility_l(): pre processing effect %s created on playback mmap "
9395 "thread", desc->name);
9396 return BAD_VALUE;
9397 }
9398
9399 // Only allow effects without processing load or latency
9400 if ((desc->flags & EFFECT_FLAG_NO_PROCESS_MASK) != EFFECT_FLAG_NO_PROCESS) {
9401 return BAD_VALUE;
9402 }
9403
9404 return NO_ERROR;
9405 }
9406
checkInvalidTracks_l()9407 void AudioFlinger::MmapThread::checkInvalidTracks_l()
9408 {
9409 for (const sp<MmapTrack> &track : mActiveTracks) {
9410 if (track->isInvalid()) {
9411 sp<MmapStreamCallback> callback = mCallback.promote();
9412 if (callback != 0) {
9413 mLock.unlock();
9414 callback->onTearDown(track->portId());
9415 mLock.lock();
9416 } else if (mNoCallbackWarningCount < kMaxNoCallbackWarnings) {
9417 ALOGW("Could not notify MMAP stream tear down: no onTearDown callback!");
9418 mNoCallbackWarningCount++;
9419 }
9420 }
9421 }
9422 }
9423
dumpInternals_l(int fd,const Vector<String16> & args __unused)9424 void AudioFlinger::MmapThread::dumpInternals_l(int fd, const Vector<String16>& args __unused)
9425 {
9426 dprintf(fd, " Attributes: content type %d usage %d source %d\n",
9427 mAttr.content_type, mAttr.usage, mAttr.source);
9428 dprintf(fd, " Session: %d port Id: %d\n", mSessionId, mPortId);
9429 if (mActiveTracks.isEmpty()) {
9430 dprintf(fd, " No active clients\n");
9431 }
9432 }
9433
dumpTracks_l(int fd,const Vector<String16> & args __unused)9434 void AudioFlinger::MmapThread::dumpTracks_l(int fd, const Vector<String16>& args __unused)
9435 {
9436 String8 result;
9437 size_t numtracks = mActiveTracks.size();
9438 dprintf(fd, " %zu Tracks\n", numtracks);
9439 const char *prefix = " ";
9440 if (numtracks) {
9441 result.append(prefix);
9442 mActiveTracks[0]->appendDumpHeader(result);
9443 for (size_t i = 0; i < numtracks ; ++i) {
9444 sp<MmapTrack> track = mActiveTracks[i];
9445 result.append(prefix);
9446 track->appendDump(result, true /* active */);
9447 }
9448 } else {
9449 dprintf(fd, "\n");
9450 }
9451 write(fd, result.string(), result.size());
9452 }
9453
MmapPlaybackThread(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,AudioHwDevice * hwDev,AudioStreamOut * output,bool systemReady)9454 AudioFlinger::MmapPlaybackThread::MmapPlaybackThread(
9455 const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
9456 AudioHwDevice *hwDev, AudioStreamOut *output, bool systemReady)
9457 : MmapThread(audioFlinger, id, hwDev, output->stream, systemReady, true /* isOut */),
9458 mStreamType(AUDIO_STREAM_MUSIC),
9459 mStreamVolume(1.0),
9460 mStreamMute(false),
9461 mOutput(output)
9462 {
9463 snprintf(mThreadName, kThreadNameLength, "AudioMmapOut_%X", id);
9464 mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
9465 mMasterVolume = audioFlinger->masterVolume_l();
9466 mMasterMute = audioFlinger->masterMute_l();
9467 if (mAudioHwDev) {
9468 if (mAudioHwDev->canSetMasterVolume()) {
9469 mMasterVolume = 1.0;
9470 }
9471
9472 if (mAudioHwDev->canSetMasterMute()) {
9473 mMasterMute = false;
9474 }
9475 }
9476 }
9477
configure(const audio_attributes_t * attr,audio_stream_type_t streamType,audio_session_t sessionId,const sp<MmapStreamCallback> & callback,audio_port_handle_t deviceId,audio_port_handle_t portId)9478 void AudioFlinger::MmapPlaybackThread::configure(const audio_attributes_t *attr,
9479 audio_stream_type_t streamType,
9480 audio_session_t sessionId,
9481 const sp<MmapStreamCallback>& callback,
9482 audio_port_handle_t deviceId,
9483 audio_port_handle_t portId)
9484 {
9485 MmapThread::configure(attr, streamType, sessionId, callback, deviceId, portId);
9486 mStreamType = streamType;
9487 }
9488
clearOutput()9489 AudioStreamOut* AudioFlinger::MmapPlaybackThread::clearOutput()
9490 {
9491 Mutex::Autolock _l(mLock);
9492 AudioStreamOut *output = mOutput;
9493 mOutput = NULL;
9494 return output;
9495 }
9496
setMasterVolume(float value)9497 void AudioFlinger::MmapPlaybackThread::setMasterVolume(float value)
9498 {
9499 Mutex::Autolock _l(mLock);
9500 // Don't apply master volume in SW if our HAL can do it for us.
