// Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $assert BATCH_TILE % 8 == 0 $assert BATCH_TILE >= 8 $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" #include #include #include #include void xnn_qs8_vadd_minmax_ukernel__avx2_mul32_ld64_x${BATCH_TILE}( size_t n, const int8_t* input_x, const int8_t* input_y, int8_t* output, const union xnn_qs8_add_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_DISABLE_TSAN { const __m256i vzero_point_product = _mm256_broadcastsi128_si256(_mm_load_si128((const __m128i*) params->sse2.zero_point_product)); const __m256i vx_multiplier = _mm256_broadcastsi128_si256(_mm_load_si128((const __m128i*) params->sse2.x_multiplier)); const __m256i vy_multiplier = _mm256_broadcastsi128_si256(_mm_load_si128((const __m128i*) params->sse2.y_multiplier)); const __m256i vremainder_mask = _mm256_broadcastsi128_si256(_mm_load_si128((const __m128i*) params->sse2.remainder_mask)); const __m256i vremainder_threshold = _mm256_broadcastsi128_si256(_mm_load_si128((const __m128i*) params->sse2.remainder_threshold)); const __m128i vshift = _mm_cvtsi32_si128((int) params->sse2.shift); $if BATCH_TILE > 8: const __m256i voutput_zero_point = _mm256_broadcastsi128_si256(_mm_load_si128((const __m128i*) params->sse2.output_zero_point)); const __m256i voutput_min = _mm256_broadcastsi128_si256(_mm_load_si128((const __m128i*) params->sse2.output_min)); const __m256i voutput_max = _mm256_broadcastsi128_si256(_mm_load_si128((const __m128i*) params->sse2.output_max)); $else: const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->sse2.output_zero_point); const __m128i voutput_min = _mm_load_si128((const __m128i*) params->sse2.output_min); const __m128i voutput_max = _mm_load_si128((const __m128i*) params->sse2.output_max); for (; n >= ${BATCH_TILE} * sizeof(int8_t); n -= ${BATCH_TILE} * sizeof(int8_t)) { const __m256i vx${ABC[0:8]} = _mm256_cvtepi8_epi32(_mm_loadl_epi64((const __m128i*) input_x)); const __m256i vy${ABC[0:8]} = _mm256_cvtepi8_epi32(_mm_loadl_epi64((const __m128i*) input_y)); $for N in range(8, BATCH_TILE, 8): const __m256i vx${ABC[N:N+8]} = _mm256_cvtepi8_epi32(_mm_loadl_epi64((const __m128i*) (input_x + ${N}))); const __m256i vy${ABC[N:N+8]} = _mm256_cvtepi8_epi32(_mm_loadl_epi64((const __m128i*) (input_y + ${N}))); input_x += ${BATCH_TILE}; input_y += ${BATCH_TILE}; $for N in range(0, BATCH_TILE, 8): __m256i vacc${ABC[N:N+8]} = _mm256_add_epi32(vzero_point_product, _mm256_mullo_epi32(vx${ABC[N:N+8]}, vx_multiplier)); $for N in range(0, BATCH_TILE, 8): vacc${ABC[N:N+8]} = _mm256_add_epi32(vacc${ABC[N:N+8]}, _mm256_mullo_epi32(vy${ABC[N:N+8]}, vy_multiplier)); $for N in range(0, BATCH_TILE, 8): const __m256i vrem${ABC[N:N+8]} = _mm256_add_epi32(_mm256_and_si256(vacc${ABC[N:N+8]}, vremainder_mask), _mm256_srai_epi32(vacc${ABC[N:N+8]}, 31)); $for N in range(0, BATCH_TILE, 8): vacc${ABC[N:N+8]} = _mm256_sub_epi32(_mm256_sra_epi32(vacc${ABC[N:N+8]}, vshift), _mm256_cmpgt_epi32(vrem${ABC[N:N+8]}, vremainder_threshold)); $for N in range(0, BATCH_TILE, 16): $if N + 8 < BATCH_TILE: __m256i vout${ABC[N:N+4]}${ABC[N+8:N+12]}${ABC[N+4:N+8]}${ABC[N+12:N+16]} = _mm256_adds_epi16(_mm256_packs_epi32(vacc${ABC[N:N+8]}, vacc${ABC[N+8:N+16]}), voutput_zero_point); $elif BATCH_TILE > 8: __m128i vout${ABC[N:N+8]} = _mm_adds_epi16(_mm_packs_epi32(_mm256_castsi256_si128(vacc${ABC[N:N+8]}), _mm256_extracti128_si256(vacc${ABC[N:N+8]}, 1)), _mm256_castsi256_si128(voutput_zero_point)); $else: __m128i vout${ABC[N:N+8]} = _mm_adds_epi16(_mm_packs_epi32(_mm256_castsi256_si128(vacc${ABC[N:N+8]}), _mm256_extracti128_si256(vacc${ABC[N:N+8]}, 1)), voutput_zero_point); $for N in range(0, BATCH_TILE, 16): $if N + 8 < BATCH_TILE: vout${ABC[N:N+4]}${ABC[N+8:N+12]}${ABC[N+4:N+8]}${ABC[N+12:N+16]} = _mm256_min_epi16(_mm256_max_epi16(vout${ABC[N:N+4]}${ABC[N+8:N+12]}${ABC[N+4:N+8]}${ABC[N+12:N+16]}, voutput_min), voutput_max); $elif BATCH_TILE > 8: vout${ABC[N:N+8]} = _mm_min_epi16(_mm_max_epi16(vout${ABC[N:N+8]}, _mm256_castsi256_si128(voutput_min)), _mm256_castsi256_si128(voutput_max)); $else: vout${ABC[N:N+8]} = _mm_min_epi16(_mm_max_epi16(vout${ABC[N:N+8]}, voutput_min), voutput_max); $for N in range(0, BATCH_TILE, 16): $if N + 8 < BATCH_TILE: __m128i vout${ABC[N:N+16]} = _mm_shuffle_epi32(_mm_packs_epi16(_mm256_castsi256_si128(vout${ABC[N:N+4]}${ABC[N+8:N+12]}${ABC[N+4:N+8]}${ABC[N+12:N+16]}), _mm256_extracti128_si256(vout${ABC[N:N+4]}${ABC[N+8:N+12]}${ABC[N+4:N+8]}${ABC[N+12:N+16]}, 1)), _MM_SHUFFLE(3, 1, 2, 0)); $else: __m128i vout${ABC[N:N+8]}${ABC[N:N+8]} = _mm_packs_epi16(vout${ABC[N:N+8]}, vout${ABC[N:N+8]}); $if BATCH_TILE >= 16: _mm_storeu_si128((__m128i*) output, vout${ABC[0:16]}); $else: _mm_storel_epi64((__m128i*) output, vout${ABC[0:8]}${ABC[0:8]}); $for N in range(16, BATCH_TILE, 16): $if N + 8 < BATCH_TILE: _mm_storeu_si128((__m128i*) (output + ${N}), vout${ABC[N:N+16]}); $else: _mm_storel_epi64((__m128i*) (output + ${N}), vout${ABC[N:N+8]}${ABC[N:N+8]}); output += ${BATCH_TILE}; } if XNN_UNLIKELY(n != 0) { ${"do " if BATCH_TILE > 8 else ""}{ const __m256i vx${ABC[0:8]} = _mm256_cvtepi8_epi32(_mm_loadl_epi64((const __m128i*) input_x)); const __m256i vy${ABC[0:8]} = _mm256_cvtepi8_epi32(_mm_loadl_epi64((const __m128i*) input_y)); $if BATCH_TILE > 8: input_x += 8; input_y += 8; __m256i vacc${ABC[0:8]} = _mm256_add_epi32(vzero_point_product, _mm256_mullo_epi32(vx${ABC[0:8]}, vx_multiplier)); vacc${ABC[0:8]} = _mm256_add_epi32(vacc${ABC[0:8]}, _mm256_mullo_epi32(vy${ABC[0:8]}, vy_multiplier)); const __m256i vrem${ABC[0:8]} = _mm256_add_epi32(_mm256_and_si256(vacc${ABC[0:8]}, vremainder_mask), _mm256_srai_epi32(vacc${ABC[0:8]}, 31)); vacc${ABC[0:8]} = _mm256_sub_epi32(_mm256_sra_epi32(vacc${ABC[0:8]}, vshift), _mm256_cmpgt_epi32(vrem${ABC[0:8]}, vremainder_threshold)); $if BATCH_TILE > 8: __m128i vout${ABC[0:8]} = _mm_adds_epi16(_mm_packs_epi32(_mm256_castsi256_si128(vacc${ABC[0:8]}), _mm256_extracti128_si256(vacc${ABC[0:8]}, 1)), _mm256_castsi256_si128(voutput_zero_point)); vout${ABC[0:8]} = _mm_min_epi16(_mm_max_epi16(vout${ABC[0:8]}, _mm256_castsi256_si128(voutput_min)), _mm256_castsi256_si128(voutput_max)); $else: __m128i vout${ABC[0:8]} = _mm_adds_epi16(_mm_packs_epi32(_mm256_castsi256_si128(vacc${ABC[0:8]}), _mm256_extracti128_si256(vacc${ABC[0:8]}, 1)), voutput_zero_point); vout${ABC[0:8]} = _mm_min_epi16(_mm_max_epi16(vout${ABC[0:8]}, voutput_min), voutput_max); __m128i vout${ABC[0:8]}${ABC[0:8]} = _mm_packs_epi16(vout${ABC[0:8]}, vout${ABC[0:8]}); $if BATCH_TILE > 8: if XNN_LIKELY(n >= (8 * sizeof(int8_t))) { _mm_storel_epi64((__m128i*) output, vout${ABC[0:8]}${ABC[0:8]}); output += 8; n -= 8 * sizeof(int8_t); } else { if (n & (4 * sizeof(int8_t))) { *((uint32_t*) output) = (uint32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]}); vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi64(vout${ABC[0:8]}${ABC[0:8]}, 32); output += 4; } if (n & (2 * sizeof(int8_t))) { *((uint16_t*) output) = (uint16_t) _mm_extract_epi16(vout${ABC[0:8]}${ABC[0:8]}, 0); vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi32(vout${ABC[0:8]}${ABC[0:8]}, 16); output += 2; } if (n & (1 * sizeof(int8_t))) { *output = (int8_t) _mm_extract_epi8(vout${ABC[0:8]}${ABC[0:8]}, 0); } n = 0; } $else: if (n & (4 * sizeof(int8_t))) { *((uint32_t*) output) = (uint32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]}); vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi64(vout${ABC[0:8]}${ABC[0:8]}, 32); output += 4; } if (n & (2 * sizeof(int8_t))) { *((uint16_t*) output) = (uint16_t) _mm_extract_epi16(vout${ABC[0:8]}${ABC[0:8]}, 0); vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi32(vout${ABC[0:8]}${ABC[0:8]}, 16); output += 2; } if (n & (1 * sizeof(int8_t))) { *output = (int8_t) _mm_extract_epi8(vout${ABC[0:8]}${ABC[0:8]}, 0); } }${" while (n != 0);" if BATCH_TILE > 8 else ""} } }