# Copyright 2014 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Verifies android.scaler.cropRegion param works.""" import logging import os.path from mobly import test_runner import numpy as np import its_base_test import camera_properties_utils import capture_request_utils import image_processing_utils import its_session_utils import target_exposure_utils # 5 regions specified in normalized (x, y, w, h) coords. CROP_REGIONS = [(0.0, 0.0, 0.5, 0.5), # top-left (0.5, 0.0, 0.5, 0.5), # top-right (0.0, 0.5, 0.5, 0.5), # bottom-left (0.5, 0.5, 0.5, 0.5), # bottom-right (0.25, 0.25, 0.5, 0.5)] # center MIN_DIGITAL_ZOOM_THRESH = 2 NAME = os.path.splitext(os.path.basename(__file__))[0] class CropRegionsTest(its_base_test.ItsBaseTest): """Test that crop regions works.""" def test_crop_regions(self): logging.debug('Starting %s', NAME) with its_session_utils.ItsSession( device_id=self.dut.serial, camera_id=self.camera_id, hidden_physical_id=self.hidden_physical_id) as cam: props = cam.get_camera_properties() props = cam.override_with_hidden_physical_camera_props(props) log_path = self.log_path # check SKIP conditions camera_properties_utils.skip_unless( camera_properties_utils.compute_target_exposure(props) and camera_properties_utils.freeform_crop(props) and camera_properties_utils.per_frame_control(props)) # Load chart for scene its_session_utils.load_scene( cam, props, self.scene, self.tablet, self.chart_distance) a = props['android.sensor.info.activeArraySize'] ax, ay = a['left'], a['top'] aw, ah = a['right'] - a['left'], a['bottom'] - a['top'] e, s = target_exposure_utils.get_target_exposure_combos( props, cam)['minSensitivity'] logging.debug('Active sensor region (%d,%d %dx%d)', ax, ay, aw, ah) # Uses a 2x digital zoom. max_digital_zoom = capture_request_utils.get_max_digital_zoom(props) e_msg = 'Max digital zoom: %d, THRESH: %d' % (max_digital_zoom, MIN_DIGITAL_ZOOM_THRESH) assert max_digital_zoom >= MIN_DIGITAL_ZOOM_THRESH, e_msg # Capture a full frame. req = capture_request_utils.manual_capture_request(s, e) cap_full = cam.do_capture(req) img_full = image_processing_utils.convert_capture_to_rgb_image(cap_full) wfull, hfull = cap_full['width'], cap_full['height'] image_processing_utils.write_image(img_full, '%s_full_%dx%d.jpg' % ( os.path.join(log_path, NAME), wfull, hfull)) # Capture a burst of crop region frames. # Note that each region is 1/2x1/2 of the full frame, and is digitally # zoomed into the full size output image, so must be downscaled (below) # by 2x when compared to a tile of the full image. reqs = [] for x, y, w, h in CROP_REGIONS: req = capture_request_utils.manual_capture_request(s, e) req['android.scaler.cropRegion'] = { 'top': int(ah * y), 'left': int(aw * x), 'right': int(aw * (x + w)), 'bottom': int(ah * (y + h))} reqs.append(req) caps_regions = cam.do_capture(reqs) match_failed = False for i, cap in enumerate(caps_regions): a = cap['metadata']['android.scaler.cropRegion'] ax, ay = a['left'], a['top'] aw, ah = a['right'] - a['left'], a['bottom'] - a['top'] # Match this crop image against each of the five regions of # the full image, to find the best match (which should be # the region that corresponds to this crop image). img_crop = image_processing_utils.convert_capture_to_rgb_image(cap) img_crop = image_processing_utils.downscale_image(img_crop, 2) image_processing_utils.write_image(img_crop, '%s_crop%d.jpg' % ( os.path.join(log_path, NAME), i)) min_diff = None min_diff_region = None for j, (x, y, w, h) in enumerate(CROP_REGIONS): tile_full = image_processing_utils.get_image_patch( img_full, x, y, w, h) wtest = min(tile_full.shape[1], aw) htest = min(tile_full.shape[0], ah) tile_full = tile_full[0:htest:, 0:wtest:, ::] tile_crop = img_crop[0:htest:, 0:wtest:, ::] image_processing_utils.write_image( tile_full, '%s_fullregion%d.jpg' % ( os.path.join(log_path, NAME), j)) diff = np.fabs(tile_full - tile_crop).mean() if min_diff is None or diff < min_diff: min_diff = diff min_diff_region = j if i != min_diff_region: match_failed = True logging.debug('Crop image %d (%d,%d %dx%d) best match with region %d', i, ax, ay, aw, ah, min_diff_region) assert not match_failed if __name__ == '__main__': test_runner.main()