9501 if (mAudioHwDev &&
9502 mAudioHwDev->canSetMasterVolume()) {
9503 mMasterVolume = 1.0;
9504 } else {
9505 mMasterVolume = value;
9506 }
9507 }
9508
setMasterMute(bool muted)9509 void AudioFlinger::MmapPlaybackThread::setMasterMute(bool muted)
9510 {
9511 Mutex::Autolock _l(mLock);
9512 // Don't apply master mute in SW if our HAL can do it for us.
9513 if (mAudioHwDev && mAudioHwDev->canSetMasterMute()) {
9514 mMasterMute = false;
9515 } else {
9516 mMasterMute = muted;
9517 }
9518 }
9519
setStreamVolume(audio_stream_type_t stream,float value)9520 void AudioFlinger::MmapPlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
9521 {
9522 Mutex::Autolock _l(mLock);
9523 if (stream == mStreamType) {
9524 mStreamVolume = value;
9525 broadcast_l();
9526 }
9527 }
9528
streamVolume(audio_stream_type_t stream) const9529 float AudioFlinger::MmapPlaybackThread::streamVolume(audio_stream_type_t stream) const
9530 {
9531 Mutex::Autolock _l(mLock);
9532 if (stream == mStreamType) {
9533 return mStreamVolume;
9534 }
9535 return 0.0f;
9536 }
9537
setStreamMute(audio_stream_type_t stream,bool muted)9538 void AudioFlinger::MmapPlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
9539 {
9540 Mutex::Autolock _l(mLock);
9541 if (stream == mStreamType) {
9542 mStreamMute= muted;
9543 broadcast_l();
9544 }
9545 }
9546
invalidateTracks(audio_stream_type_t streamType)9547 void AudioFlinger::MmapPlaybackThread::invalidateTracks(audio_stream_type_t streamType)
9548 {
9549 Mutex::Autolock _l(mLock);
9550 if (streamType == mStreamType) {
9551 for (const sp<MmapTrack> &track : mActiveTracks) {
9552 track->invalidate();
9553 }
9554 broadcast_l();
9555 }
9556 }
9557
processVolume_l()9558 void AudioFlinger::MmapPlaybackThread::processVolume_l()
9559 {
9560 float volume;
9561
9562 if (mMasterMute || mStreamMute) {
9563 volume = 0;
9564 } else {
9565 volume = mMasterVolume * mStreamVolume;
9566 }
9567
9568 if (volume != mHalVolFloat) {
9569
9570 // Convert volumes from float to 8.24
9571 uint32_t vol = (uint32_t)(volume * (1 << 24));
9572
9573 // Delegate volume control to effect in track effect chain if needed
9574 // only one effect chain can be present on DirectOutputThread, so if
9575 // there is one, the track is connected to it
9576 if (!mEffectChains.isEmpty()) {
9577 mEffectChains[0]->setVolume_l(&vol, &vol);
9578 volume = (float)vol / (1 << 24);
9579 }
9580 // Try to use HW volume control and fall back to SW control if not implemented
9581 if (mOutput->stream->setVolume(volume, volume) == NO_ERROR) {
9582 mHalVolFloat = volume; // HW volume control worked, so update value.
