// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $assert MR % 8 == 0 $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" #include #include #include void xnn_f16_spmm_minmax_ukernel_${MR}x${NR}__neonfp16arith${"_x%d" % UNROLL if UNROLL > 1 else ""}( size_t mc, size_t nc, const void*restrict input, const void*restrict weights, const int32_t*restrict widx_dmap, const uint32_t*restrict nidx_nnzmap, void*restrict output, size_t output_stride, const struct xnn_f16_scaleminmax_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(mc != 0); assert(mc % sizeof(__fp16) == 0); assert(nc != 0); const __fp16*restrict i = (const __fp16*) input; __fp16*restrict o = (__fp16*) output; const float16x8_t vscale = vld1q_dup_f16((const __fp16*) ¶ms->scale); const float16x8_t vmax = vld1q_dup_f16((const __fp16*) ¶ms->max); const float16x8_t vmin = vld1q_dup_f16((const __fp16*) ¶ms->min); size_t output_decrement = output_stride * nc - ${MR} * sizeof(__fp16); while XNN_LIKELY(mc >= ${MR} * sizeof(__fp16)) { const __fp16*restrict w = (const __fp16*) weights; const int32_t* dmap = widx_dmap; const uint32_t* nnzmap = nidx_nnzmap; size_t n = nc; do { uint32_t nnz = *nnzmap++; $if UNROLL > 1: float16x8_t vacc01234567x0 = vld1q_dup_f16(w); w += 1; $for K in range(1, UNROLL): float16x8_t vacc01234567x${K} = vmovq_n_f16(0.0f); $for M in range(8, MR, 8): float16x8_t vacc${ABC[M:M+8]}x0 = vacc01234567x0; $for K in range(1, UNROLL): float16x8_t vacc${ABC[M:M+8]}x${K} = vmovq_n_f16(0.0f); for (; nnz >= ${UNROLL}; nnz -= ${UNROLL}) { $for K in range(UNROLL): const intptr_t diff${K} = dmap[${K}]; dmap += ${UNROLL}; $for K in range(UNROLL): const float16x8_t va01234567x${K} = vld1q_f16(i); $for M in range(8, MR, 8): const float16x8_t va${ABC[M:M+8]}x${K} = vld1q_f16(i + ${M}); i = (const __fp16*restrict) ((uintptr_t) i + (uintptr_t) diff${K}); const float16x8_t vb${K} = vld1q_dup_f16(w); w += 1; $for M in range(0, MR, 8): vacc${ABC[M:M+8]}x${K} = vfmaq_f16(vacc${ABC[M:M+8]}x${K}, va${ABC[M:M+8]}x${K}, vb${K}); } $for M in range(0, MR, 8): float16x8_t vacc${ABC[M:M+8]} = vacc${ABC[M:M+8]}x0; $for K in range(1, UNROLL): $for M in range(0, MR, 8): vacc${ABC[M:M+8]} = vaddq_f16(vacc${ABC[M:M+8]}, vacc${ABC[M:M+8]}x${K}); $else: float16x8_t vacc01234567 = vld1q_dup_f16(w); w += 1; $for M in range(8, MR, 8): float16x8_t vacc${ABC[M:M+8]} = vacc01234567; if XNN_LIKELY(nnz != 0) { do { const intptr_t diff = *dmap++; const float16x8_t va01234567 = vld1q_f16(i); $for M in range(8, MR, 8): const float16x8_t va${ABC[M:M+8]} = vld1q_f16(i + ${M}); i = (const __fp16*restrict) ((uintptr_t) i + (uintptr_t) diff); const float16x8_t vb = vld1q_dup_f16(w); w += 1; $for M in range(0, MR, 8): vacc${ABC[M:M+8]} = vfmaq_f16(vacc${ABC[M:M+8]}, va${ABC[M:M+8]}, vb); } while (--nnz != 0); } $for M in range(0, MR, 