// Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $assert BATCH_TILE % 4 == 0 $assert BATCH_TILE >= 4 $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" $VMULADDQ_F32 = "vfmaq_f32" if FMA else "vmlaq_f32" #include #include #include #include extern XNN_INTERNAL const int32_t xnn_table_exp2minus_k_over_16[16]; void xnn_f32_velu_ukernel__${"neonfma" if FMA else "neon"}_rr${1 if FMA else 2}_lut16_p3_x${BATCH_TILE}( size_t n, const float* x, float* y, const union xnn_f32_elu_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_DISABLE_TSAN { assert(n != 0); assert(n % sizeof(float) == 0); assert(x != NULL); assert(y != NULL); const float32x4_t vprescale = vld1q_dup_f32(¶ms->scalar.prescale); const float32x4_t valpha = vld1q_dup_f32(¶ms->scalar.alpha); const float32x4_t vbeta = vld1q_dup_f32(¶ms->scalar.beta); const float32x4_t vsat_cutoff = vmovq_n_f32(-0x1.154246p+4f); const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p19f); const float32x4_t vlog2e = vmovq_n_f32(0x1.715476p+0f); const int32x4_t vindex_mask = vmovq_n_s32(0xF); $if FMA: const float32x4_t vminus_ln2 = vmovq_n_f32(-0x1.62E430p-1f); $else: const float32x4_t vminus_ln2_hi = vmovq_n_f32(-0x1.62E400p-1f); const float32x4_t vminus_ln2_lo = vmovq_n_f32(-0x1.7F7D1Cp-20f); const float32x4_t vc3 = vmovq_n_f32(0x1.55561Cp-3f); const float32x4_t vc2 = vmovq_n_f32(0x1.0001ECp-1f); const float32x4_t vone = vmovq_n_f32(1.0f); $if BATCH_TILE > 4: for (; n >= ${BATCH_TILE} * sizeof(float); n -= ${BATCH_TILE} * sizeof(float)) { $for N in range(0, BATCH_TILE, 4): float32x4_t vx${ABC[N:N+4]} = vld1q_f32(x); x += 4; $for N in range(0, BATCH_TILE, 4): const float32x4_t vz${ABC[N:N+4]} = vmaxq_f32(vmulq_f32(vx${ABC[N:N+4]}, vprescale), vsat_cutoff); $for N in range(0, BATCH_TILE, 4): float32x4_t vn${ABC[N:N+4]} = ${VMULADDQ_F32}(vmagic_bias, vz${ABC[N:N+4]}, vlog2e); $for N in range(0, BATCH_TILE, 4): const uint64x2_t vidx${ABC[N:N+4]} = vreinterpretq_u64_s32(vshlq_n_s32(vandq_s32(vreinterpretq_s32_f32(vn${ABC[N:N+4]}), vindex_mask), 2)); const int32x4_t ven${ABC[N:N+4]} = vshlq_n_s32(vreinterpretq_s32_f32(vn${ABC[N:N+4]}), 19); $for N in range(0, BATCH_TILE, 4): const uint64_t vidx${ABC[N:N+2]} = vgetq_lane_u64(vidx${ABC[N:N+4]}, 0); const uint64_t vidx${ABC[N+2:N+4]} = vgetq_lane_u64(vidx${ABC[N:N+4]}, 1); int32x2_t vl${ABC[N:N+2]} = vld1_dup_s32((const int32_t*) ((uintptr_t) xnn_table_exp2minus_k_over_16 + (uint32_t) vidx${ABC[N:N+2]})); int32x2_t vl${ABC[N+2:N+4]} = vld1_dup_s32((const int32_t*) ((uintptr_t) xnn_table_exp2minus_k_over_16 + (uint32_t) vidx${ABC[N+2:N+4]})); vl${ABC[N:N+2]} = vld1_lane_s32((const int32_t*) ((uintptr_t) xnn_table_exp2minus_k_over_16 + (uint32_t) (vidx${ABC[N:N+2]} >> 