// Copyright 2019 Google Inc. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package java import ( "path/filepath" "sort" "strings" "android/soong/android" "android/soong/dexpreopt" "github.com/google/blueprint/proptools" ) // ================================================================================================= // WIP - see http://b/177892522 for details // // The build support for boot images is currently being migrated away from singleton to modules so // the documentation may not be strictly accurate. Rather than update the documentation at every // step which will create a lot of churn the changes that have been made will be listed here and the // documentation will be updated once it is closer to the final result. // // Changes: // 1) dex_bootjars is now a singleton module and not a plain singleton. // 2) Boot images are now represented by the boot_image module type. // 3) The art boot image is called "art-boot-image", the framework boot image is called // "framework-boot-image". // 4) They are defined in art/build/boot/Android.bp and frameworks/base/boot/Android.bp // respectively. // 5) Each boot_image retrieves the appropriate boot image configuration from the map returned by // genBootImageConfigs() using the image_name specified in the boot_image module. // ================================================================================================= // This comment describes: // 1. ART boot images in general (their types, structure, file layout, etc.) // 2. build system support for boot images // // 1. ART boot images // ------------------ // // A boot image in ART is a set of files that contain AOT-compiled native code and a heap snapshot // of AOT-initialized classes for the bootclasspath Java libraries. A boot image is compiled from a // set of DEX jars by the dex2oat compiler. A boot image is used for two purposes: 1) it is // installed on device and loaded at runtime, and 2) other Java libraries and apps are compiled // against it (compilation may take place either on host, known as "dexpreopt", or on device, known // as "dexopt"). // // A boot image is not a single file, but a collection of interrelated files. Each boot image has a // number of components that correspond to the Java libraries that constitute it. For each component // there are multiple files: // - *.oat or *.odex file with native code (architecture-specific, one per instruction set) // - *.art file with pre-initialized Java classes (architecture-specific, one per instruction set) // - *.vdex file with verification metadata for the DEX bytecode (architecture independent) // // *.vdex files for the boot images do not contain the DEX bytecode itself, because the // bootclasspath DEX files are stored on disk in uncompressed and aligned form. Consequently a boot // image is not self-contained and cannot be used without its DEX files. To simplify the management // of boot image files, ART uses a certain naming scheme and associates the following metadata with // each boot image: // - A stem, which is a symbolic name that is prepended to boot image file names. // - A location (on-device path to the boot image files). // - A list of boot image locations (on-device paths to dependency boot images). // - A set of DEX locations (on-device paths to the DEX files, one location for one DEX file used // to compile the boot image). // // There are two kinds of boot images: // - primary boot images // - boot image extensions // // 1.1. Primary boot images // ------------------------ // // A primary boot image is compiled for a core subset of bootclasspath Java libraries. It does not // depend on any other images, and other boot images may depend on it. // // For example, assuming that the stem is "boot", the location is /apex/com.android.art/javalib/, // the set of core bootclasspath libraries is A B C, and the boot image is compiled for ARM targets // (32 and 64 bits), it will have three components with the following files: // - /apex/com.android.art/javalib/{arm,arm64}/boot.{art,oat,vdex} // - /apex/com.android.art/javalib/{arm,arm64}/boot-B.{art,oat,vdex} // - /apex/com.android.art/javalib/{arm,arm64}/boot-C.{art,oat,vdex} // // The files of the first component are special: they do not have the component name appended after // the stem. This naming convention dates back to the times when the boot image was not split into // components, and there were just boot.oat and boot.art. The decision to split was motivated by // licensing reasons for one of the bootclasspath libraries. // // As of November 2020 the only primary boot image in Android is the image in the ART APEX // com.android.art. The primary ART boot image contains the Core libraries that are part of the ART // module. When the ART module gets updated, the primary boot image will be updated with it, and all // dependent images will get invalidated (the checksum of the primary image stored in dependent // images will not match), unless they are updated in sync with