8): float16x8_t vout${ABC[M:M+8]} = vmulq_f16(vacc${ABC[M:M+8]}, vscale); $for M in range(0, MR, 8): vout${ABC[M:M+8]} = vminq_f16(vout${ABC[M:M+8]}, vmax); $for M in range(0, MR, 8): vout${ABC[M:M+8]} = vmaxq_f16(vout${ABC[M:M+8]}, vmin); vst1q_f16(o, vout01234567); $for M in range(8, MR, 8): vst1q_f16(o + ${M}, vout${ABC[M:M+8]}); o = (__fp16*restrict) ((uintptr_t) o + output_stride); } while (--n != 0); o = (__fp16*restrict) ((uintptr_t) o - output_decrement); i += ${MR}; mc -= ${MR} * sizeof(__fp16); } if XNN_UNLIKELY(mc != 0) { $for LOG2M in reversed(range((MR - 1).bit_length())): $SUBMR = 1 << LOG2M $if SUBMR * 2 >= MR: output_decrement += ${MR - SUBMR} * sizeof(__fp16); $else: output_decrement += ${SUBMR} * sizeof(__fp16); if (mc & (${SUBMR} * sizeof(__fp16))) { const __fp16*restrict w = (const __fp16*) weights; const int32_t* dmap = widx_dmap; const uint32_t* nnzmap = nidx_nnzmap; size_t n = nc; do { uint32_t nnz = *nnzmap++; $if SUBMR <= 4: float16x4_t vacc${ABC[0:SUBMR]} = vld1_dup_f16(w); w += 1; $else: float16x8_t vacc01234567 = vld1q_dup_f16(w); w += 1; $for M in range(8, SUBMR, 8): float16x8_t vacc${ABC[M:M+8]} = vacc01234567; if XNN_LIKELY(nnz != 0) { do { const intptr_t diff = *dmap++; $if SUBMR == 1: const float16x4_t va0 = vld1_dup_f16(i); $elif SUBMR == 2: const float16x4_t va01 = vreinterpret_f16_f32(vld1_dup_f32(__builtin_assume_aligned(i, 1))); $elif SUBMR == 4: const float16x4_t va0123 = vld1_f16(i); $else: const float16x8_t va01234567 = vld1q_f16(i); $for M in range(8, SUBMR, 8): const float16x8_t va${ABC[M:M+8]} = vld1q_f16(i + ${M}); i = (const __fp16*restrict) ((uintptr_t) i + (uintptr_t) diff); $if SUBMR <= 4: const float16x4_t vb = vld1_dup_f16(w); w += 1; $else: const float16x8_t vb = vld1q_dup_f16(w); w += 1; $if SUBMR <= 4: vacc${ABC[0:SUBMR]} = vfma_f16(vacc${ABC[0:SUBMR]}, va${ABC[0:SUBMR]}, vb); $else: $for M in range(0, SUBMR, 8): vacc${ABC[M:M+8]} = vfmaq_f16(vacc${ABC[M:M+8]}, va${ABC[M:M+8]}, vb); } while (--nnz != 0); } $if SUBMR <= 4: float16x4_t vout${ABC[0:SUBMR]} = vmin_f16(vacc${ABC[0:SUBMR]}, vget_low_f16(vmax)); vout${ABC[0:SUBMR]} = vmax_f16(vout${ABC[0:SUBMR]}, vget_low_f16(vmin)); $if SUBMR == 1: vst1_lane_f16(o, vout${ABC[0]}, 0); $elif SUBMR == 2: vst1_lane_f32(__builtin_assume_aligned(o, 1), vreinterpret_f32_f16(vout${ABC[0:SUBMR]}), 0); $else: vst1_f16(o, vout${ABC[0:SUBMR]}); $else: $for M in range(0, SUBMR, 8): float16x8_t vout${ABC[M:M+8]} = vminq_f16(vacc${ABC[M:M+8]}, vmax); $for M in range(0, SUBMR, 8): vout${ABC[M:M+8]} = vmaxq_f16(vout${ABC[M:M+8]}, vmin); vst1q_f16(o, vout01234567); $for M in range(8, SUBMR, 8): vst1q_f16(o + ${M}, vout${ABC[M:M+8]}); o = (__fp16*restrict) ((uintptr_t) o + output_stride); } while (--n != 0); o = (__fp16*restrict) ((uintptr_t) o - output_decrement); i += ${SUBMR}; } } }