32)), vl${ABC[N:N+2]}, 1); vl${ABC[N+2:N+4]} = vld1_lane_s32((const int32_t*) ((uintptr_t) xnn_table_exp2minus_k_over_16 + (uint32_t) (vidx${ABC[N+2:N+4]} >> 32)), vl${ABC[N+2:N+4]}, 1); const int32x4_t vl${ABC[N:N+4]} = vcombine_s32(vl${ABC[N:N+2]}, vl${ABC[N+2:N+4]}); $for N in range(0, BATCH_TILE, 4): vn${ABC[N:N+4]} = vsubq_f32(vn${ABC[N:N+4]}, vmagic_bias); float32x4_t vs${ABC[N:N+4]} = vreinterpretq_f32_s32(vaddq_s32(vl${ABC[N:N+4]}, ven${ABC[N:N+4]})); $if FMA: $for N in range(0, BATCH_TILE, 4): float32x4_t vt${ABC[N:N+4]} = ${VMULADDQ_F32}(vz${ABC[N:N+4]}, vn${ABC[N:N+4]}, vminus_ln2); $else: $for N in range(0, BATCH_TILE, 4): float32x4_t vt${ABC[N:N+4]} = ${VMULADDQ_F32}(vz${ABC[N:N+4]}, vn${ABC[N:N+4]}, vminus_ln2_hi); $for N in range(0, BATCH_TILE, 4): vt${ABC[N:N+4]} = ${VMULADDQ_F32}(vt${ABC[N:N+4]}, vn${ABC[N:N+4]}, vminus_ln2_lo); $for N in range(0, BATCH_TILE, 4): float32x4_t vp${ABC[N:N+4]} = ${VMULADDQ_F32}(vc2, vc3, vt${ABC[N:N+4]}); $for N in range(0, BATCH_TILE, 4): vp${ABC[N:N+4]} = vmulq_f32(vp${ABC[N:N+4]}, vt${ABC[N:N+4]}); $for N in range(0, BATCH_TILE, 4): vt${ABC[N:N+4]} = vmulq_f32(vt${ABC[N:N+4]}, vs${ABC[N:N+4]}); vs${ABC[N:N+4]} = vsubq_f32(vs${ABC[N:N+4]}, vone); $for N in range(0, BATCH_TILE, 4): vp${ABC[N:N+4]} = ${VMULADDQ_F32}(vt${ABC[N:N+4]}, vp${ABC[N:N+4]}, vt${ABC[N:N+4]}); $for N in range(0, BATCH_TILE, 4): const float32x4_t ve${ABC[N:N+4]} = vmulq_f32(vaddq_f32(vp${ABC[N:N+4]}, vs${ABC[N:N+4]}), valpha); $for N in range(0, BATCH_TILE, 4): const uint32x4_t vm${ABC[N:N+4]} = vcltq_f32(vx${ABC[N:N+4]}, vmovq_n_f32(0.0f)); vx${ABC[N:N+4]} = vmulq_f32(vx${ABC[N:N+4]}, vbeta); $for N in range(0, BATCH_TILE, 4): const float32x4_t vy${ABC[N:N+4]} = vbslq_f32(vm${ABC[N:N+4]}, ve${ABC[N:N+4]}, vx${ABC[N:N+4]}); $for N in range(0, BATCH_TILE, 4): vst1q_f32(y, vy${ABC[N:N+4]}); y += 4; } for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) { float32x4_t vx = vld1q_f32(x); x += 4; const float32x4_t vz = vmaxq_f32(vmulq_f32(vx, vprescale), vsat_cutoff); float32x4_t vn = ${VMULADDQ_F32}(vmagic_bias, vz, vlog2e); const uint64x2_t vidx = vreinterpretq_u64_s32(vshlq_n_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask), 2)); const int32x4_t ven = vshlq_n_s32(vreinterpretq_s32_f32(vn), 19); const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0); const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1); int32x2_t vl_lo = vld1_dup_s32((const int32_t*) ((uintptr_t) xnn_table_exp2minus_k_over_16 + (uint32_t) vidx_lo)); int32x2_t vl_hi = vld1_dup_s32((const int32_t*) ((uintptr_t) xnn_table_exp2minus_k_over_16 + (uint32_t) vidx_hi)); vl_lo = vld1_lane_s32((const int32_t*) ((uintptr_t) xnn_table_exp2minus_k_over_16 + (uint32_t) (vidx_lo >> 32)), vl_lo, 1); vl_hi = vld1_lane_s32((const int32_t*) ((uintptr_t) xnn_table_exp2minus_k_over_16 + (uint32_t) (vidx_hi >> 32)), vl_hi, 1); vn = vsubq_f32(vn, vmagic_bias); const int32x4_t vl = vcombine_s32(vl_lo, vl_hi); $if FMA: float32x4_t vt = ${VMULADDQ_F32}(vz, vn, vminus_ln2); $else: float32x4_t vt = ${VMULADDQ_F32}(vz, vn, vminus_ln2_hi); vt = ${VMULADDQ_F32}(vt, vn, vminus_ln2_lo); float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vl, ven)); float32x4_t vp = ${VMULADDQ_F32}(vc2, vc3, vt); vp = vmulq_f32(vp, vt); vt = vmulq_f32(vt, vs); vs = vsubq_f32(vs, vone); vp = ${VMULADDQ_F32}(vt, vp, vt); const float32x4_t ve = vmulq_f32(vaddq_f32(vp, vs), valpha); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vx = vmulq_f32(vx, vbeta); const float32x4_t vy = vbslq_f32(vm, ve, vx); vst1q_f32(y, vy); y += 4; } if XNN_UNLIKELY(n != 0) { float32x4_t vx = vld1q_f32(x); const float32x4_t vz = vmaxq_f32(vmulq_f32(vx, vprescale), vsat_cutoff); float32x4_t vn = ${VMULADDQ_F32}(vmagic_bias, vz, vlog2e); const uint64x2_t vidx = vreinterpretq_u64_s32(vshlq_n_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask), 2)); const int32x4_t ven = vshlq_n_s32(vreinterpretq_s32_f32(vn), 19); const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0); const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1); int32x2_t vl_lo = vld1_dup_s32((const int32_t*) ((uintptr_t) xnn_table_exp2minus_k_over_16 + (uint32_t) vidx_lo)); int32x2_t vl_hi = vld1_dup_s32((const int32_t*) ((uintptr_t) xnn_table_exp2minus_k_over_16 + (uint32_t) vidx_hi)); vl_lo = vld1_lane_s32((const int32_t*) ((uintptr_t) xnn_table_exp2minus_k_over_16 + (uint32_t) (vidx_lo >> 32)), vl_lo, 1); vl_hi = vld1_lane_s32((const int32_t*) ((uintptr_t) xnn_table_exp2minus_k_over_16 + (uint32_t) (vidx_hi >> 32)), vl_hi, 1); vn = vsubq_f32(vn, vmagic_bias); const int32x4_t vl = vcombine_s32(vl_lo, vl_hi); $if FMA: float32x4_t vt = ${VMULADDQ_F32}(vz, vn, vminus_ln2); $else: float32x4_t vt = ${VMULADDQ_F32}(vz, vn, vminus_ln2_hi); vt = ${VMULADDQ_F32}(vt, vn, vminus_ln2_lo); float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vl, ven)); float32x4_t vp = ${VMULADDQ_F32}(vc2, vc3, vt); vp = vmulq_f32(vp, vt); vt = vmulq_f32(vt, vs); vs = vsubq_f32(vs, vone); vp = ${VMULADDQ_F32}(vt, vp, vt); const float32x4_t ve = vmulq_f32(vaddq_f32(vp, vs), valpha); const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vx = vmulq_f32(vx, vbeta); const float32x4_t vy = vbslq_f32(vm, ve, vx); float32x2_t vy_lo = vget_low_f32(vy); if (n & (2 * sizeof(float))) { vst1_f32(y, vy_lo); y += 2; vy_lo = vget_high_f32(vy); } if (n & (1 * sizeof(float))) { vst1_lane_f32(y, vy_lo, 0); } } }