# Copyright 2014 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Verifies EV compensation is applied.""" import logging import os.path import matplotlib from matplotlib import pylab from mobly import test_runner import numpy as np import its_base_test import camera_properties_utils import capture_request_utils import image_processing_utils import its_session_utils LINEAR_TONEMAP_CURVE = [0.0, 0.0, 1.0, 1.0] LOCKED = 3 LUMA_DELTA_THRESH = 0.05 LUMA_LOCKED_TOL = 0.05 NAME = os.path.splitext(os.path.basename(__file__))[0] PATCH_H = 0.1 # center 10% PATCH_W = 0.1 PATCH_X = 0.5 - PATCH_W/2 PATCH_Y = 0.5 - PATCH_H/2 THRESH_CONVERGE_FOR_EV = 8 # AE must converge within this num auto reqs for EV YUV_FULL_SCALE = 255.0 YUV_SAT_MIN = 250.0 YUV_SAT_TOL = 3.0 def create_request_with_ev(ev): req = capture_request_utils.auto_capture_request() req['android.control.aeExposureCompensation'] = ev req['android.control.aeLock'] = True # Use linear tonemap to avoid brightness being impacted by tone curves. req['android.tonemap.mode'] = 0 req['android.tonemap.curve'] = {'red': LINEAR_TONEMAP_CURVE, 'green': LINEAR_TONEMAP_CURVE, 'blue': LINEAR_TONEMAP_CURVE} return req def extract_luma_from_capture(cap): """Extract luma from capture.""" y = image_processing_utils.convert_capture_to_planes(cap)[0] patch = image_processing_utils.get_image_patch( y, PATCH_X, PATCH_Y, PATCH_W, PATCH_H) luma = image_processing_utils.compute_image_means(patch)[0] return luma def create_ev_comp_changes(props): """Create the ev compensation steps and shifts from control params.""" ev_compensation_range = props['android.control.aeCompensationRange'] range_min = ev_compensation_range[0] range_max = ev_compensation_range[1] ev_per_step = capture_request_utils.rational_to_float( props['android.control.aeCompensationStep']) logging.debug('ev_step_size_in_stops: %d', ev_per_step) steps_per_ev = int(round(1.0 / ev_per_step)) ev_steps = range(range_min, range_max + 1, steps_per_ev) ev_shifts = [pow(2, step * ev_per_step) for step in ev_steps] return ev_steps, ev_shifts class EvCompensationAdvancedTest(its_base_test.ItsBaseTest): """Tests that EV compensation is applied.""" def test_ev_compensation_advanced(self): logging.debug('Starting %s', NAME) with its_session_utils.ItsSession( device_id=self.dut.serial, camera_id=self.camera_id, hidden_physical_id=self.hidden_physical_id) as cam: props = cam.get_camera_properties() props = cam.override_with_hidden_physical_camera_props(props) log_path = self.log_path # check SKIP conditions camera_properties_utils.skip_unless( camera_properties_utils.ev_compensation(props) and camera_properties_utils.manual_sensor(props) and camera_properties_utils.manual_post_proc(props) and camera_properties_utils.per_frame_control(props)) # Load chart for scene its_session_utils.load_scene( cam, props, self.scene, self.tablet, self.chart_distance) # Create ev compensation changes ev_steps, ev_shifts = create_ev_comp_changes(props) # Converge 3A, and lock AE once converged. skip AF trigger as # dark/bright scene could make AF convergence fail and this test # doesn't care the image sharpness. mono_camera = camera_properties_utils.mono_camera(props) cam.do_3a(ev_comp=0, lock_ae=True, do_af=False, mono_camera=mono_camera) # Create requests and capture largest_yuv = capture_request_utils.get_largest_yuv_format(props) match_ar = (largest_yuv['width'], largest_yuv['height']) fmt = capture_request_utils.get_smallest_yuv_format( props, match_ar=match_ar) lumas = [] for ev in ev_steps: # Capture a single shot with the same EV comp and locked AE. req = create_request_with_ev(ev) caps = cam.do_capture([req]*THRESH_CONVERGE_FOR_EV, fmt) for cap in caps: if cap['metadata']['android.control.aeState'] == LOCKED: lumas.append(extract_luma_from_capture(cap)) break if caps[THRESH_CONVERGE_FOR_EV-1]['metadata'][ 'android.control.aeState'] != LOCKED: raise AssertionError('AE does not reach locked state in ' f'{THRESH_CONVERGE_FOR_EV} frames.') logging.debug('lumas in AE locked captures: %s', str(lumas)) i_mid = len(ev_steps) // 2 luma_normal = lumas[i_mid] / ev_shifts[i_mid] expected_lumas = [min(1.0, luma_normal*shift) for shift in ev_shifts] # Create plot pylab.figure(NAME) pylab.plot(ev_steps, lumas, '-ro', label='measured', alpha=0.7) pylab.plot(ev_steps, expected_lumas, '-bo', label='expected', alpha=0.7) pylab.title(NAME) pylab.xlabel('EV Compensation') pylab.ylabel('Mean Luma (Normalized)') pylab.legend(loc='lower right', numpoints=1, fancybox=True) matplotlib.pyplot.savefig( '%s_plot_means.png' % os.path.join(log_path, NAME)) luma_diffs = [expected_lumas[i]-lumas[i] for i in range(len(ev_steps))] max_diff = max(abs(i) for i in luma_diffs) avg_diff = abs(np.array(luma_diffs)).mean() logging.debug( 'Max delta between modeled and measured lumas: %.4f', max_diff) logging.debug( 'Avg delta between modeled and measured lumas: %.4f', avg_diff) if max_diff > LUMA_DELTA_THRESH: raise AssertionError(f'Max delta between modeled and measured ' f'lumas: {max_diff:.3f}, ' f'TOL: {LUMA_DELTA_THRESH}.') if __name__ == '__main__': test_runner.main()