the ART module. // // 1.2. Boot image extensions // -------------------------- // // A boot image extension is compiled for a subset of bootclasspath Java libraries (in particular, // this subset does not include the Core bootclasspath libraries that go into the primary boot // image). A boot image extension depends on the primary boot image and optionally some other boot // image extensions. Other images may depend on it. In other words, boot image extensions can form // acyclic dependency graphs. // // The motivation for boot image extensions comes from the Mainline project. Consider a situation // when the list of bootclasspath libraries is A B C, and both A and B are parts of the Android // platform, but C is part of an updatable APEX com.android.C. When the APEX is updated, the Java // code for C might have changed compared to the code that was used to compile the boot image. // Consequently, the whole boot image is obsolete and invalidated (even though the code for A and B // that does not depend on C is up to date). To avoid this, the original monolithic boot image is // split in two parts: the primary boot image that contains A B, and the boot image extension that // contains C and depends on the primary boot image (extends it). // // For example, assuming that the stem is "boot", the location is /system/framework, the set of // bootclasspath libraries is D E (where D is part of the platform and is located in // /system/framework, and E is part of a non-updatable APEX com.android.E and is located in // /apex/com.android.E/javalib), and the boot image is compiled for ARM targets (32 and 64 bits), // it will have two components with the following files: // - /system/framework/{arm,arm64}/boot-D.{art,oat,vdex} // - /system/framework/{arm,arm64}/boot-E.{art,oat,vdex} // // As of November 2020 the only boot image extension in Android is the Framework boot image // extension. It extends the primary ART boot image and contains Framework libraries and other // bootclasspath libraries from the platform and non-updatable APEXes that are not included in the // ART image. The Framework boot image extension is updated together with the platform. In the // future other boot image extensions may be added for some updatable modules. // // // 2. Build system support for boot images // --------------------------------------- // // The primary ART boot image needs to be compiled with one dex2oat invocation that depends on DEX // jars for the core libraries. Framework boot image extension needs to be compiled with one dex2oat // invocation that depends on the primary ART boot image and all bootclasspath DEX jars except the // core libraries as they are already part of the primary ART boot image. // // 2.1. Libraries that go in the boot images // ----------------------------------------- // // The contents of each boot image are determined by the PRODUCT variables. The primary ART APEX // boot image contains libraries listed in the ART_APEX_JARS variable in the AOSP makefiles. The // Framework boot image extension contains libraries specified in the PRODUCT_BOOT_JARS and // PRODUCT_BOOT_JARS_EXTRA variables. The AOSP makefiles specify some common Framework libraries, // but more product-specific libraries can be added in the product makefiles. // // Each component of the PRODUCT_BOOT_JARS and PRODUCT_BOOT_JARS_EXTRA variables is either a simple // name (if the library is a part of the Platform), or a colon-separated pair (if the // library is a part of a non-updatable APEX). // // A related variable PRODUCT_UPDATABLE_BOOT_JARS contains bootclasspath libraries that are in // updatable APEXes. They are not included in the boot image. // // One exception to the above rules are "coverage" builds (a special build flavor which requires // setting environment variable EMMA_INSTRUMENT_FRAMEWORK=true). In coverage builds the Java code in // boot image libraries is instrumented, which means that the instrumentation library (jacocoagent) // needs to be added to the list of bootclasspath DEX jars. // // In general, there is a requirement that the source code for a boot image library must be // available at build time (e.g. it cannot be a stub that has a separate implementation library). // // 2.2. Static configs // ------------------- // // Because boot images are used to dexpreopt other Java modules, the paths to boot image files must // be known by the time dexpreopt build rules for the dependent modules are generated. Boot image // configs are constructed very early during the build, before build rule generation. The configs // provide predefined paths to boot image files (these paths depend only on static build // configuration, such as PRODUCT variables, and use hard-coded directory names). // // 2.3. Singleton // -------------- // // Build rules for the boot images are generated with a Soong singleton. Because a singleton has no // dependencies on other modules, it has to find the modules for the DEX jars using VisitAllModules. // Soong