# Copyright 2019 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Verifies camera will produce full black & full white images.""" import logging import os.path import matplotlib from matplotlib import pylab from mobly import test_runner import numpy as np import its_base_test import camera_properties_utils import capture_request_utils import image_processing_utils import its_session_utils CH_FULL_SCALE = 255 CH_THRESH_BLACK = 6 CH_THRESH_WHITE = CH_FULL_SCALE - 6 CH_TOL_WHITE = 2 COLOR_PLANES = ['R', 'G', 'B'] NAME = os.path.splitext(os.path.basename(__file__))[0] PATCH_H = 0.1 PATCH_W = 0.1 PATCH_X = 0.45 PATCH_Y = 0.45 VGA_WIDTH, VGA_HEIGHT = 640, 480 def do_img_capture(cam, s, e, fmt, latency, cap_name, log_path): """Do the image captures with the defined parameters. Args: cam: its_session open for camera s: sensitivity for request e: exposure in ns for request fmt: format of request latency: number of frames for sync latency of request cap_name: string to define the capture log_path: path for plot directory Returns: means values of center patch from capture """ req = capture_request_utils.manual_capture_request(s, e) cap = its_session_utils.do_capture_with_latency(cam, req, latency, fmt) img = image_processing_utils.convert_capture_to_rgb_image(cap) image_processing_utils.write_image( img, '%s_%s.jpg' % (os.path.join(log_path, NAME), cap_name)) patch = image_processing_utils.get_image_patch( img, PATCH_X, PATCH_Y, PATCH_W, PATCH_H) means = image_processing_utils.compute_image_means(patch) means = [m * CH_FULL_SCALE for m in means] logging.debug('%s pixel means: %s', cap_name, str(means)) r_exp = cap['metadata']['android.sensor.exposureTime'] r_iso = cap['metadata']['android.sensor.sensitivity'] logging.debug('%s shot write values: sens = %d, exp time = %.4fms', cap_name, s, (e / 1000000.0)) logging.debug('%s shot read values: sens = %d, exp time = %.4fms', cap_name, r_iso, (r_exp / 1000000.0)) return means class BlackWhiteTest(its_base_test.ItsBaseTest): """Test that device will prodoce full black + white images. """ def test_black_white(self): r_means = [] g_means = [] b_means = [] with its_session_utils.ItsSession( device_id=self.dut.serial, camera_id=self.camera_id, hidden_physical_id=self.hidden_physical_id) as cam: props = cam.get_camera_properties() props = cam.override_with_hidden_physical_camera_props(props) # Check SKIP conditions camera_properties_utils.skip_unless( camera_properties_utils.manual_sensor(props)) # Load chart for scene its_session_utils.load_scene( cam, props, self.scene, self.tablet, self.chart_distance) # Initialize params for requests latency = camera_properties_utils.sync_latency(props) fmt = {'format': 'yuv', 'width': VGA_WIDTH, 'height': VGA_HEIGHT} expt_range = props['android.sensor.info.exposureTimeRange'] sens_range = props['android.sensor.info.sensitivityRange'] log_path = self.log_path # Take shot with very low ISO and exp time: expect it to be black s = sens_range[0] e = expt_range[0] black_means = do_img_capture(cam, s, e, fmt, latency, 'black', log_path) r_means.append(black_means[0]) g_means.append(black_means[1]) b_means.append(black_means[2]) # Take shot with very high ISO and exp time: expect it to be white. s = sens_range[1] e = expt_range[1] white_means = do_img_capture(cam, s, e, fmt, latency, 'white', log_path) r_means.append(white_means[0]) g_means.append(white_means[1]) b_means.append(white_means[2]) # Draw plot pylab.title('test_black_white') pylab.plot([0, 1], r_means, '-ro') pylab.plot([0, 1], g_means, '-go') pylab.plot([0, 1], b_means, '-bo') pylab.xlabel('Capture Number') pylab.ylabel('Output Values [0:255]') pylab.ylim([0, 255]) matplotlib.pyplot.savefig('%s_plot_means.png' % ( os.path.join(log_path, NAME))) # Assert blacks below CH_THRESH_BLACK for ch, mean in enumerate(black_means): e_msg = '%s black: %.1f, THRESH: %.f' % ( COLOR_PLANES[ch], mean, CH_THRESH_BLACK) assert mean < CH_THRESH_BLACK, e_msg # Assert whites above CH_THRESH_WHITE for ch, mean in enumerate(white_means): e_msg = '%s white: %.1f, THRESH: %.f' % ( COLOR_PLANES[ch], mean, CH_THRESH_WHITE) assert mean > CH_THRESH_WHITE, e_msg # Assert channels saturate evenly (was test_channel_saturation) e_msg = 'ch saturation not equal! RGB: %s, ATOL: %.f' % ( str(white_means), CH_TOL_WHITE) assert np.isclose( np.amin(white_means), np.amax(white_means), atol=CH_TOL_WHITE), e_msg if __name__ == '__main__': test_runner.main()