9583 mNoCallbackWarningCount = 0;
9584 } else {
9585 sp<MmapStreamCallback> callback = mCallback.promote();
9586 if (callback != 0) {
9587 int channelCount;
9588 if (isOutput()) {
9589 channelCount = audio_channel_count_from_out_mask(mChannelMask);
9590 } else {
9591 channelCount = audio_channel_count_from_in_mask(mChannelMask);
9592 }
9593 Vector<float> values;
9594 for (int i = 0; i < channelCount; i++) {
9595 values.add(volume);
9596 }
9597 mHalVolFloat = volume; // SW volume control worked, so update value.
9598 mNoCallbackWarningCount = 0;
9599 mLock.unlock();
9600 callback->onVolumeChanged(mChannelMask, values);
9601 mLock.lock();
9602 } else {
9603 if (mNoCallbackWarningCount < kMaxNoCallbackWarnings) {
9604 ALOGW("Could not set MMAP stream volume: no volume callback!");
9605 mNoCallbackWarningCount++;
9606 }
9607 }
9608 }
9609 }
9610 }
9611
updateMetadata_l()9612 void AudioFlinger::MmapPlaybackThread::updateMetadata_l()
9613 {
9614 if (mOutput == nullptr || mOutput->stream == nullptr ||
9615 !mActiveTracks.readAndClearHasChanged()) {
9616 return;
9617 }
9618 StreamOutHalInterface::SourceMetadata metadata;
9619 for (const sp<MmapTrack> &track : mActiveTracks) {
9620 // No track is invalid as this is called after prepareTrack_l in the same critical section
9621 metadata.tracks.push_back({
9622 .usage = track->attributes().usage,
9623 .content_type = track->attributes().content_type,
9624 .gain = mHalVolFloat, // TODO: propagate from aaudio pre-mix volume
9625 });
9626 }
9627 mOutput->stream->updateSourceMetadata(metadata);
9628 }
9629
checkSilentMode_l()9630 void AudioFlinger::MmapPlaybackThread::checkSilentMode_l()
9631 {
9632 if (!mMasterMute) {
9633 char value[PROPERTY_VALUE_MAX];
9634 if (property_get("ro.audio.silent", value, "0") > 0) {
9635 char *endptr;
9636 unsigned long ul = strtoul(value, &endptr, 0);
9637 if (*endptr == '\0' && ul != 0) {
9638 ALOGD("Silence is golden");
9639 // The setprop command will not allow a property to be changed after
9640 // the first time it is set, so we don't have to worry about un-muting.
9641 setMasterMute_l(true);
9642 }
9643 }
9644 }
9645 }
9646
toAudioPortConfig(struct audio_port_config * config)9647 void AudioFlinger::MmapPlaybackThread::toAudioPortConfig(struct audio_port_config *config)
9648 {
9649 MmapThread::toAudioPortConfig(config);
9650 if (mOutput && mOutput->flags != AUDIO_OUTPUT_FLAG_NONE) {
9651 config->config_mask |= AUDIO_PORT_CONFIG_FLAGS;
9652 config->flags.output = mOutput->flags;
9653 }
9654 }
9655
dumpInternals_l(int fd,const Vector<String16> & args)9656 void AudioFlinger::MmapPlaybackThread::dumpInternals_l(int fd, const Vector<String16>& args)
9657 {
9658 MmapThread::dumpInternals_l(fd, args);
9659
9660 dprintf(fd, " Stream type: %d Stream volume: %f HAL volume: %f Stream mute %d\n",
9661 mStreamType, mStreamVolume, mHalVolFloat, mStreamMute);
9662 dprintf(fd, " Master volume: %f Master mute %d\n", mMasterVolume, mMasterMute);
9663 }
9664
MmapCaptureThread(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,AudioHwDevice * hwDev,AudioStreamIn * input,bool systemReady)9665 AudioFlinger::MmapCaptureThread::MmapCaptureThread(
9666 const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