loops through all modules and compares each module against a list of bootclasspath library // names. Then it generates build rules that copy DEX jars from their intermediate module-specific // locations to the hard-coded locations predefined in the boot image configs. // // It would be possible to use a module with proper dependencies instead, but that would require // changes in the way Soong generates variables for Make: a singleton can use one MakeVars() method // that writes variables to out/soong/make_vars-*.mk, which is included early by the main makefile, // but module(s) would have to use out/soong/Android-*.mk which has a group of LOCAL_* variables // for each module, and is included later. // // 2.4. Install rules // ------------------ // // The primary boot image and the Framework extension are installed in different ways. The primary // boot image is part of the ART APEX: it is copied into the APEX intermediate files, packaged // together with other APEX contents, extracted and mounted on device. The Framework boot image // extension is installed by the rules defined in makefiles (make/core/dex_preopt_libart.mk). Soong // writes out a few DEXPREOPT_IMAGE_* variables for Make; these variables contain boot image names, // paths and so on. // // 2.5. JIT-Zygote configuration // ----------------------------- // // One special configuration is JIT-Zygote build, when the primary ART image is used for compiling // apps instead of the Framework boot image extension (see DEXPREOPT_USE_ART_IMAGE and UseArtImage). // var artApexNames = []string{ "com.android.art", "com.android.art.debug", "com.android.art.testing", "com.google.android.art", "com.google.android.art.debug", "com.google.android.art.testing", } func init() { RegisterDexpreoptBootJarsComponents(android.InitRegistrationContext) } // Target-independent description of a boot image. type bootImageConfig struct { // If this image is an extension, the image that it extends. extends *bootImageConfig // Image name (used in directory names and ninja rule names). name string // Basename of the image: the resulting filenames are [-].{art,oat,vdex}. stem string // Output directory for the image files. dir android.OutputPath // Output directory for the image files with debug symbols. symbolsDir android.OutputPath // Subdirectory where the image files are installed. installDirOnHost string // Subdirectory where the image files on device are installed. installDirOnDevice string // A list of (location, jar) pairs for the Java modules in this image. modules android.ConfiguredJarList // File paths to jars. dexPaths android.WritablePaths // for this image dexPathsDeps android.WritablePaths // for the dependency images and in this image // Map from module name (without prebuilt_ prefix) to the predefined build path. dexPathsByModule map[string]android.WritablePath // File path to a zip archive with all image files (or nil, if not needed). zip android.WritablePath // Rules which should be used in make to install the outputs. profileInstalls android.RuleBuilderInstalls // Target-dependent fields. variants []*bootImageVariant } // Target-dependent description of a boot image. type bootImageVariant struct { *bootImageConfig // Target for which the image is generated. target android.Target // The "locations" of jars. dexLocations []string // for this image dexLocationsDeps []string // for the dependency images and in this image // Paths to image files. imagePathOnHost android.OutputPath // first image file path on host imagePathOnDevice string // first image file path on device // All the files that constitute this image variant, i.e. .art, .oat and .vdex files. imagesDeps android.OutputPaths // The path to the primary image variant's imagePathOnHost field, where primary image variant // means the image variant that this extends. // // This is only set for a variant of an image that extends another image. primaryImages android.OutputPath // The paths to the primary image variant's imagesDeps field, where primary image variant // means the image variant that this extends. // // This is only set for a variant of an image that extends another image. primaryImagesDeps android.Paths // Rules which should be used in make to install the outputs. installs android.RuleBuilderInstalls vdexInstalls android.RuleBuilderInstalls unstrippedInstalls android.RuleBuilderInstalls } // Get target-specific boot image variant for the given boot image config and target. func (image bootImageConfig) getVariant(target android.Target) *bootImageVariant { for _, variant := range image.variants { if variant.target.Os == target.Os && variant.target.Arch.ArchType == target.Arch.ArchType { return variant } } return nil } // Return any (the first) variant which is for the device (as opposed to for the host). func (image bootImageConfig) getAnyAndroidVariant() *bootImageVariant { for _, variant := range image.variants { if variant.target.Os == android.Android { return variant } } return nil } // Return