"""Helpers for manipulating 2D points and vectors in COLR table.""" from math import copysign, cos, hypot, pi from fontTools.misc.roundTools import otRound def _vector_between(origin, target): return (target[0] - origin[0], target[1] - origin[1]) def _round_point(pt): return (otRound(pt[0]), otRound(pt[1])) def _unit_vector(vec): length = hypot(*vec) if length == 0: return None return (vec[0] / length, vec[1] / length) # This is the same tolerance used by Skia's SkTwoPointConicalGradient.cpp to detect # when a radial gradient's focal point lies on the end circle. _NEARLY_ZERO = 1 / (1 << 12) # 0.000244140625 # The unit vector's X and Y components are respectively # U = (cos(α), sin(α)) # where α is the angle between the unit vector and the positive x axis. _UNIT_VECTOR_THRESHOLD = cos(3 / 8 * pi) # == sin(1/8 * pi) == 0.38268343236508984 def _rounding_offset(direction): # Return 2-tuple of -/+ 1.0 or 0.0 approximately based on the direction vector. # We divide the unit circle in 8 equal slices oriented towards the cardinal # (N, E, S, W) and intermediate (NE, SE, SW, NW) directions. To each slice we # map one of the possible cases: -1, 0, +1 for either X and Y coordinate. # E.g. Return (+1.0, -1.0) if unit vector is oriented towards SE, or # (-1.0, 0.0) if it's pointing West, etc. uv = _unit_vector(direction) if not uv: return (0, 0) result = [] for uv_component in uv: if -_UNIT_VECTOR_THRESHOLD <= uv_component < _UNIT_VECTOR_THRESHOLD: # unit vector component near 0: direction almost orthogonal to the # direction of the current axis, thus keep coordinate unchanged result.append(0) else: # nudge coord by +/- 1.0 in direction of unit vector result.append(copysign(1.0, uv_component)) return tuple(result) class Circle: def __init__(self, centre, radius): self.centre = centre self.radius = radius def __repr__(self): return f"Circle(centre={self.centre}, radius={self.radius})" def round(self): return Circle(_round_point(self.centre), otRound(self.radius)) def inside(self, outer_circle): dist = self.radius + hypot(*_vector_between(self.centre, outer_circle.centre)) return ( abs(outer_circle.radius - dist) <= _NEARLY_ZERO or outer_circle.radius > dist ) def concentric(self, other): return self.centre == other.centre def move(self, dx, dy): self.centre = (self.centre[0] + dx, self.centre[1] + dy) def round_start_circle_stable_containment(c0, r0, c1, r1): """Round start circle so that it stays inside/outside end circle after rounding. The rounding of circle coordinates to integers may cause an abrupt change if the start circle c0 is so close to the end circle c1's perimiter that it ends up falling outside (or inside) as a result of the rounding. To keep the gradient unchanged, we nudge it in the right direction. See: https://github.com/googlefonts/colr-gradients-spec/issues/204 https://github.com/googlefonts/picosvg/issues/158 """ start, end = Circle(c0, r0), Circle(c1, r1) inside_before_round = start.inside(end) round_start = start.round() round_end = end.round() inside_after_round = round_start.inside(round_end) if inside_before_round == inside_after_round: return round_start elif inside_after_round: # start was outside before rounding: we need to push start away from end direction = _vector_between(round_end.centre, round_start.centre) radius_delta = +1.0 else: # start was inside before rounding: we need to push start towards end direction = _vector_between(round_start.centre, round_end.centre) radius_delta = -1.0 dx, dy = _rounding_offset(direction) # At most 2 iterations ought to be enough to converge. Before the loop, we # know the start circle didn't keep containment after normal rounding; thus # we continue adjusting by -/+ 1.0 until containment is restored. # Normal rounding can at most move each coordinates -/+0.5; in the worst case # both the start and end circle's centres and radii will be rounded in opposite # directions, e.g. when they move along a 45 degree diagonal: # c0 = (1.5, 1.5) ===> (2.0, 2.0) # r0 = 0.5 ===> 1.0 # c1 = (0.499, 0.499) ===> (0.0, 0.0) # r1 = 2.499 ===> 2.0 # In this example, the relative distance between the circles, calculated # as r1 - (r0 + distance(c0, c1)) is initially 0.57437 (c0 is inside c1), and # -1.82842 after rounding (c0 is now outside c1). Nudging c0 by -1.0 on both # x and y axes moves it towards c1 by hypot(-1.0, -1.0) = 1.41421. Two of these # moves cover twice that distance, which is enough to restore containment. max_attempts = 2 for _ in range(max_attempts): if round_start.concentric(round_end): # can't move c0 towards c1 (they are the same), so we change the radius round_start.radius += radius_delta assert round_start.radius >= 0 else: round_start.move(dx, dy) if inside_before_round == round_start.inside(round_end): break else: # likely a bug raise AssertionError( f"Rounding circle {start} " f"{'inside' if inside_before_round else 'outside'} " f"{end} failed after {max_attempts} attempts!" ) return round_start