9667 AudioHwDevice *hwDev, AudioStreamIn *input, bool systemReady)
9668 : MmapThread(audioFlinger, id, hwDev, input->stream, systemReady, false /* isOut */),
9669 mInput(input)
9670 {
9671 snprintf(mThreadName, kThreadNameLength, "AudioMmapIn_%X", id);
9672 mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
9673 }
9674
exitStandby()9675 status_t AudioFlinger::MmapCaptureThread::exitStandby()
9676 {
9677 {
9678 // mInput might have been cleared by clearInput()
9679 Mutex::Autolock _l(mLock);
9680 if (mInput != nullptr && mInput->stream != nullptr) {
9681 mInput->stream->setGain(1.0f);
9682 }
9683 }
9684 return MmapThread::exitStandby();
9685 }
9686
clearInput()9687 AudioFlinger::AudioStreamIn* AudioFlinger::MmapCaptureThread::clearInput()
9688 {
9689 Mutex::Autolock _l(mLock);
9690 AudioStreamIn *input = mInput;
9691 mInput = NULL;
9692 return input;
9693 }
9694
9695
processVolume_l()9696 void AudioFlinger::MmapCaptureThread::processVolume_l()
9697 {
9698 bool changed = false;
9699 bool silenced = false;
9700
9701 sp<MmapStreamCallback> callback = mCallback.promote();
9702 if (callback == 0) {
9703 if (mNoCallbackWarningCount < kMaxNoCallbackWarnings) {
9704 ALOGW("Could not set MMAP stream silenced: no onStreamSilenced callback!");
9705 mNoCallbackWarningCount++;
9706 }
9707 }
9708
9709 // After a change occurred in track silenced state, mute capture in audio DSP if at least one
9710 // track is silenced and unmute otherwise
9711 for (size_t i = 0; i < mActiveTracks.size() && !silenced; i++) {
9712 if (!mActiveTracks[i]->getAndSetSilencedNotified_l()) {
9713 changed = true;
9714 silenced = mActiveTracks[i]->isSilenced_l();
9715 }
9716 }
9717
9718 if (changed) {
9719 mInput->stream->setGain(silenced ? 0.0f: 1.0f);
9720 }
9721 }
9722
updateMetadata_l()9723 void AudioFlinger::MmapCaptureThread::updateMetadata_l()
9724 {
9725 if (mInput == nullptr || mInput->stream == nullptr ||
9726 !mActiveTracks.readAndClearHasChanged()) {
9727 return;
9728 }
9729 StreamInHalInterface::SinkMetadata metadata;
9730 for (const sp<MmapTrack> &track : mActiveTracks) {
9731 // No track is invalid as this is called after prepareTrack_l in the same critical section
9732 metadata.tracks.push_back({
9733 .source = track->attributes().source,
9734 .gain = 1, // capture tracks do not have volumes
9735 });
9736 }
9737 mInput->stream->updateSinkMetadata(metadata);
9738 }
9739
setRecordSilenced(audio_port_handle_t portId,bool silenced)9740 void AudioFlinger::MmapCaptureThread::setRecordSilenced(audio_port_handle_t portId, bool silenced)
9741 {
9742 Mutex::Autolock _l(mLock);
9743 for (size_t i = 0; i < mActiveTracks.size() ; i++) {
9744 if (mActiveTracks[i]->portId() == portId) {
9745 mActiveTracks[i]->setSilenced_l(silenced);
9746 broadcast_l();
9747 }
9748 }
9749 }
9750
toAudioPortConfig(struct audio_port_config * config)9751 void AudioFlinger::MmapCaptureThread::toAudioPortConfig(struct audio_port_config *config)
9752 {
9753 MmapThread::toAudioPortConfig(config);
9754 if (mInput && mInput->flags != AUDIO_INPUT_FLAG_NONE) {
9755 config->config_mask |= AUDIO_PORT_CONFIG_FLAGS;
9756 config->flags.input = mInput->flags;
9757 }
9758 }
9759
9760 } // namespace android
9761