the name of a boot image module given a boot image config and a component (module) index. // A module name is a combination of the Java library name, and the boot image stem (that is stored // in the config). func (image bootImageConfig) moduleName(ctx android.PathContext, idx int) string { // The first module of the primary boot image is special: its module name has only the stem, but // not the library name. All other module names are of the form - m := image.modules.Jar(idx) name := image.stem if idx != 0 || image.extends != nil { name += "-" + android.ModuleStem(m) } return name } // Return the name of the first boot image module, or stem if the list of modules is empty. func (image bootImageConfig) firstModuleNameOrStem(ctx android.PathContext) string { if image.modules.Len() > 0 { return image.moduleName(ctx, 0) } else { return image.stem } } // Return filenames for the given boot image component, given the output directory and a list of // extensions. func (image bootImageConfig) moduleFiles(ctx android.PathContext, dir android.OutputPath, exts ...string) android.OutputPaths { ret := make(android.OutputPaths, 0, image.modules.Len()*len(exts)) for i := 0; i < image.modules.Len(); i++ { name := image.moduleName(ctx, i) for _, ext := range exts { ret = append(ret, dir.Join(ctx, name+ext)) } } return ret } // apexVariants returns a list of all *bootImageVariant that could be included in an apex. func (image *bootImageConfig) apexVariants() []*bootImageVariant { variants := []*bootImageVariant{} for _, variant := range image.variants { // We also generate boot images for host (for testing), but we don't need those in the apex. // TODO(b/177892522) - consider changing this to check Os.OsClass = android.Device if variant.target.Os == android.Android { variants = append(variants, variant) } } return variants } // Return boot image locations (as a list of symbolic paths). // // The image "location" is a symbolic path that, with multiarchitecture support, doesn't really // exist on the device. Typically it is /apex/com.android.art/javalib/boot.art and should be the // same for all supported architectures on the device. The concrete architecture specific files // actually end up in architecture-specific sub-directory such as arm, arm64, x86, or x86_64. // // For example a physical file /apex/com.android.art/javalib/x86/boot.art has "image location" // /apex/com.android.art/javalib/boot.art (which is not an actual file). // // For a primary boot image the list of locations has a single element. // // For a boot image extension the list of locations contains a location for all dependency images // (including the primary image) and the location of the extension itself. For example, for the // Framework boot image extension that depends on the primary ART boot image the list contains two // elements. // // The location is passed as an argument to the ART tools like dex2oat instead of the real path. // ART tools will then reconstruct the architecture-specific real path. // func (image *bootImageVariant) imageLocations() (imageLocationsOnHost []string, imageLocationsOnDevice []string) { if image.extends != nil { imageLocationsOnHost, imageLocationsOnDevice = image.extends.getVariant(image.target).imageLocations() } return append(imageLocationsOnHost, dexpreopt.PathToLocation(image.imagePathOnHost, image.target.Arch.ArchType)), append(imageLocationsOnDevice, dexpreopt.PathStringToLocation(image.imagePathOnDevice, image.target.Arch.ArchType)) } func dexpreoptBootJarsFactory() android.SingletonModule { m := &dexpreoptBootJars{} android.InitAndroidModule(m) return m } func RegisterDexpreoptBootJarsComponents(ctx android.RegistrationContext) { ctx.RegisterSingletonModuleType("dex_bootjars", dexpreoptBootJarsFactory) } func SkipDexpreoptBootJars(ctx android.PathContext) bool { return dexpreopt.GetGlobalConfig(ctx).DisablePreoptBootImages } // Singleton module for generating boot image build rules. type dexpreoptBootJars struct { android.SingletonModuleBase // Default boot image config (currently always the Framework boot image extension). It should be // noted that JIT-Zygote builds use ART APEX image instead of the Framework boot image extension, // but the switch is handled not here, but in the makefiles (triggered with // DEXPREOPT_USE_ART_IMAGE=true). defaultBootImage *bootImageConfig // Other boot image configs (currently the list contains only the primary ART APEX image. It // used to contain an experimental JIT-Zygote image (now replaced with the ART APEX image). In // the future other boot image extensions may be added. otherImages []*bootImageConfig // Build path to a config file that Soong writes for Make (to be used in makefiles that install // the default boot image). dexpreoptConfigForMake android.WritablePath } // Provide paths to boot images for use by modules that depend upon them. // // The build rules are created in GenerateSingletonBuildActions(). func (d *dexpreoptBootJars) GenerateAndroidBuildActions(ctx