#!/usr/bin/python2 """ Postprocessing module for IOzone. It is capable to pick results from an IOzone run, calculate the geometric mean for all throughput results for a given file size or record size, and then generate a series of 2D and 3D graphs. The graph generation functionality depends on gnuplot, and if it is not present, functionality degrates gracefully. @copyright: Red Hat 2010 """ import os, sys, optparse, logging, math, time import common from autotest_lib.client.common_lib import logging_config, logging_manager from autotest_lib.client.common_lib import error from autotest_lib.client.bin import utils, os_dep _LABELS = ['file_size', 'record_size', 'write', 'rewrite', 'read', 'reread', 'randread', 'randwrite', 'bkwdread', 'recordrewrite', 'strideread', 'fwrite', 'frewrite', 'fread', 'freread'] def unique(list): """ Return a list of the elements in list, but without duplicates. @param list: List with values. @return: List with non duplicate elements. """ n = len(list) if n == 0: return [] u = {} try: for x in list: u[x] = 1 except TypeError: return None else: return u.keys() def geometric_mean(values): """ Evaluates the geometric mean for a list of numeric values. @param values: List with values. @return: Single value representing the geometric mean for the list values. @see: http://en.wikipedia.org/wiki/Geometric_mean """ try: values = [int(value) for value in values] except ValueError: return None product = 1 n = len(values) if n == 0: return None return math.exp(sum([math.log(x) for x in values])/n) def compare_matrices(matrix1, matrix2, treshold=0.05): """ Compare 2 matrices nxm and return a matrix nxm with comparison data @param matrix1: Reference Matrix with numeric data @param matrix2: Matrix that will be compared @param treshold: Any difference bigger than this percent treshold will be reported. """ improvements = 0 regressions = 0 same = 0 comparison_matrix = [] new_matrix = [] for line1, line2 in zip(matrix1, matrix2): new_line = [] for element1, element2 in zip(line1, line2): ratio = float(element2) / float(element1) if ratio < (1 - treshold): regressions += 1 new_line.append((100 * ratio - 1) - 100) elif ratio > (1 + treshold): improvements += 1 new_line.append("+" + str((100 * ratio - 1) - 100)) else: same + 1 if line1.index(element1) == 0: new_line.append(element1) else: new_line.append(".") new_matrix.append(new_line) total = improvements + regressions + same return (new_matrix, improvements, regressions, total) class IOzoneAnalyzer(object): """ Analyze an unprocessed IOzone file, and generate the following types of report: * Summary of throughput for all file and record sizes combined * Summary of throughput for all file sizes * Summary of throughput for all record sizes If more than one file is provided to the analyzer object, a comparison between the two runs is made, searching for regressions in performance. """ def __init__(self, list_files, output_dir): self.list_files = list_files if not os.path.isdir(output_dir): os.makedirs(output_dir) self.output_dir = output_dir logging.info("Results will be stored in %s", output_dir) def average_performance(self, results, size=None): """ Flattens a list containing performance results. @param results: List of n lists containing data from performance runs. @param size: Numerical value of a size (say, file_size) that was used to filter the original results list. @return: List with 1 list containing average data from the performance run. """ average_line = [] if size is not None: average_line.append(size) for i in range(2, 15): average = geometric_mean([line[i] for line in results]) / 1024.0 average = int(average) average_line.append(average) return average_line def process_results(self, results, label=None): """ Process a list of IOzone results according to label. @label: IOzone column label that we'll use to filter and compute geometric mean results, in practical term either 'file_size' or 'record_size'. @result: A list of n x m columns with original iozone results. @return: A list of n-? x (m-1) columns with geometric averages for values of each label (ex, average for all file_sizes). """ performance = [] if label is not None: index = _LABELS.index(label) sizes = unique([line[index] for line in results]) sizes.sort() for size in sizes: r_results = [line for line in results if line[index] == size] performance.append(self.average_performance(r_results, size)) else: performance.append(self.average_performance(results)) return performance def parse_file(self, file): """ Parse an IOzone results file. @param file: File object that will be parsed. @return: Matrix containing IOzone results extracted from the file. """ lines = [] for line in file.readlines(): fields = line.split() if len(fields) != 15: continue try: lines.append([int(i) for i in fields]) except ValueError: continue return lines def report(self, overall_results, record_size_results, file_size_results): """ Generates analysis data for IOZone run. Generates a report to both logs (where it goes with nice headers) and output files for further processing (graph generation). @param overall_results: 1x15 Matrix containing IOzone results for all file sizes @param record_size_results: nx15 Matrix containing IOzone results for each record size tested. @param file_size_results: nx15 Matrix containing file size results for each file size tested. """ # Here we'll use the logging system to put the output of our analysis # to files logger = logging.getLogger() formatter = logging.Formatter("") logging.info("") logging.info("TABLE: SUMMARY of ALL FILE and RECORD SIZES Results in MB/sec") logging.info("") logging.info("FILE & RECORD INIT RE RE RANDOM RANDOM BACKWD RECRE STRIDE F FRE F FRE") logging.info("SIZES (KB) WRITE WRITE READ READ READ WRITE READ WRITE READ WRITE WRITE READ READ") logging.info("-------------------------------------------------------------------------------------------------------------------") for result_line in overall_results: logging.info("ALL %-8s%-8s%-8s%-8s%-8s%-8s%-8s%-8s%-8s%-8s%-8s%-8s%-8s" % tuple(result_line)) logging.info("") logging.info("DRILLED DATA:") logging.info("") logging.info("TABLE: RECORD Size against all FILE Sizes Results in MB/sec") logging.info("") logging.info("RECORD INIT RE RE RANDOM RANDOM BACKWD RECRE STRIDE F FRE F FRE ") logging.info("SIZE (KB) WRITE WRITE READ READ READ WRITE READ WRITE READ WRITE WRITE READ READ") logging.info("--------------------------------------------------------------------------------------------------------------") foutput_path = os.path.join(self.output_dir, '2d-datasource-file') if os.path.isfile(foutput_path): os.unlink(foutput_path) foutput = logging.FileHandler(foutput_path) foutput.setFormatter(formatter) logger.addHandler(foutput) for result_line in record_size_results: logging.info("%-10s%-8s%-8s%-8s%-8s%-8s%-8s%-8s%-8s%-8s%-8s%-8s%-8s%-8s" % tuple(result_line)) logger.removeHandler(foutput) logging.info("") logging.info("") logging.info("TABLE: FILE Size against all RECORD Sizes Results in MB/sec") logging.info("") logging.info("RECORD INIT RE RE RANDOM RANDOM BACKWD RECRE STRIDE F FRE F FRE ") logging.info("SIZE (KB) WRITE WRITE READ READ READ WRITE READ WRITE READ WRITE WRITE READ READ") logging.info("--------------------------------------------------------------------------------------------------------------") routput_path = os.path.join(self.output_dir, '2d-datasource-record') if os.path.isfile(routput_path): os.unlink(routput_path) routput = logging.FileHandler(routput_path) routput.setFormatter(formatter) logger.addHandler(routput) for result_line in file_size_results: logging.info("%-10s%-8s%-8s%-8s%-8s%-8s%-8s%-8s%-8s%-8s%-8s%-8s%-8s%-8s" % tuple(result_line)) logger.removeHandler(routput) logging.info("") def report_comparison(self, record, file): """ Generates comparison data for 2 IOZone runs. It compares 2 sets of nxm results and outputs a table with differences. If a difference higher or smaller than 5% is found, a warning is triggered. @param record: Tuple with 4 elements containing results for record size. @param file: Tuple with 4 elements containing results for file size. """ (record_size, record_improvements, record_regressions, record_total) = record (file_size, file_improvements, file_regressions, file_total) = file logging.info("ANALYSIS of DRILLED DATA:") logging.info("") logging.info("TABLE: RECsize Difference between runs Results are % DIFF") logging.info("") logging.info("RECORD INIT RE RE RANDOM RANDOM BACKWD RECRE STRIDE F FRE F FRE ") logging.info("SIZE (KB) WRITE WRITE READ READ READ WRITE READ WRITE READ WRITE WRITE READ READ") logging.info("--------------------------------------------------------------------------------------------------------------") for result_line in record_size: logging.info("%-10s%-8.6s%-8.6s%-8.6s%-8.6s%-8.6s%-8.6s%-8.6s%-8.6s%-8.6s%-8.6s%-8.6s%-8.6s%-8.6s" % tuple(result_line)) logging.info("REGRESSIONS: %d (%.2f%%) Improvements: %d (%.2f%%)", record_regressions, (100 * record_regressions/float(record_total)), record_improvements, (100 * record_improvements/float(record_total))) logging.info("") logging.info("") logging.info("TABLE: FILEsize Difference between runs Results are % DIFF") logging.info("") logging.info("RECORD INIT RE RE RANDOM RANDOM BACKWD RECRE STRIDE F FRE F FRE ") logging.info("SIZE (KB) WRITE WRITE READ READ READ WRITE READ WRITE READ WRITE WRITE READ READ") logging.info("--------------------------------------------------------------------------------------------------------------") for result_line in file_size: logging.info("%-10s%-8.6s%-8.6s%-8.6s%-8.6s%-8.6s%-8.6s%-8.6s%-8.6s%-8.6s%-8.6s%-8.6s%-8.6s%-8.6s" % tuple(result_line)) logging.info("REGRESSIONS: %d (%.2f%%) Improvements: %d (%.2f%%)", file_regressions, (100 * file_regressions/float(file_total)), file_improvements, (100 * file_improvements/float(file_total))) logging.info("") def analyze(self): """ Analyzes and eventually compares sets of IOzone data. """ overall = [] record_size = [] file_size = [] for path in self.list_files: file = open(path, 'r') logging.info('FILE: %s', path) results = self.parse_file(file) overall_results = self.process_results(results) record_size_results = self.process_results(results, 'record_size') file_size_results = self.process_results(results, 'file_size') self.report(overall_results, record_size_results, file_size_results) if len(self.list_files) == 2: overall.append(overall_results) record_size.append(record_size_results) file_size.append(file_size_results) if len(self.list_files) == 2: record_comparison = compare_matrices(*record_size) file_comparison = compare_matrices(*file_size) self.report_comparison(record_comparison, file_comparison) class IOzonePlotter(object): """ Plots graphs based on the results of an IOzone run. Plots graphs based on the results of an IOzone run. Uses gnuplot to generate the graphs. """ def __init__(self, results_file, output_dir): self.active = True try: self.gnuplot = os_dep.command("gnuplot") except: logging.error("Command gnuplot not found, disabling graph " "generation") self.active = False if not os.path.isdir(output_dir): os.makedirs(output_dir) self.output_dir = output_dir if not os.path.isfile(results_file): logging.error("Invalid file %s provided, disabling graph " "generation", results_file) self.active = False self.results_file = None else: self.results_file = results_file self.generate_data_source() def generate_data_source(self): """ Creates data file without headers for gnuplot consumption. """ results_file = open(self.results_file, 'r') self.datasource = os.path.join(self.output_dir, '3d-datasource') datasource = open(self.datasource, 'w') for line in results_file.readlines(): fields = line.split() if len(fields) != 15: continue try: values = [int(i) for i in fields] datasource.write(line) except ValueError: continue datasource.close() def plot_2d_graphs(self): """ For each one of the throughput parameters, generate a set of gnuplot commands that will create a parametric surface with file size vs. record size vs. throughput. """ datasource_2d = os.path.join(self.output_dir, '2d-datasource-file') for index, label in zip(range(2, 15), _LABELS[2:]): commands_path = os.path.join(self.output_dir, '2d-%s.do' % label) commands = "" commands += "set title 'Iozone performance: %s'\n" % label commands += "set logscale x\n" commands += "set xlabel 'File size (KB)'\n" commands += "set ylabel 'Througput (MB/s)'\n" commands += "set terminal png small size 450 350\n" commands += "set output '%s'\n" % os.path.join(self.output_dir, '2d-%s.png' % label) commands += ("plot '%s' using 1:%s title '%s' with lines \n" % (datasource_2d, index, label)) commands_file = open(commands_path, 'w') commands_file.write(commands) commands_file.close() try: utils.system("%s %s" % (self.gnuplot, commands_path)) except error.CmdError: logging.error("Problem plotting from commands file %s", commands_path) def plot_3d_graphs(self): """ For each one of the throughput parameters, generate a set of gnuplot commands that will create a parametric surface with file size vs. record size vs. throughput. """ for index, label in zip(range(1, 14), _LABELS[2:]): commands_path = os.path.join(self.output_dir, '%s.do' % label) commands = "" commands += "set title 'Iozone performance: %s'\n" % label commands += "set grid lt 2 lw 1\n" commands += "set surface\n" commands += "set parametric\n" commands += "set xtics\n" commands += "set ytics\n" commands += "set logscale x 2\n" commands += "set logscale y 2\n" commands += "set logscale z\n" commands += "set xrange [2.**5:2.**24]\n" commands += "set xlabel 'File size (KB)'\n" commands += "set ylabel 'Record size (KB)'\n" commands += "set zlabel 'Througput (KB/s)'\n" commands += "set data style lines\n" commands += "set dgrid3d 80,80, 3\n" commands += "set terminal png small size 900 700\n" commands += "set output '%s'\n" % os.path.join(self.output_dir, '%s.png' % label) commands += ("splot '%s' using 1:2:%s title '%s'\n" % (self.datasource, index, label)) commands_file = open(commands_path, 'w') commands_file.write(commands) commands_file.close() try: utils.system("%s %s" % (self.gnuplot, commands_path)) except error.CmdError: logging.error("Problem plotting from commands file %s", commands_path) def plot_all(self): """ Plot all graphs that are to be plotted, provided that we have gnuplot. """ if self.active: self.plot_2d_graphs() self.plot_3d_graphs() class AnalyzerLoggingConfig(logging_config.LoggingConfig): def configure_logging(self, results_dir=None, verbose=False): super(AnalyzerLoggingConfig, self).configure_logging(use_console=True, verbose=verbose) if __name__ == "__main__": parser = optparse.OptionParser("usage: %prog [options] [filenames]") options, args = parser.parse_args() logging_manager.configure_logging(AnalyzerLoggingConfig()) if args: filenames = args else: parser.print_help() sys.exit(1) if len(args) > 2: parser.print_help() sys.exit(1) o = os.path.join(os.getcwd(), "iozone-graphs-%s" % time.strftime('%Y-%m-%d-%H.%M.%S')) if not os.path.isdir(o): os.makedirs(o) a = IOzoneAnalyzer(list_files=filenames, output_dir=o) a.analyze() p = IOzonePlotter(results_file=filenames[0], output_dir=o) p.plot_all()