android.ModuleContext) { // Placeholder for now. } // Generate build rules for boot images. func (d *dexpreoptBootJars) GenerateSingletonBuildActions(ctx android.SingletonContext) { if SkipDexpreoptBootJars(ctx) { return } if dexpreopt.GetCachedGlobalSoongConfig(ctx) == nil { // No module has enabled dexpreopting, so we assume there will be no boot image to make. return } d.dexpreoptConfigForMake = android.PathForOutput(ctx, ctx.Config().DeviceName(), "dexpreopt.config") writeGlobalConfigForMake(ctx, d.dexpreoptConfigForMake) global := dexpreopt.GetGlobalConfig(ctx) if !shouldBuildBootImages(ctx.Config(), global) { return } defaultImageConfig := defaultBootImageConfig(ctx) d.defaultBootImage = defaultImageConfig artBootImageConfig := artBootImageConfig(ctx) d.otherImages = []*bootImageConfig{artBootImageConfig} } // shouldBuildBootImages determines whether boot images should be built. func shouldBuildBootImages(config android.Config, global *dexpreopt.GlobalConfig) bool { // Skip recompiling the boot image for the second sanitization phase. We'll get separate paths // and invalidate first-stage artifacts which are crucial to SANITIZE_LITE builds. // Note: this is technically incorrect. Compiled code contains stack checks which may depend // on ASAN settings. if len(config.SanitizeDevice()) == 1 && config.SanitizeDevice()[0] == "address" && global.SanitizeLite { return false } return true } // copyBootJarsToPredefinedLocations generates commands that will copy boot jars to predefined // paths in the global config. func copyBootJarsToPredefinedLocations(ctx android.ModuleContext, srcBootDexJarsByModule bootDexJarByModule, dstBootJarsByModule map[string]android.WritablePath) { // Create the super set of module names. names := []string{} names = append(names, android.SortedStringKeys(srcBootDexJarsByModule)...) names = append(names, android.SortedStringKeys(dstBootJarsByModule)...) names = android.SortedUniqueStrings(names) for _, name := range names { src := srcBootDexJarsByModule[name] dst := dstBootJarsByModule[name] if src == nil { ctx.ModuleErrorf("module %s does not provide a dex boot jar", name) } else if dst == nil { ctx.ModuleErrorf("module %s is not part of the boot configuration", name) } else { ctx.Build(pctx, android.BuildParams{ Rule: android.Cp, Input: src, Output: dst, }) } } } // buildBootImageVariantsForAndroidOs generates rules to build the boot image variants for the // android.Android OsType and returns a map from the architectures to the paths of the generated // boot image files. // // The paths are returned because they are needed elsewhere in Soong, e.g. for populating an APEX. func buildBootImageVariantsForAndroidOs(ctx android.ModuleContext, image *bootImageConfig, profile android.WritablePath) bootImageFilesByArch { return buildBootImageForOsType(ctx, image, profile, android.Android) } // buildBootImageVariantsForBuildOs generates rules to build the boot image variants for the // android.BuildOs OsType, i.e. the type of OS on which the build is being running. // // The files need to be generated into their predefined location because they are used from there // both within Soong and outside, e.g. for ART based host side testing and also for use by some // cloud based tools. However, they are not needed by callers of this function and so the paths do // not need to be returned from this func, unlike the buildBootImageVariantsForAndroidOs func. func buildBootImageVariantsForBuildOs(ctx android.ModuleContext, image *bootImageConfig, profile android.WritablePath) { buildBootImageForOsType(ctx, image, profile, android.BuildOs) } // buildBootImageForOsType takes a bootImageConfig, a profile file and an android.OsType // boot image files are required for and it creates rules to build the boot image // files for all the required architectures for them. // // It returns a map from android.ArchType to the predefined paths of the boot image files. func buildBootImageForOsType(ctx android.ModuleContext, image *bootImageConfig, profile android.WritablePath, requiredOsType android.OsType) bootImageFilesByArch { filesByArch := bootImageFilesByArch{} for _, variant := range image.variants { if variant.target.Os == requiredOsType { buildBootImageVariant(ctx, variant, profile) filesByArch[variant.target.Arch.ArchType] = variant.imagesDeps.Paths() } } return filesByArch } // buildBootImageZipInPredefinedLocation generates a zip file containing all the boot image files. // // The supplied filesByArch is nil when the boot image files have not been generated. Otherwise, it // is a map from android.ArchType to the predefined locations. func buildBootImageZipInPredefinedLocation(ctx android.ModuleContext, image *bootImageConfig, filesByArch bootImageFilesByArch) { if filesByArch == nil { return } // Compute the list of files from all the architectures. zipFiles := android.Paths{} for _, archType := range android.ArchTypeList() { zipFiles = append(zipFiles, filesByArch[archType]...) } rule := android.NewRuleBuilder(pctx, ctx) rule.Command(). BuiltTool("soong_zip"). FlagWithOutput("-o ", image.zip). FlagWithArg("-C ", image.dir.Join(ctx, android.Android.String()).String()). FlagWithInputList("-f ", zipFiles, " -f ") rule.Build("zip_"+image.name, "zip "+image.name+" image") } // Generate boot image build rules for a specific target. func buildBootImageVariant(ctx android.ModuleContext, image *bootImageVariant, profile android.Path) { globalSoong := dexpreopt.GetGlobalSoongConfig(ctx) global := dexpreopt.GetGlobalConfig(ctx) arch := image.target.Arch.ArchType os := image.target.Os.String() // We need to distinguish host-x86 and device-x86. symbolsDir := image.symbolsDir.Join(ctx, os, image.installDirOnHost, arch.String()) symbolsFile := symbolsDir.Join(ctx, image.stem+".oat") outputDir := image.dir.Join(ctx, os, image.installDirOnHost, arch.String()) outputPath := outputDir.Join(ctx, image.stem+".oat") oatLocation := dexpreopt.PathToLocation(outputPath, arch) imagePath := outputPath.ReplaceExtension(ctx, "art") rule := android.NewRuleBuilder(pctx, ctx) rule.Command().Text("mkdir").Flag("-p").Flag(symbolsDir.String()) rule.Command().Text("rm").Flag("-f"). Flag(symbolsDir.Join(ctx, "*.art").String()). Flag(symbolsDir.Join(ctx, "*.oat").String()). Flag(symbolsDir.Join(ctx, "*.invocation").String()) rule.Command().Text("rm").Flag("-f"). Flag(outputDir.Join(ctx, "*.art").String()). Flag(outputDir.Join(ctx, "*.oat").String()). Flag(outputDir.Join(ctx, "*.invocation").String()) cmd := rule.Command() extraFlags := ctx.Config().Getenv("ART_BOOT_IMAGE_EXTRA_ARGS") if extraFlags == "" { // Use ANDROID_LOG_TAGS to suppress most logging by default... cmd.Text(`ANDROID_LOG_TAGS="*:e"`) } else { // ...unless the boot image is generated specifically for testing, then allow all logging. cmd.Text(`ANDROID_LOG_TAGS="*:v"`) } invocationPath := outputPath.ReplaceExtension(ctx, "invocation") cmd.Tool(globalSoong.Dex2oat). Flag("--avoid-storing-invocation"). FlagWithOutput("--write-invocation-to=", invocationPath).ImplicitOutput(invocationPath). Flag("--runtime-arg").FlagWithArg("-Xms", global.Dex2oatImageXms). Flag("--runtime-arg").FlagWithArg("-Xmx", global.Dex2oatImageXmx) if profile != nil { cmd.FlagWithArg("--compiler-filter=", "speed-profile") cmd.FlagWithInput("--profile-file=", profile) } dirtyImageFile := "frameworks/base/config/dirty-image-objects" dirtyImagePath := android.ExistentPathForSource(ctx, dirtyImageFile) if dirtyImagePath.Valid() { cmd.FlagWithInput("--dirty-image-objects=", dirtyImagePath.Path()) } if image.extends != nil { // It is a boot image extension, so it needs the boot image it depends on (in this case the // primary ART APEX image). artImage := image.primaryImages cmd. Flag("--runtime-arg").FlagWithInputList("-Xbootclasspath:", image.dexPathsDeps.Paths(), ":"). Flag("--runtime-arg").FlagWithList("-Xbootclasspath-locations:", image.dexLocationsDeps, ":"). // Add the path to the first file in the boot image with the arch specific directory removed, // dex2oat will reconstruct the path to the actual file when it needs it. As the actual path // to the file cannot be passed to the command make sure to add the actual path as an Implicit // dependency to ensure that it is built before the command runs. FlagWithArg("--boot-image=", dexpreopt.PathToLocation(artImage, arch)).Implicit(artImage). // Similarly, the dex2oat tool will automatically find the paths to other files in the base // boot image so make sure to add them as implicit dependencies to ensure that they are built // before this command is run. Implicits(image.primaryImagesDeps) } else { // It is a primary image, so it needs a base address. cmd.FlagWithArg("--base=", ctx.Config().LibartImgDeviceBaseAddress()) } cmd. FlagForEachInput("--dex-file=", image.dexPaths.Paths()). FlagForEachArg("--dex-location=", image.dexLocations). Flag("--generate-debug-info"). Flag("--generate-build-id"). Flag("--image-format=lz4hc"). FlagWithArg("--oat-symbols=", symbolsFile.String()). Flag("--strip"). FlagWithArg("--oat-file=", outputPath.String()). FlagWithArg("--oat-location=", oatLocation). FlagWithArg("--image=", imagePath.String()). FlagWithArg("--instruction-set=", arch.String()). FlagWithArg("--android-root=", global.EmptyDirectory). FlagWithArg("--no-inline-from=", "core-oj.jar"). Flag("--force-determinism"). Flag("--abort-on-hard-verifier-error") // Use the default variant/features for host builds. // The map below contains only device CPU info (which might be x86 on some devices). if image.target.Os == android.Android { cmd.FlagWithArg("--instruction-set-variant=", global.CpuVariant[arch]) cmd.FlagWithArg("--instruction-set-features=", global.InstructionSetFeatures[arch]) } if global.BootFlags != "" { cmd.Flag(global.BootFlags) } if extraFlags != "" { cmd.Flag(extraFlags) } cmd.Textf(`|| ( echo %s ; false )`, proptools.ShellEscape(failureMessage)) installDir := filepath.Join("/", image.installDirOnHost, arch.String()) var vdexInstalls android.RuleBuilderInstalls var unstrippedInstalls android.RuleBuilderInstalls for _, artOrOat := range image.moduleFiles(ctx, outputDir, ".art", ".oat") { cmd.ImplicitOutput(artOrOat) // Install the .oat and .art files rule.Install(artOrOat, filepath.Join(installDir, artOrOat.Base())) } for _, vdex := range image.moduleFiles(ctx, outputDir, ".vdex") { cmd.ImplicitOutput(vdex) // Note that the vdex files are identical between architectures. // Make rules will create symlinks to share them between architectures. vdexInstalls = append(vdexInstalls, android.RuleBuilderInstall{vdex, filepath.Join(installDir, vdex.Base())}) } for _, unstrippedOat := range image.moduleFiles(ctx, symbolsDir, ".oat") { cmd.ImplicitOutput(unstrippedOat) // Install the unstripped oat files. The Make rules will put these in $(TARGET_OUT_UNSTRIPPED) unstrippedInstalls = append(unstrippedInstalls, android.RuleBuilderInstall{unstrippedOat, filepath.Join(installDir, unstrippedOat.Base())}) } rule.Build(image.name+"JarsDexpreopt_"+image.target.String(), "dexpreopt "+image.name+" jars "+arch.String()) // save output and installed files for makevars image.installs = rule.Installs() image.vdexInstalls = vdexInstalls image.unstrippedInstalls = unstrippedInstalls } const failureMessage = `ERROR: Dex2oat failed to compile a boot image. It is likely that the boot classpath is inconsistent. Rebuild with ART_BOOT_IMAGE_EXTRA_ARGS="--runtime-arg -verbose:verifier" to see verification errors.` func bootImageProfileRule(ctx android.ModuleContext, image *bootImageConfig) android.WritablePath { globalSoong := dexpreopt.GetGlobalSoongConfig(ctx) global := dexpreopt.GetGlobalConfig(ctx) if global.DisableGenerateProfile { return nil } defaultProfile := "frameworks/base/config/boot-image-profile.txt" rule := android.NewRuleBuilder(pctx, ctx) var bootImageProfile android.Path if len(global.BootImageProfiles) > 1 { combinedBootImageProfile := image.dir.Join(ctx, "boot-image-profile.txt") rule.Command().Text("cat").Inputs(global.BootImageProfiles).Text(">").Output(combinedBootImageProfile) bootImageProfile = combinedBootImageProfile } else if len(global.BootImageProfiles) == 1 { bootImageProfile = global.BootImageProfiles[0] } else if path := android.ExistentPathForSource(ctx, defaultProfile); path.Valid() { bootImageProfile = path.Path() } else { // No profile (not even a default one, which is the case on some branches // like master-art-host that don't have frameworks/base). // Return nil and continue without profile. return nil } profile := image.dir.Join(ctx, "boot.prof") rule.Command(). Text(`ANDROID_LOG_TAGS="*:e"`). Tool(globalSoong.Profman). Flag("--output-profile-type=boot"). FlagWithInput("--create-profile-from=", bootImageProfile). FlagForEachInput("--apk=", image.dexPathsDeps.Paths()). FlagForEachArg("--dex-location=", image.getAnyAndroidVariant().dexLocationsDeps). FlagWithOutput("--reference-profile-file=", profile) rule.Install(profile, "/system/etc/boot-image.prof") rule.Build("bootJarsProfile", "profile boot jars") image.profileInstalls = append(image.profileInstalls, rule.Installs()...) return profile } // bootFrameworkProfileRule generates the rule to create the boot framework profile and // returns a path to the generated file. func bootFrameworkProfileRule(ctx android.ModuleContext, image *bootImageConfig) android.WritablePath { globalSoong := dexpreopt.GetGlobalSoongConfig(ctx) global := dexpreopt.GetGlobalConfig(ctx) if global.DisableGenerateProfile || ctx.Config().UnbundledBuild() { return nil } defaultProfile := "frameworks/base/config/boot-profile.txt" bootFrameworkProfile := android.PathForSource(ctx, defaultProfile) profile := image.dir.Join(ctx, "boot.bprof") rule := android.NewRuleBuilder(pctx, ctx) rule.Command(). Text(`ANDROID_LOG_TAGS="*:e"`). Tool(globalSoong.Profman). Flag("--output-profile-type=bprof"). FlagWithInput("--create-profile-from=", bootFrameworkProfile). FlagForEachInput("--apk=", image.dexPathsDeps.Paths()). FlagForEachArg("--dex-location=", image.getAnyAndroidVariant().dexLocationsDeps). FlagWithOutput("--reference-profile-file=", profile) rule.Install(profile, "/system/etc/boot-image.bprof") rule.Build("bootFrameworkProfile", "profile boot framework jars") image.profileInstalls = append(image.profileInstalls, rule.Installs()...) return profile } // generateUpdatableBcpPackagesRule generates the rule to create the updatable-bcp-packages.txt file // and returns a path to the generated file. func generateUpdatableBcpPackagesRule(ctx android.ModuleContext, image *bootImageConfig, updatableModules []android.Module) android.WritablePath { // Collect `permitted_packages` for updatable boot jars. var updatablePackages []string for _, module := range updatableModules { if j, ok := module.(PermittedPackagesForUpdatableBootJars); ok { pp := j.PermittedPackagesForUpdatableBootJars() if len(pp) > 0 { updatablePackages = append(updatablePackages, pp...) } else { ctx.OtherModuleErrorf(module, "Missing permitted_packages") } } } // Sort updatable packages to ensure deterministic ordering. sort.Strings(updatablePackages) updatableBcpPackagesName := "updatable-bcp-packages.txt" updatableBcpPackages := image.dir.Join(ctx, updatableBcpPackagesName) // WriteFileRule automatically adds the last end-of-line. android.WriteFileRule(ctx, updatableBcpPackages, strings.Join(updatablePackages, "\n")) rule := android.NewRuleBuilder(pctx, ctx) rule.Install(updatableBcpPackages, "/system/etc/"+updatableBcpPackagesName) // TODO: Rename `profileInstalls` to `extraInstalls`? // Maybe even move the field out of the bootImageConfig into some higher level type? image.profileInstalls = append(image.profileInstalls, rule.Installs()...) return updatableBcpPackages } func dumpOatRules(ctx android.ModuleContext, image *bootImageConfig) { var allPhonies android.Paths for _, image := range image.variants { arch := image.target.Arch.ArchType suffix := arch.String() // Host and target might both use x86 arch. We need to ensure the names are unique. if image.target.Os.Class == android.Host { suffix = "host-" + suffix } // Create a rule to call oatdump. output := android.PathForOutput(ctx, "boot."+suffix+".oatdump.txt") rule := android.NewRuleBuilder(pctx, ctx) imageLocationsOnHost, _ := image.imageLocations() rule.Command(). BuiltTool("oatdump"). FlagWithInputList("--runtime-arg -Xbootclasspath:", image.dexPathsDeps.Paths(), ":"). FlagWithList("--runtime-arg -Xbootclasspath-locations:", image.dexLocationsDeps, ":"). FlagWithArg("--image=", strings.Join(imageLocationsOnHost, ":")).Implicits(image.imagesDeps.Paths()). FlagWithOutput("--output=", output). FlagWithArg("--instruction-set=", arch.String()) rule.Build("dump-oat-boot-"+suffix, "dump oat boot "+arch.String()) // Create a phony rule that depends on the output file and prints the path. phony := android.PathForPhony(ctx, "dump-oat-boot-"+suffix) rule = android.NewRuleBuilder(pctx, ctx) rule.Command(). Implicit(output). ImplicitOutput(phony). Text("echo").FlagWithArg("Output in ", output.String()) rule.Build("phony-dump-oat-boot-"+suffix, "dump oat boot "+arch.String()) allPhonies = append(allPhonies, phony) } phony := android.PathForPhony(ctx, "dump-oat-boot") ctx.Build(pctx, android.BuildParams{ Rule: android.Phony, Output: phony, Inputs: allPhonies, Description: "dump-oat-boot", }) } func writeGlobalConfigForMake(ctx android.SingletonContext, path android.WritablePath) { data := dexpreopt.GetGlobalConfigRawData(ctx) android.WriteFileRule(ctx, path, string(data)) } // Define Make variables for boot image names, paths, etc. These variables are used in makefiles // (make/core/dex_preopt_libart.mk) to generate install rules that copy boot image files to the // correct output directories. func (d *dexpreoptBootJars) MakeVars(ctx android.MakeVarsContext) { if d.dexpreoptConfigForMake != nil { ctx.Strict("DEX_PREOPT_CONFIG_FOR_MAKE", d.dexpreoptConfigForMake.String()) ctx.Strict("DEX_PREOPT_SOONG_CONFIG_FOR_MAKE", android.PathForOutput(ctx, "dexpreopt_soong.config").String()) } image := d.defaultBootImage if image != nil { ctx.Strict("DEXPREOPT_IMAGE_PROFILE_BUILT_INSTALLED", image.profileInstalls.String()) global := dexpreopt.GetGlobalConfig(ctx) dexPaths, dexLocations := bcpForDexpreopt(ctx, global.PreoptWithUpdatableBcp) ctx.Strict("DEXPREOPT_BOOTCLASSPATH_DEX_FILES", strings.Join(dexPaths.Strings(), " ")) ctx.Strict("DEXPREOPT_BOOTCLASSPATH_DEX_LOCATIONS", strings.Join(dexLocations, " ")) var imageNames []string // TODO: the primary ART boot image should not be exposed to Make, as it is installed in a // different way as a part of the ART APEX. However, there is a special JIT-Zygote build // configuration which uses the primary ART image instead of the Framework boot image // extension, and it relies on the ART image being exposed to Make. To fix this, it is // necessary to rework the logic in makefiles. for _, current := range append(d.otherImages, image) { imageNames = append(imageNames, current.name) for _, variant := range current.variants { suffix := "" if variant.target.Os.Class == android.Host { suffix = "_host" } sfx := variant.name + suffix + "_" + variant.target.Arch.ArchType.String() ctx.Strict("DEXPREOPT_IMAGE_VDEX_BUILT_INSTALLED_"+sfx, variant.vdexInstalls.String()) ctx.Strict("DEXPREOPT_IMAGE_"+sfx, variant.imagePathOnHost.String()) ctx.Strict("DEXPREOPT_IMAGE_DEPS_"+sfx, strings.Join(variant.imagesDeps.Strings(), " ")) ctx.Strict("DEXPREOPT_IMAGE_BUILT_INSTALLED_"+sfx, variant.installs.String()) ctx.Strict("DEXPREOPT_IMAGE_UNSTRIPPED_BUILT_INSTALLED_"+sfx, variant.unstrippedInstalls.String()) } imageLocationsOnHost, imageLocationsOnDevice := current.getAnyAndroidVariant().imageLocations() ctx.Strict("DEXPREOPT_IMAGE_LOCATIONS_ON_HOST"+current.name, strings.Join(imageLocationsOnHost, ":")) ctx.Strict("DEXPREOPT_IMAGE_LOCATIONS_ON_DEVICE"+current.name, strings.Join(imageLocationsOnDevice, ":")) ctx.Strict("DEXPREOPT_IMAGE_ZIP_"+current.name, current.zip.String()) } ctx.Strict("DEXPREOPT_IMAGE_NAMES", strings.Join(imageNames, " ")) } }